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Abstract

The causative agent of urogenital schistosomiasis, Schistosoma haematobium, was thought to
be the only schistosome species transmitted through Bulinus snails on Unguja and Pemba
Island (Zanzibar, United Republic of Tanzania). For insights into the environmental risk of
S. haematobium transmission on Pemba Island, malacological surveys collecting Bulinus glo-
bosus and B. nasutus, two closely related potential intermediate hosts of S. haematobium were
conducted across the island in November 2016. Of 1317 B. globosus/B. nasutus collected,
seven B. globosus, identified through sequencing a DNA region of the mitochondrial cyto-
chrome oxidase subunit 1 (cox1), were observed with patent infections assumed to be S. hae-
matobium. However, when the collected cercariae were identified through sequencing a region
of the cox1 and the nuclear internal transcribed spacer (ITS1 + 2), schistosomes from five of
these B. globosus collected from a single locality were in fact S. bovis. The identified presence
of S. bovis raises concerns for animal health on Pemba, and complicates future transmission
monitoring of S. haematobium. These results show the pertinence for not only sensitive, but
also species-specific markers to be used when identifying cercariae during transmission mon-
itoring, and also provide the first molecular confirmation for B. globosus transmitting S. bovis
in East Africa.

Introduction

The snail-borne neglected tropical disease (NTD), schistosomiasis, is the most important
freshwater parasitic disease of humans associated with poverty, poor sanitation and lack of
safe water supplies (Steinmann et al., 2006; Hotez et al., 2014), with an estimated 180–200 mil-
lion people primarily from low- and middle-income countries being infected (GBD 2016
Disease and Injury Incidence and Prevalence Collaborators, 2017). Ambitious goals to elimin-
ate schistosomiasis have been announced by the WHO as part of its roadmap to overcome the
global impact of NTDs by 2020–2025 (WHO, 2012). Whilst mass drug administration, behav-
ioural change through education and snail control are having a major impact on schistosom-
iasis, further research into schistosome transmission biology together with better tools for
transmission monitoring and surveillance are required to help achieve and monitor the success
of these ambitious goals (Stothard et al., 2017). Schistosomiasis is also a disease of animals,
with large numbers of domestic livestock affected worldwide but the actual veterinary and eco-
nomic impact is largely unknown (De Bont and Vercruysse, 1997, 1998).

There are 25 recognized species of mammalian schistosomes that cause human and animal
infections, which can be split into four Schistosoma species groups (Webster et al., 2006). The
largest group is the Schistosoma haematobium group containing nine species that are all transmit-
ted through Bulinus snails (Brown, 1994) with two species, S. haematobium and S. bovis, being
responsible for the majority of all human (Hotez and Kamath, 2009) and livestock infections (De
Bont and Vercruysse, 1997), respectively. Central to this group is S. haematobium, a major human
schistosome species being the most widespread and prevalent across Africa and solely responsible
for human urogenital schistosomiasis with often severe pathology (Schwartz, 1981; Leutscher
et al., 2000; Bustinduy et al., 2014; Kjetland et al., 2014; Christinet et al., 2016). Schistosoma
bovis is a pathogen of domestic livestock and some artiodactylids (Standley et al., 2012), with
its distribution commonly overlapping with that of S. haematobium across mainland Africa
(Moné et al., 1999), and utilising a wide range of Bulinus (Southgate and Knowles, 1975a,
1975b; Stothard et al., 2004). These two species, among others, are also able to hybridize and
inter-specific hybridization is now recognized in West Africa with possible detrimental conse-
quences on disease control (Huyse et al., 2009; Webster et al., 2013; Léger and Webster, 2017).

Pemba and Unguja Islands (Zanzibar Archipelago, United Republic of Tanzania) have been
historically identified as ‘model islands’ for implementing multiple effective infectious disease
control and elimination programmes in sub-Saharan Africa (Pennance et al., 2016). For schis-
tosomiasis control, Zanzibar also offers an advantage due to the allopatric transmission of
S. haematobium through a single snail host, Bulinus globosus, on both Islands (Stothard
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et al., 2000), whereas across most of sub-Saharan Africa, multiple
Schistosoma and Bulinus species occur in sympatry (Brown,
1994), complicating control interventions and surveillance.
Urogenital schistosomiasis was highly endemic on both islands
but is now targeted for elimination (Knopp et al., 2012, 2013).

