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Abstract

In this paper we obtain some normality criteria of families of meromorphic functions, which improve and
generalize the related results of Gu and Bergweiler, respectively. Some examples are given to show the
sharpness of our results.
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1. Introduction

Let D be a domain in C, and & be a family of meromorphic functions defined in D.
& is said to be normal in D, in the sense of Montel, if for any sequence /„ e & there
exists a subsequence fnj, such that fn. converges spherically locally uniformly in D,
to a meromorphic function or oo.

In 1979, Gu [5] proved the following well-known normality criterion, which was a
conjecture of Hayman [8].

THEOREM G. Let & be a family of meromorphic functions defined in D, and let
k be a positive integer. If, for every function f 6 &, f ^ 0, / ( k ) ^ 1, then & is
normal.

Recently, Bergweiler [2] improved the above result for the case k = 1, by allowing
/ to have zeros, but restricting the values / ' can take at the zeros of/.

THEOREM B. Let K and e be positive numbers, and let & be the family of all
functions meromorphic in D which satisfy the following conditions:
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(i) Ifz eD. then f'(z)*l.
(ii) Ifz 6 D, andf (z) = 0, then 0 < [f'(z)\ < K.

(iii) If A is a disk in D and iff has m > 2 zeros Z\,Zi,... , zm € A, then there

exists k e {-1} |J{1, • • • - m - 2} such that \ Y!?=J'(Zi)k - mk+i\ > e.

Then & is normal in D.

A natural problem arises: what can we say iff' is replaced by k-th derivative fik)

in Theorem B? In this paper, we obtain the following results, which improve and
generalize Theorem G and Theorem B.

For the case k > 3, we have

THEOREM 1. Let k be a positive integer such that k > 3 and K be a positive
number. Let & be a family of meromorphic functions in a domain D and a(z) be a
non-vanishing analytic function in D. Suppose that, for every function f 6 &, f has
only zeros of multiplicity at least k and satisfies the following conditions:

(a) Ifz 6 D, thenfw(z) ^ a(z).
(b) Ifz 6 Dandf (z) = 0, then 0 < \f(k)(z)\ < K.

Then & is normal in D.

REMARK 1. Theorem 1 shows that for k > 3 the conclusion of Theorem B is still
valid without the condition such as (iii).

The following example shows that condition (b) cannot be omitted in Theorem 1.

EXAMPLE 1 (see [11]). Let n, k € N, D = {z : \z\ < 1), and an(n = 1, 2 , . . . )
satisfy (k\ak+i)/n = 1. Set

nz

Then for each fn(z) e &,fm(z) = (anz + l)k+l/(nz), we have

(1) the zeros of/n(z) are of multiplicity at least k + 1;

(2) fik)(z) * 1.
But & is not normal in D. In fact, for each fn(z) € &, by a simple computation,
we deduce that/n

#(O) = n —> oo, as n —> oo. By Marty's criterion, & is not normal
in D.

For k = 2, Theorem 1 is not valid. But we have the following two results.

THEOREM 2. Let K be a positive number. Let & be a family of meromorphic
functions in a domain D anda(z) be a non-vanishing analytic function in D. Suppose
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that, for every function f e &,f has only zeros of multiplicity at least 2 and satisfies
the following conditions:

(a) Ifz eD, thenf"(z)^a(z).
(b) Ifz € D andf (z) = 0, then |/"(z)| < K.
(c) All poles of f are of multiplicity at least 3.

Then & is normal in D.

The following example shows that condition (c) in Theorem 2 is necessary and the
number 3 is sharp.

EXAMPLE 2. Let D = {z : \z\ < 1} and

Then for each fn(z) e 3?, fn{z) = (nz + l)2(z - l/n)2/(2n2z2), we have

(1) /n"(z) = 1 + 3/ (nV) , then/n"(z) ^ 1.
(2) zi = 1/n, Z2 = —1/n are the zeros of fn(z) of multiplicity 2 in D, and
l/n"fe)l = 4(/ = l,2).

However, & is not normal in D. In fact, for each /n(z) € <^\ we have

384 3

as n —>• oo. Then by Marty's criterion, ^" is not normal in D.

