CYCLABILITY OF r-REGULAR r-CONNECTED GRAPHS

W.D. McCuaig and M. Rosenfeld

Abstract

For each value of $r \geq 4, r$ even, we construct infinitely many r-regular, r-connected graphs whose cyclability is not greater than $6 r-4$ if $r \equiv 0(\bmod 4)$ and $8 r-5$ if $r \equiv 2(\bmod 4)$.

1. Introduction

We use the terminology and notation in Bondy and Murty [1]. The cyclability of a graph G is the largest integer k such that any k vertices of G lie on a common cycle. This notion was introduced and studied by Chvátal [2]. We denote by $f(r)$ the largest integer k such that any k vertices in an r-regular, r-connected graph ($r \geq 3$) lie on a common cycle. Various authors investigated the function $f(r)$. For $r=3$, the Petersen graph shows that $f(3) \leq 9$. Holton, McKay, Plummer and Thomassen [4], proved that $f(3)=9$ and constructed an infinite family of cubic graphs (based on the Petersen graph) with cyclability 9 . Holton [3], proved that $f(r) \geq r+4$. (This result was also obtained by Kelmans and Lomonosov [7].) Meredith [8], described a construction of nonHamiltonian r-regular, r-connected graphs for all $r \geq 4$ (thus showing that Nash-Williams' conjecture, that all 4-regular, 4-connected graphs are Hamiltonian is false). Meredith's construction is based on the Petersen graph, and yields the upper bound $f(r) \leq 10 r-1 l$. It is not obvious how one can obtain from Meredith's construction, for each value of

Received 29 August 1983. Support from NSERC and SFU Department of Mathematics is gratefully acknowledged.

[^0]r, infinitely many graphs with cyclability not greater than $10 r-11$.
In this paper we modify Meredith's construction, and obtain, for each r, infinitely many r regular r-connected graphs with cyclabilities $6 r-4(r \equiv 0(\bmod 4))$ and $8 r-5(r \equiv 2(\bmod 4))$. Our method enables us to construct non-Hamiltonian, r-regular, r-connected bipartite graphs. (such a graph on 84 vertices, for $r=4$ is described.)

2. Meredith's construction

Meredith's construction of r-regular r-connected non-Hamiltonian graphs is based on the following two steps:
(i) in a graph G, add edges parallel to existing edges, so that the resulting multigraph is r-regular and r-edge connected;
(ii) replace each vertex of the multigraph obtained above by a copy of $K_{r, r-1}$, connecting the $r(r-1)$-valant vertices of $K_{r, r-1}$ with the r edges incident with the substituted vertex.

Let G_{2} denote the graph obtained from a graph G by the above steps. Meredith proved that G_{2} is r-regular, r-connected. G_{2} is Hamiltonian, if and only if G is. A graph G, to which step (i) is applicable is called r-good. Meredith showed that the Petersen graph is r-good for all $r \geq 4$. Since the Petersen graph is not Hamiltonian, all r-regular r-connected graphs obtained by the above construction are not Hamiltonian. It is easy to obtain, in each of these graphs, a set of $10 r-10$ vertices that do not lie on a common cycle. Jackson and Parsons [5], [6], in their study of longest cycles in r-regular, r-connected graphs, modified Meredith's construction. They pointed out that any nonHamiltonian graph G, that is r-good may be used. They proved that all cubic 3-connected graphs are r-good for $r \geq 4$. They also point out, that one is not restricted to use $K_{r-1, r}$ in step (ii). Actually any r-regular, r-connected graph H, for which there is a vertex $h \in V(H)$ such that $H \backslash\{h\}$ cannot be covered by two disjoint paths with endpoints in $N(h)$ can be used in step (ii). All these constructions ars based on non-

Hamiltonian graphs, and they do not necessarily yield, infinitely many r-regular r-connected graphs with cyclability $10 r-11$.

3. Construction of r-regular r-connected graphs

In this section, we describe a modification of Meredith's construction. This modification allows a much greater flexibility in choosing the underlying graph (we do not have to start with a nonHamiltonian graph). We assume that $r \equiv 0(\bmod 2)$.