As we move towards or reach elimination, there becomes a need
for more sensitive methods to monitor the levels of transmission
when egg–patent human infections become scarce (Le and Hsieh,
2017; Stothard et al., 2017), the risk of infection and also a way
to prove transmission interruption when it is finally reached.
Xenomonitoring is a nucleic acid-based molecular diagnostic used
to monitor the transmission of several vector-borne diseases
(Cunningham et al., 2016; Minetti et al., 2016; Cook et al., 2017),
including to some extent schistosomiasis where tools are being
developed for the xenomonitoring of snails that could support schis-
tosomiasis transmission and elimination monitoring (Hamburger
et al., 2004; Allan et al., 2013; Lu et al., 2016; Abbasi et al., 2017).
The first stage for snail xenomonitoring for schistosomiasis is the
identification of patent schistosome infections within the snails
and collecting cercariae shed from them. Here, we report on the
molecular identification of these cercariae and the infected snails
collected from Pemba Island (Zanzibar) and how the findings com-
plicate the development of robust molecular xenomonitoring proto-
cols for ongoing and future transmission monitoring.

Methods

Malacological surveys and Schistosoma collection

In November 2016, as part of a larger ongoing molecular xenomo-
nitoring study on Pemba, Bulinus snails were collected, by scooping,
from human freshwater contact sites in eight shehias (smallest div-
ision of administrative regions), examined and individually induced
to shed cercariae following previous methods (Allan et al., 2013).
An experienced microscopist identified schistosome cercariae,
which were individually pipetted in 3.5 µL aliquots onto
Whatman FTA cards (Whatman, Part of GE Healthcare, Florham
Park, USA) for long-term deoxyribonucleic acid (DNA) storage.
After shedding, all infected snails were preserved in 100% ethanol
for future morphological and molecular characterization.

Schistosoma and Bulinus identification

DNA from individual cercariae was eluted from the FTA cards
(Webster et al., 2015) and characterized by amplification and
sequencing of the mitochondrial cytochrome oxidase subunit 1

(cox1) and partial nuclear internal transcribed spacer (ITS1 + 2)
DNA regions (Webster et al., 2012).

To determine the species of the infected snails, total genomic
DNA was extracted from the whole snail tissue using the DNeasy
Blood & Tissue Kit (Qiagen, Manchester, UK), with minor
changes to the standard protocol in that quantities of the digest
reagents were doubled and digests were incubated for at least
12 h. From each snail, a 623 base pair region of the mitochondrial
cox1 gene was amplified and Sanger sequenced using primers
BulCox1 and CO2 following previous protocols (Kane et al.,
2008). The sequence data were manually edited in Sequencher
v5.1 (http://genecodes.com) before being compared with reference
sequence databases for Bulinus (Kane et al., 2008) and
Schistosoma (Webster et al., 2012, 2013) to confirm species.

Results

In total, 1317 B. globosus and B. nasutus were collected, seven of
these snails (Table 1) from Kinyasini (6) and Chambani (1) she-
hia were shedding schistosome cercariae (Fig. 1). The infected
snails were identified as B. globosus with two cox1 haplotypes
recognized (GenBank accession numbers: MH014040 and
MH014041) which matched those snails previously reported
from Pemba (Kane et al., 2008). Cercariae collected from these
were assumed initially to be the human parasite S. haematobium;
however, molecular characterizations of the cercariae from five of
these snails, collected from a stream in Kinyasini (Kinya6), were
identified as S. bovis (Table 1). Two different S. bovis cox1 haplo-
types [Genbank accessions: S.b (i) MH014042 and S.b (ii)
MH014043] (Table 1) were identified from these five snails;
three snails producing S. bovis cercariae of a single haplotype
and two snails producing S. bovis cercariae of both haplotypes
suggesting that they had been infected by more than one
miracidium.