THEOREM 3. Let K be a positive number. Let & be a family of meromorphic
functions in a domain D and a(z) be a non-vanishing analytic function in D. Suppose
that, for every function f e &, f has only zeros of multiplicity at least 2 and satisfies
the following conditions:

(1) Ifz eD, thenf"(z)£a{z).
(2) Ifz eDandf (z) = 0, then |/"(z)| < K.
(3) If A is a disk in D and iff has m > 3 zeros Z\, Zi, • • • , zm e A, then there exists

he {1,2, . . . ,m-2}suchthat\j™=J"{Zi)h - mH+1\ > e.

Then & is normal in D.

REMARK 2. If/ has only zeros of multiplicity at least 3 in Theorem 2 and The-
orem 3, it is obvious that condition (b) can be omitted. In fact, Wang and Fang
[11] proved that: Let & be a family of meromorphic functions defined in D. If for
every function / e &', f has only zeros of multiplicity at least 3 and only poles of
multiplicity at least 2 a n d / " ^ 1, then & is normal.
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For k = 1, we obtain the following result, which is a generalization of Theorem B.

THEOREM 4. Let K, s be positive numbers, a(z) be a non-vanishing analytic func-
tion in D, and let & be the family of all functions meromorphic in D which satisfy
the following conditions:

(i) IfzeD,thenf'(z)^a(z).
(ii) Ifz e D, andf (z) = 0, then 0 < | / ' (z) | < K.

(iii) If A is a disk in D and iff has m > 2 zeros Z\, z%, • • • ,zm £ A, then there
exists k e {-1} UU. ••• ,m-2] such that | £7= 1/ '(z,)* - mM\ > e.
Then & is normal in D.

2. Some lemmas

To prove our results, we need some lemmas.

LEMMA 1 ([3]). Letf be meromorphic in C and offinite order. Iff has only finitely
many critical values, then f has only finitely many asymptotic values.

The following lemma is due to Rippon and Stallard ([10]; see also [1]).

LEMMA 2. Letf be meromorphic in C and suppose that the set of all finite critical
and asymptotic values of f is bounded. Then there exists R > 0 such that if\z\ > R
and\f(z)\ > R, then

16TT|Z|

LEMMA 3 ([11]). Let f (z) = anz" + an_iz""' + • • • + oo + q(z)/p(z), where
Oo, a i , . . . , an 0re constants, p(z) and q(z) are two coprime polynomials with
deg q(z) < degp(z), and let k be a positive integer. Iff{k)(z) ^ 1, //ie«

f - — * b

~ k\Z a ° ( z - c ) n '
where b (^ 0), c are two constants and m € M.

We denote the residue of a meromorphic function / at a point z by res(/, z). By
an elementary computation, we have

LEMMA 4 (see also [2]). Let f (z) = z + a + b/(z - c)1 with a, b, c e €, b £ 0,
/ € N, and let p € {0, 1 , . . . , /}. Then

res
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LEMMA 5. Letf be meromorphic in C and ojfinite order, and let k > Ibeapositive
integer and K be a positive number. Suppose that f has only zeros of multiplicity at
least k, \f(k)(z)\ < K wherever f (z) = 0, andfik)(z) ^ 1. Then one ofthe following

two cases must occur:

(i)

(1)

where

00

or

(3)

Ifk>

a, P € C, andakl 7
Ifk = 2, then

3, then

/<

6 1.

/(z) -

/(z) =

(z) = «(z -

(z-c,)2

2(z-

(z — ci)3

2(z - c)

(z - c2)2

- c ) 2

( 4 ) / ( z ) ^ .

£! (z - c)

Here C\, c2 and c are distinct complex numbers.

PROOF. If g(z) = z - / (k~n(z), then g'(z) = 1 - / (i)(z) ^ 0 for all z e C. First,
we prove that / is not transcendental. Suppose that / is transcendental, then g is
also transcendental. By Hayman's inequality ([6], see also [7]),/ has infinitely many
zeros zn{n = 1,2,...). Since / has only zeros of multiplicity at least k, we have
g(zn) = zn- Since g'(z) ^ 0, by Lemma 1, g has only finitely many asymptotic values,
and then satisfies the hypotheses of Lemma 2 for some R > 0. We get

IS (zn)\ >
16TT

for large n. Thus #'(£,,) -> oo,as« -> oo. On the other hand, we know \f(k)(zn)\ < K
and thus \g'(zn)\ < 1 + K for all «, a contradiction.

