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CYCLABILITY OF /--REGULAR r-CONNECTED GRAPHS

W.D. McCUAIG AND M. ROSENFELD

For each value of r > U , r even, we construct infinitely many

r-regular, reconnected graphs whose cyclability is not greater

than 6r - k i f r = 0 (mod h) and 8r - 5 if r = 2 (mod U) .

1. Introduction

We use the terminology and notation in Bondy and Murty [ I ] . The

ayalability of a graph G is the largest integer k such that any k

vertices of G l ie on a common cycle. This notion was introduced and

studied by Chvatal [2]. We denote by f{r) the largest integer k such

that any k vertices in an r-regular, r-connected graph (r > 3) l ie on

a common cycle. Various authors investigated the function f(r) . For

r = 3 , the Petersen graph shows that f(3) 5 9 . Ho I ton, McKay, Plummer

and Thomassen [4], proved that /(3) = 9 and constructed an infinite

family of cubic graphs (based on the Petersen graph) with cyclability 9 •

Holton [3], proved that f(r) > r + h . (This result was also obtained by

Kelmans and Lomonosov [7].) Meredith [S], described a construction of non-

Hamiltonian r-regular, r-connected graphs for al l r > U (thus showing

that Nash-Williams' conjecture, that all U-regular, U-connected graphs

are Hamiltonian is false). Meredith's construction is based on the

Petersen graph, and yields the upper bound f{r) 5 lOr - 11 . I t is not

obvious how one can obtain from Meredith's construction, for each value of
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2 W.D. McCuaig and M. Rosenfeld

i» , infinitely many graphs with cyclabllity not greater than lOr - 11 .

In this paper we modify Meredith's construction, and obtain, for each

r , infinitely many 2>-regular reconnected graphs with cyclabilities

6r - k [r 5 o (mod k)) and 8r - 5 (r = 2 (mod k)) . Our method enables

us to construct non-Hamiltonian, r-regular, reconnected bipartite graphs,

(such a graph on 8k vertices, for r = k is described.)

2. Meredith's construction

Meredith's construction of r-regular reconnected non-Hamiltonian

graphs is based on the following two steps:

(i) in a graph G , add edges parallel to existing edges, so

that the resulting multigraph is r-regular and r-edge

connected;

(ii) replace each vertex of the multigraph obtained above by a

copy of K , connecting the r (r-l)-valant vertices

of K , with the r edges incident with ther,r-l

substituted vertex.

Let G denote the graph obtained from a graph G by the above

steps. Meredith proved that G is r-regular, reconnected. (7 is

Hamiltonian, i f and only if G i s . A graph G , to which step (i) is

applicable is called r*-good. Meredith showed that the Petersen graph is

r-good for all r > k . Since the Petersen graph is not Hamiltonian, a l l

J°-regular r-connected graphs obtained by the above construction are not

Hamiltonian. I t is easy to obtain, in each of these graphs, a set of

lOr - 10 vertices that do not l ie on a common cycle. Jackson and Parsons

[5] , [6] , in their study of longest cycles in r-regular, reconnected

graphs, modified Meredith's construction. They pointed out that any non-

Hamiltonian graph G , that is r»-good may be used. They proved that a l l

cubic 3-connected graphs are r-good for r > U . They also point out,

that one is not restricted to use K in step ( i i ) . Actually any

r-regular, reconnected graph H , for which there is a vertex h € V(H)

such that H\{h] cannot be covered by two disjoint paths with endpoints in

N{h) can be used in step ( i i ) . All these constructions arc based on non-
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Hamiltonian graphs, and they do not necessarily yield, infinitely many

r-regular r-connected graphs with cyclability lOr - 11 .

3. Construction of r-regular r-connected graphs

In this section, we describe a modification of Meredith's

construction. This modification allows a much greater flexibility in

choosing the underlying graph (we do not have to start with a non-

Hamiltonian graph). We assume that r = 0 (mod 2) .