Let G be an r-regular, r-connected graph. Let $e_{i}=\left(g_{2 i-1}, g_{i}\right)$, $i=1, \ldots, r / 2$, be disjoint edges of G. Let H_{r} be any r regular, r-connected graph, $G \cap H_{r}=\emptyset$. Let $N(y)=\left\{y_{1}, \ldots, y_{r}\right\}, y \in V\left(H_{r}\right\}$ be the neighbors of y in H_{r}. We say that the graph

$$
F=\left(G \backslash\left\{e_{1}, \ldots, e_{r / 2}\right\}\right) \cup\left(H_{r} \backslash\{y\}\right) \cup\left\{\left(g_{j}, y_{j}\right\} \mid j=1, \ldots, r\right\}
$$

is obtained from G by replacing the edges $\left\{e_{1}, \ldots, e_{r / 2}\right\}$ by H_{r}. (Observe that many graphs F can be produced by a fixed choice of $\left\{e_{1}, \ldots, e_{r / 2}\right\}$ and H_{r}, we still have the freedom of choosing $y \in V\left(H_{r}\right)$ and ordering $N(y)$.)

LEMMA 1. Let G be an r-regular, r-connected graph. Let F be obtained from G by replacing the $r / 2$ disjoint edges $\left\{e_{1}, \ldots, e_{r / 2}\right\}$ by the r-regular r-connected graph H_{r}. Then F is an r-regular, r-connected graph.

Proof. The proof is essentially similar to the proof of Lemma it in Rosenfeld [9]; we omit the details.

To obtain our construction, we add to Meredith's construction the following step:
(iii) replace $\left\{e_{1}, \ldots, e_{r / 2}\right\}$ by H_{r}.

Let G and G^{\prime} be the graphs in Figure 1 (see p. 4). If $r=4 m$, let G_{r} be the multigraph obtained from G by replacing the edges of the l-factor $A_{i} B_{i}, i=0,1,2$, by $2 m$ parallel edges each and all other edges by m parallel edges each. If $r=4 m+2$, let G_{r} be the

FIGURE 1
multigraph obtained from G^{\prime} by replacing $A_{0} C_{1}, A_{1} C_{0}, C_{0} D_{1}$, and $C_{1} D_{0}$ by m parallel edges each, $A_{0} D_{0}$ and $A_{1} D_{1}$ by $m+1$ parallel edges each, $B_{0} B_{1}$ by $2 m$ parallel edges and $A_{i} B_{i}$ and $C_{i} D_{i}, i=0,1$ by $2 m+1$ parallel edges each.

LEMMA 2. G_{r} is m-edge-connected.
Proof. The lemma is proved by showing that any pair of vertices of G_{r} are connected by r edge-disjoint paths.

CASE 1. $r=4 m$. The pairs of vertices are:
(1) $A_{i} B_{i} \quad, \quad i=0,1,2$,
$\left.\begin{array}{l}\text { (2) } A_{i} B_{j} \\ \text { (3) } A_{i} A_{j}, B_{i} B_{j}\end{array}\right\}, i \neq j, i, j=0,1,2$.
By symmetry, it suffices to consider one example from each case.

$$
r \text {-regular } r \text {-connected graphs }
$$

Case	Edge	Types of Paths	Number of Paths
1	$A_{0} B_{0}$	$A_{0} B_{0}, A_{0} A_{1} B_{1} B_{0}, A_{0} A_{2} B_{2} B_{0}$	$2 m, m, m$
2	$A_{0} B_{1}$	$A_{0} B_{0} B_{1}, A_{0} B_{0} B_{2} B_{1}, A_{0} A_{1} B_{1}, A_{0} A_{2} A_{1} B_{1}$	m, m, m, m
3	$A_{0} A_{1}$	$A_{0} B_{0} B_{1} A_{1}, A_{0} B_{0} B_{2} B_{1} A_{1}, A_{0} A_{2} A_{1}, A_{0} A_{1}$	m, m, m, m

CASE 2. $r=4 m+2$. The pairs of vertices are:
(1) $A_{i} B_{i}$,
(9) $A_{0} A_{1}$,
(2) $A_{i} C_{i+1}$,
(10) $A_{i} C_{i}$,
(3) $A_{i} D_{i}$,
(11) $A_{i} D_{i+1}, \quad i \equiv 0,1(\bmod 2)$,
(4) $B_{0} B_{1}$,
(12) $B_{i} C_{i+1}$,
(5) $B_{i} C_{i}$,
(13) $B_{i} D_{i}$,
(6) $c_{i} D_{i+1}$,
(14) $B_{i} D_{i+1}$,
(7) $c_{i} D_{i}$,
(15) $C_{0} C_{1}$,
(8) $A_{i}{ }_{i+1}$,
(16) $D_{0} D_{1}$.

Again, by symmetry, it suffices to consider one example from each case.