Thus/ is rational. If/ is a polynomial, then since f(k)(z) ^ 1 and / has only
zeros of multiplicity at least k, f has the form (1). If/ is not a polynomial, we can
write / = R + P/Q with polynomials P, Q, R satisfying deg P < deg Q. Since
f(k)(z) ^ 1, from Lemma 3, we have

f (z) = -zk + • • • +
k\ (z-c)"
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where b (^ 0), c are two constants and m e N. Set

Pdz) = -zk + --- + ao,

so that

f(z) =
(z - c)m

Obviously, / (z) and pk(z)(z — c)m + b have the same zeros. If C\, c2, . . . , cq are
the zeros of Pk(z)(z — c)m + b, with multiplicity n\, n2,... , nq, then n, > k (i =
1, 2 , . . . , q). Henceci isazeroof [pk(z)(z—c)m+b]' with multiplicity «i — 1 (> k— 1).
Since

[PkizKz - c)m + b]' = (z - c)"-1[P;(z)(z - c) + mPk{z)l

and it is easy to see that c\ ^ c, then c\ is a zero of p'k(z)(z — c) + mpk(z) with
multiplicity /M - 1 (> it - 1). Note that deg[/^(z)(z - c) + mpk(z)] = k. Ifk = 2,
we deduce that p2{z){z — c)m + b has two zeros c\, c2 with multiplicity 2 or only
one zero C\ with multiplicity 3, where c\, c2 and c are three distinct constants. Thus
Pii.z){z - c)m + b = \{z - cO2(z - c2)

2 or p2(z)(z - c)m + b = \(z - c,)3. It
follows that m = 2 and / has the form (2) or m = 1 and / has the form (3). If
k > 3, then ci is the only zero of pk(z)(z — c)m + b, with multiplicity k + 1. Thus
Pk(z)(z — c)m + b = (z — ci)*+1/A:!> and hence / has the form (4). This completes
the proof of the lemma. •

The following result is a generalization of the well-known Zalcman's lemma, which
is due to Pang and Zalcman [9].

LEMMA 6. Let k be a positive integer and let & be a family of functions meromor-
phic in a domain D, such that each function f € & has only zeros of multiplicity
at least k, and suppose that there exists A > 1 such that | / ( t ) (z) | < A whenever
f (z) = 0, / e &. lf&is not normal at zo G D, then, for each 0 < a < k, there exist
a sequence of points zn e D, zn —> Zo. a sequence of positive numbers pn —*• 0, and a
sequence of functions fne<!? such that

locally uniformly with respect to the spherical metric, where g is a nonconstant
meromorphic function on C such that g*(%) < g*(0) = kA + 1. Moreover, g has finite
order.

REMARK 3. The above result improves the result of Chen and Gu [4].
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3. Proof of theorems

PROOF OF THEOREM 1. Suppose that & is not normal at a point zo e D. Then
by Lemma 6, for a = k, there exist a sequence of functions / „ e &', a sequence of
complex numbers zn —*• Zo and a sequence of positive numbers pn -> 0," such that

Sn(£) = Pnkfn(Zn + PnS)

converges locally uniformly to a non-constant function g(£), which is meromorphic
in C and of finite order. Moreover, g*(i;) < g#(0) = k(K + 1) + 1 for all £ e C.
Since #„(£) has only zeros of multiplicity at least k, by Hurwitz's theorem, the zeros
of g(£) are of multiplicity at least k.

Let fi be a zero of g(£). Then there exist £„,£„ —> £i, such that #„(£„) =
Pnkfn(zn + Pn$n) = 0 for « sufficiently large. Thus/n(zn + pnfn) = 0 for sufficiently
large n. Since

g™(Sn)=f?)(Zn + PnKn) - • «W(?l) ,

we deduce from condition (b) that |g( i )(£i)| < K.
Obviously, a(zo) •£ 0, oo. Now we distinguish two cases.

Case 1. There exists f0 such that gw(£o) = a(zo).