Let G be an r - r egu la r , r-connected graph. Let e. = [a . , g.) ,

i = 1, . . . , r / 2 , be d is jo in t edges of G . Let H be any r - r egu la r ,

r-connected graph, G r> Hp = 0 . Let N(y) = {y^, ... , yj , y € V(#r)

be the neighbors of y in H . W e say that the graph

F = [G\[elt . . . , er/2}) » {Hp\{y}) " {{g., Vj) \ 0 = 1 , . . . , r }

{e-,> •••> e /p} ^ ^p '

(Observe that many graphs F can be produced by a fixed choice of

\e , ..., e . } and H , we s t i l l have the freedom of choosing y €

and ordering N(y) .)

LEMMA 1. Let G be an r-regular, r-conneeted graph. Let F be

obtained from G by replacing the r / 2 disjoint edges { e , , . . . , e ,_}

by the r-regular r-connected graph H . Then F is an r-regular,

r-connected graph.

Proof. The proof i s essen t ia l ly s imilar t o the proof of Lemma •'* in

Rosenfeld [ 9 ] ; we omit the d e t a i l s .

To obtain our construction, we add to Meredith's construction the

following s tep :

( i i i ) replace { e ^ • • • , %/g} by H
r •

Let G and G' be the graphs in Figure 1 (see p. k). If r = km ,

let G be the multigraph obtained from G by replacing the edges of the

1-factor A.B. , £ = 0 , 1 , 2 , by 2m parallel edges each and all other

edges by m parallel edges each. If r = km + 2 , let G be the
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FIGURE 1

multigraph obtained from G' by replacing A C , A CQ, CD , and C DQ

by m p a r a l l e l edges each, A
Q

D
0

AiDi b j r m + ^ Vaxallel edges

each, BnBn by 2m parallel edges and A .B. and CD. , i = 0, 1 by

2m + 1 parallel edges each.

LEMMA 2. C i s r-edge-connected.

Proof. The lemma is proved by showing that any pair of vertices of

G are connected by r edge-disjoint paths.

CASE 1. r = 4m . The pairs of vertices are:

(1) A.B. , i = 0, 1, 2 ,

( 3 ) A.A.,B.B.\
, i * 3 , i-y 5 = 0 , 1 , 2 .

By symmetry, i t suffices to consider one example from each case.
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Case Edge types of Paths Number of Paths

1 Vo,. Vo- ViVo- VaVo 2m» m>m

2 V l VoV Vo¥l' Wl* VzVl
3 Vl WlV VoVlV Wl ' Vl m> m' m' m

CASE 2. r = 4m + 2 . The pairs of vertices are:

(1) Aft , (9) V l '

(2) A.C.+1 , (10)

( 3 ) A.D , (11) A.D. , i = 0 , 1 (mod 2) ,

(U) V l , (12) S.

(5) B.C. , (13) B.D s

(6) CiD.+1 , (Ik) B.D.+1 ,

(T) CiD. , (15) CQCI ,

(8) ASU1 , (16) DQD± .

Again, by symmetry, it suffices to consider one example from each case.

Case Edge Types of Paths Number of Paths

1 Vo Vo- VoWiV ViWiso 2m+1' m- m

Vocoso

> m> m>

3 Vo Vo'

' Wo°o
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Case Edge Types of Paths Number of Paths

k Vi soV VoWi- VoWA
V0V1V W1V1

5 Vo Vo^o^o' W i c o ' Voci°oco
ViWc Vo

WiWo- Woflo

Vi VA-

Vi WiV WoV

10 Vo W o ' VoViV W i W o
' Voco

11 ô°i V o W r

12 BQCI B ^ ^ ^ . VACOC1C1' V O C 1

W O C I -
 BocoDici' V o W i B i c i

13 Vo W o - VoVo- Vo°o

2/77, m , m

1 , 1

m + 1 ,

m, 1

m + 1 ,

m - 1 ,

2m+l

m, m

tn, rn

1 , 1

, m, m, 1

2m, m, m

1 , 1

2m, m, m

1 , 1

w + 1 ,

m, 1

m + 1 ,

w, m

m+1,

m, 1

m + 1 ,

m, m

m + 1 ,

m, 1

m, m

m, 1

m, m

m - 1 , 1

, 1

m - 1 , m

, 1

m, 1

m - 1 , m

, 1

, m

, 1
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Case Edge types of Paths Number of Paths

16 Vi Wr Wr VoW WA

By the terminology of the previous section, G is r-good for a l l

v = 0 (mod 4) and G' is r-good for a l l r = 2 (mod 4) .