The other two infected snails shed S. haematobium cercariae
and were collected from a pond in Chambani (Cham10) and a
different stream site in Kinyasini (Kinya2). The S. haematobium
cercariae from Kinyasini and Chambani, respectively, were of
two different S. haematobium cox1 haplotypes [Genbank acces-
sions: S.h (i) MH014046 and S.h (ii) MH014045] with only single
haplotypes produced from each snail. These haplotypes matched
those identified as group 2 S. haematobium cox1 haplotypes
found only in the Indian Ocean Islands (Webster et al., 2012).

ITS1 + 2 profiles showed no intra-species variation (Genbank
Accessions: S.h MH014047 and S.b MH014044) and were

Table 1. Showing the collection sites and genetic profiles of the Bulinus and schistosome cercariae analysed

Bulinus globosus ID (cox1 haplotype) Shehia Site (water body type) Schistosoma cercariae species

Schistosoma cercariae
mitochondrial and

nuclear genetic profile

cox1 ITS1 + 2

Kin2.1 (a) Kinyasini Kinya2 (stream) S. haematobium S.h (i) S.h

Kin6.1 (b) Kinyasini Kinya6 (stream) S. bovis S.b (i) S.b

Kin6.2 (b) Kinyasini Kinya6 (stream) S. bovis S.b (i & ii) S.b

Kin6.3 (b) Kinyasini Kinya6 (stream) S. bovis S.b (i & ii) S.b

Kin6.4 (b) Kinyasini Kinya6 (stream) S. bovis S.b (i) S.b

Kin6.5 (b) Kinyasini Kinya6 (stream) S. bovis S.b (ii) S.b

Cham10.1 (b) Chambani Cham10 (pond) S. haematobium S.h (ii) S.h

Two Bulinus globosus cox1 haplotypes [Genbank accessions: (a) MH014040 and (b) MH014041]. Two S. haematobium cercariae cox1 haplotypes, Genbank accessions: S.h (i) MH014046 and S.h
(ii) MH01404 and the two S. bovis cox1 haplotypes, Genbank accessions: S.b (i) MH014042 and S.b (ii) MH014043. ITS1 + 2 profiles showed no intra species variation (Genbank accessions: S.h
MH014047 and S.b MH014044).
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identified as either S. bovis or S. haematobium by the three inter-
specific single nucleotide polymorphisms (Webster et al., 2012).

Discussion

The detection of S. bovis on Pemba Island poses a potentially new
threat to domestic livestock and wildlife health in Zanzibar (De
Bont and Vercruysse, 1997, 1998; Standley et al., 2012). The site
where S. bovis transmission was identified had grazing cattle
(see Fig. 1, Kinya6) in close proximity to the water where the
shedding snails were collected; therefore, it is quite likely that
ongoing transmission is being maintained. Moreover, the move-
ment of infected cattle could enable the spread of the infection
particularly as B. globosus are found throughout most of the
island (Stothard et al., 1997).

The presence of S. bovis complicates the monitoring of S. hae-
matobium transmission since both parasites are shown here to
infect the same intermediate snail host and cannot be distin-
guished from each other easily by microscopy. Therefore,
S. bovis-infected B. globosus could be falsely identified as infected
with S. haematobium, or vice-versa, complicating urogenital schis-
tosomiasis transmission monitoring. This accentuates the need for
routine molecular identification of schistosome infections in
snails during malacological surveys (Minetti et al., 2016), and
the development of more species-specific xenomonitoring tools
to differentiate S. bovis and S. haematobium transmission
(Webster et al., 2010; Abbasi et al., 2017). The identification of
schistosome cercariae shed from snails is often presumed to be
of a particular species due to the snail host involved or the locality
of the transmission. Our findings strongly emphasize that these
assumptions are not accurate and transmission dynamics of dif-
ferent species may change over time and space. The assumed
transmission of only S. haematobium by B. globosus on

Zanzibar and the non-identification of these S. bovis infections
would have led us to believe that the level of S. haematobium
transmission is much higher than it actually is, hampering
ongoing and future urogenital schistosomiasis transmission mon-
itoring and surveillance.