Then there exists S > 0, such that g(£) is analytic on D^ — R : |£ — 4Tol < 25}.
Hence g(

n
k)(^) are analytic on Da = {£ : |f — £ol < ^} for sufficiently large n. Since

* * ( ? ) - fl(Z. + P ^ ) = / ^ ( Z n + P«?) - a(Zn + PnK) £ 0,

and gWtf) - a{zn + pnf) converges uniformly to g(k)(%) - a(z0) on D4/2 = R :
|f - Sbl < <5/2}, we conclude that *<*>(£) - a(z0) s 0 on Ds/2 = R : |£ - ?0| < <5/2},
and then

for all £ € C. Note that g(f) has only zeros of multiplicity at least k, so we have

and |g(t)(£)l = |a(zo)l < ^ (if |a(zo)l > ^> w e have already obtain a contradiction).
A simple calculation shows that

# \k/2 if \a\ > 1;
g (0 ) < i i - •
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This contradicts g*(0) = k(K + 1) + 1.

Case 2. *<*>(£) #a(zo).
Without loss of generality, we may assume a{zo) = 1. Then by Lemma 5, we know

that g has the the form (1) or (4) in Lemma 5. Similarly as in Case 1, we exclude the
case that g has the form (1). Then

kl ( f - e ) '

where c\ and c are two distinct constants. Thus g(£) has only one zero C\ with
multiplicity jfc + 1. On the other hand, by the assumption of Theorem 1 and Hurwitz's
theorem, gn(£) has only zeros of multiplicity k. We arrive at a contradiction. This
completes the proof of Theorem 1. •

PROOF OF THEOREM 2. Suppose that & is not normal at a point zo e D. Then
by Lemma 6, for a = 2, there exist a sequence of functions fneJ?,a sequence of
complex numbers zn -*• Zo and a sequence of positive numbers pn —»• 0, such that

converges locally uniformly to a non-constant meromorphic function g(£). Moreover,
g<£) is of finite order, and g#(£) < g#(0) = Jfc(K + 1) + 1 for all £ e C. By Hurwitz's
theorem, g(£) has only zeros of multiplicity at least 2. Similarly as in the proof of
Theorem 1, we know that |g"(f )l 5 K wherever g(f) = 0.

We consider two cases.
Case 1. There exists £0 such that such that £"(£o) = #(zo)-

Using the same argument as in the proof of Theorem 1, we arrive at a contradiction.
Case 2. g"(£) jt a(z0).

Without loss of generality, we may assume a(zo) = 1. Then by Lemma 5, we know
that g has the the form (1) (here k = 2), (2) or (3) in Lemma 5. As in the proof of
Theorem 1 (Case 1), we exclude the case that g has the form (1). Then

(g - c,)2(f - c2)
2

2 ( £ -
or

where ci, c2, and c are distinct constants. Thus g(£) has only one pole c with
multiplicity 1 or 2. However, since all poles of gn(f) are of multiplicity at least 3,
Hurwitz's theorem guarantees that g(£) n a s only poles with multiplicity at least 3, a
contradiction. This completes the proof of Theorem 2. •
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PROOF OF THEOREM 3. Suppose that & is not normal at a point zo e D. The first
part of the proof is almost the same as the proof of Theorem 2. Here we only need
to consider Case 2. Suppose that g"(£) ^ a(zo). Without loss of generality, we may
assume a(zo) = 1. Then by Lemma 5,

£ 2 K

where at, ao, b (^ 0), c are constants and / = 1 or 2. (The form (1) can be excluded
as in the proof of Theorem 1.) Thus

(*, = -

Let m — 1 + 2. Then g'(£) has m zeros £i, f2. • • • , £m» counted according to multiplic-
ity. Choose R such that maxi<,<m |£,| < R. By Hurwitz's theorem, for large n, there
exist m distinct zeros £„,, —»•£,• as n —> oo for 1 < i < m. Thus /n'(zn + pnKn,i) = 0
for 1 < i < m. Set An := D(zn, pnR), then zn + Pntn.i e An (1 < / < m), An c D
(for sufficiently large n), and/n' has no further zeros in An.

For h e {1, 2 , . . . , m - 2}, we have

1=1 1=1 1 = 1 \ *n /

E
«-)-'(0)

as n —> oo, where in the last sum multiple zeros £ of g' occur only once. Obviously,

as £ —>• oo, so res ((g")H+* /g', oo) = —1. By the residue theorem and Lemma 4, we
have

Thus

This contradicts condition (c) and completes the proof of Theorem 3. •

PROOF OF THEOREM 4. Using the same argument as in this paper and [2], we can
prove Theorem 4. We omit the details. •
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