THEOREM 1. For r i 4 , r = 0 (mod 4) there are infinitely many

r-regular r-connected graphs with cyclability not greater than 6r - 4 .

Proof. For each value of r we first construct an infinite family of

r-regular, r-connected graphs as follows: le t G be the multigraph

described in Lemma 2, Case 1. Let G' be the graph obtained from G

after applying step ( i i ) of Meredith's construction. By Meredith's

theorem, G' is an r-regular r-connected graph. Let G" be a graph

obtained from G' by replacing the r/2 disjoint edges in G' ,

corresponding to the edges A.B. , £ = 0 , 1 , 2 , in G , by an arbitrary

r-regular, r-connected graph H . (Figure 2, p. 8, shows a graph Gf ,

with 54 vertices, obtained from G! by using K for replacing the

indicated edges.) By Lemma 1, G* is r-regular and r-connected.

Let 5 c y(G*) contain the r - 1 vertices of the smaller color

class of each copy of the six K 's used in step ( i i ) and also contain

one vertex from each of the three replacement graphs H

CLAIM. No cycle in G* contains S . Assume that such a cycle C ,

does exist. Since C contains a l l the vertices in {S , . . . , S } (Figure

3» P- 9) , i t must contain a l l vertices of the corresponding K

r—l ,r

Therefore, C can use exactly two edges from the set

{e , ..., e,, f , ..., fy) . Similarly, C uses exactly two edges from

the set [e^, ...,«£,/.[, ..., f[) .
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FIGURE 2

Since a vertex of H is contained in C , C must contain at least

two edges from {e , ..., e, , e', ..., e'\ . If C has two edges from

{e , •••> £,} > it cannot contain any edge from {f , ..., f1} . Therefore

C has either zero or two edges from {e', ..., ej} and connot contain any
1 K

edge from the set {/', ...,/'} . But then C cannot contain any

1 L

vertices outside the configuration in Figure 3- It follows that C will

have to contain one edge from each of {e , ..., e,} , f e', ..., ej} ,
X rt -L K,

{f, ,...,/,} and \f< ..., /'} .
Contraction of each copy of K ,

J°-l ,2°

cycle in G that contains the three edges

to a single vertex would yield a

> a n d

easy to see that such a cycle does not exist. This proves our claim.

Since \S \ = 6(r>-l) + 3 , the cyclabilxty of each graph G* thus obtained
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r - 1

G(G') G*r

FIGURE 3

is at most 6r - h as claimed.

THEOREM 2. For r > 6 , r = 2 (mod U) there are infinitely many

r-regular r-connected graphs with ayclability not greater than &r - 5 •

Proof. Let G be the multigraph described in Lemma 2, case 2. Let

G' be obtained from G by applying step (ii) of Meredith's construction

to it, and let G* be obtained from G' by replacing the r/2 disjoint

edges of G' , corresponding to the edges B , CD , and C' D in

G' by arbitrary copies of r-regular, r-connected graphs H . For the

set S c Vic*) , containing the 8(r-l) vertices of the smaller color

class of each K and a single vertex from each of the four graphs
r—l ,r

H , an identical argument to the proof of Theorem 1, shows that any cycle

in G* containing S , will yield a cycle in G' containing the edges

A B , A B , CD , and CD . Since such a cycle does not exist, S is

not contained in a cycle. Hence the cyclability of G* is at most 8r - 5

as claimed.
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4. Concluding remarks

The modification of Meredith's construction enables us to construct

many r-regular, r-connected graphs with prescribed properties. The basic

idea is to start with an r-good graph in which some edges are not

contained in a cycle. In Figure k a li-connected, l*-regular non-

Hamiltonian bipartite graph with 8k vertices, is described. This graph,

based on the Mobius ladder, uses the fact that no cycle of the Mobius it-

ladder uses the four "vertical edges".

We believe that the upper bound for the cyclability of r-regular

^-connected graphs can be further improved by other choices of graphs. It

seems though that another idea for odd r is needed.

FIGURE 4
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