Schistosoma haematobium and S. bovis hybridization has also
been detected in sympatric West African areas (Webster et al.,
2013). Zanzibar was considered to be an allopatric area for S. hae-
matobium (Webster et al., 2012) but the identification of this
sympatry with S. bovis could, in time, lead to inter-species hybrid-
ization. The potential consequences of hybridization include
increased host associations of hybrids, possible zoonotic transmis-
sion and hybrid vigour (Huyse et al., 2009; Webster et al., 2013;
Léger and Webster, 2017). Investigating the origin of S. bovis
being transmitted on Pemba, by genetic comparison with other
mainland strains of S. bovis, may help elucidate how this parasite
has been imported to Zanzibar. Since the eradication of the tsetse
fly, the vector of human and African animal trypanosomiasis, on
Unguja Island (Vreysen et al., 2000), there has been an increase of
cattle farming (Mdoe, 2003) facilitated by the import of cattle
under strict guidelines of the United Republic of Tanzania’s
Animal Resources Management Act (1999). Bovine schistosomia-
sis however is widely ignored/unknown as a veterinary health
problem, and therefore is currently not included in these guide-
lines. This oversight could offer some explanation to how and
within what time scale the introduction, or multiple introduc-
tions, of S. bovis may have occurred. Additionally, the prevalence
and intensity of S. bovis in local cattle and other potential artio-
dactylid hosts (Standley et al., 2012), such as the Ader’s duiker
(Cephalophus adersi) endemic to Zanzibar, should be determined
to assess the impact on livestock and wildlife health. However,
diagnosing S. bovis from the definitive host remains challenging,
with the detection of S. bovis eggs in the stool being difficult

Fig. 1. Map outlining shehias (smallest division of
administrative regions) on Pemba Island, Zanzibar
(United Republic of Tanzania) showing the location
and images of two freshwater bodies in Kinyasini
(Kinya2 and Kinya6) and one in Chambani
(Cham10) where Schistosoma haematobium (red)
and Schistosoma bovis (green) cercariae were recov-
ered from Bulinus globosus. GPS coordinates for
sites (latitude and longitude in decimal degrees):
Kinya2 (−5.02033°, 39.73855°); Kinya6 (−5.03560°,
39.73850°); Cham10 (−5.35805°, 39.79182°).
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and the more sensitive method of observing adult worms in the
host being only possible post-mortem via dissection. An antigen-
based test with promising diagnostic performance has been devel-
oped (de la Torre-Escudero et al., 2012), which could offer a
sensitive method for judging the epidemiology of S. bovis in
Pemba.

Due to the difficulty in classifying species within the Bulinus
africanus species complex (Kane et al., 2008), previous findings
on snail–schistosome compatibilities should be treated with
some caution. This molecular confirmation of B. globosus natur-
ally transmitting S. bovis in East Africa gives credibility to a pre-
vious observation (Mwambungu, 1988), and dispels previous
claims of B. globosus being naturally refractory (Christensen
et al., 1983) or only an intermediate host in West Africa (Diaw
and Vassiliades, 1987; Ndifon et al., 1988). Previous evidence
for compatibility of B. nasutus with S. bovis in East Africa is
also tainted with contradicting evidence, some showing natural
infections (Dowdeswell, 1938; Kinoti, 1964b) going against failed
experimental infections (Southgate and Knowles, 1975a, 1975b;
Southgate et al., 1980) and a lack of naturally infected B. nasutus
in other endemic areas (Kinoti, 1964a; Southgate et al., 1980;
Mutani et al., 1983). It is likely that S. bovis has a broad intermedi-
ate host range in East Africa utilising several Bulinus species, as it
has also been identified from B. ugandae (Malek, 1969), B. afri-
canus (McClelland, 1955; Teesdale and Nelson, 1958; Kassuku
et al., 1986) and B. forskalii (McClelland, 1955). Therefore, stud-
ies to confirm the intermediate snail host vectoral capacity and
specificity of S. bovis to B. globosus or indeed other endemic
Bulinus species on Pemba, including B. nasutus and B. forskalii,
are required to determine the transmission potential and possible
spread of this emerging schistosome in Zanzibar.
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