Case	Edge	Types of Paths	Number of Paths
1	$A_{0} B_{0}$	$A_{0} B_{0}, A_{0} D_{0} C_{0} A_{1} B_{1} B_{0}, A_{0} C_{1} D_{1} A_{1} B_{1} B_{0}$	$2 m+1, m, m$
		$A_{0} D_{0} C_{0} B_{0}$	1
2	$A_{0} C_{1}$	$A_{0} B_{0} B_{1} A_{1} D_{1} C_{1}, A_{0} C_{1}, A_{0} D_{0} C_{1}, A_{0} B_{0} B_{1} A_{1} C_{0} D_{1} C_{1}$	$m+1, m, m, m-1$
		$A_{0} D_{0} C_{0} A_{1} B_{1} C_{1}, A_{0} B_{0} C_{0} D_{1} C_{1}$	1,1
3	$A_{0} D_{0}$	$A_{0} D_{0}, A_{0} C_{1} D_{0}, A_{0} B_{0} B_{1} A_{1} C_{0} D_{0}$	$m+1, m, m$
		$A_{0} B_{0} B_{1} A_{1} D_{1} C_{0} D_{0}, A_{0} B_{0} C_{0} D_{0}$	$m, 1$

Case	Edge	Types of Paths	Number of Paths
4	$B_{0} B_{1}$	$B_{0} B_{1}, B_{0} A_{0} D_{0} C_{0} A_{1} B_{1}, B_{0} A_{0} C_{1} D_{1} A_{1} B_{1}$	
		$B_{0} A_{0} D_{0} C_{1} B_{1}, B_{0} C_{0} D_{1} A_{1} B_{1}$	1, 1
5	$B_{0} C_{0}$	$B_{0} A_{0} D_{0} C_{0}, B_{0} B_{1} A_{1} C_{0}, B_{0} A_{0} C_{1} D_{0} C_{0}$	$m+1, m, m$
		$B_{0} B_{1} A_{1} D_{1} C_{0}, B_{0} C_{0}$	$m, 1$
6	$C_{0} D_{1}$	$C_{0} D_{0} A_{0} B_{0} B_{1} A_{1} D_{1}, C_{0} D_{0} C_{1} D_{1}, C_{0} D_{1}$	$m+1, m, m$
		$C_{0} A_{1} B_{1} B_{0} A_{0} C_{1} D_{1}, C_{0} B_{0} A_{0} C_{1} D_{1}, C_{0} A_{1} B_{1} C_{1} D_{1}$	$m-1,1,1$
7	$C_{0} D_{0}$	$C_{0} D_{0}, C_{0} D_{1} C_{1} D_{0}, C_{0} A_{1} B_{1} B_{0} A_{0} D_{0}, C_{0} B_{0} A_{0} D_{0}$	$2 m+1, m, m, 1$
8	$A_{0} B_{1}$	$A_{0} B_{0} B_{1}, A_{0} C_{1} D_{1} A_{1} B_{1}, A_{0} D_{0} C_{0} A_{1} B_{1}$	$2 m, m, m$
		$A_{0} B_{0} C_{0} D_{1} C_{1} B_{1}, A_{0} D_{0} C_{0} D_{1} A_{1} B_{1}$	1, 1
9	$A_{0} A_{1}$	$A_{0} B_{0} B_{1} A_{1}, A_{0} D_{0} C_{0} A_{1}, A_{0} C_{1} D_{1} A_{1}$	$2 m, m, m$
		$A_{0} B_{0} C_{0} D_{1} A_{1}, A_{0} D_{0} C_{1} B_{1} A_{1}$	1, 1
10	$A_{0} C_{0}$	$A_{0} D_{0} C_{0}, A_{0} B_{0} B_{1} A_{1} C_{0}, A_{0} B_{0} B_{1} A_{1} D_{1} C_{0}$	$m+1, m, m$
		$A_{0} C_{1} D_{0} C_{0}, A_{0} B_{0} C_{0}$	$m, 1$
11	$A_{0} D_{1}$	$A_{0} B_{0} B_{1} A_{1} D_{1}, A_{0} B_{0} B_{1} A_{1} C_{0} D_{1}, A_{0} B_{0} C_{0} D_{1}$	$m+1, m-1,1$
		$A_{0} C_{1} D_{1}, A_{0} D_{0} C_{1} D_{1}, A_{0} D_{0} C_{0} A_{1} B_{1} C_{1} D_{1}$	$m, m, 1$
12	$B_{0} C_{1}$	$B_{0} B_{1} A_{1} D_{1} C_{1}, B_{0} B_{1} A_{1} C_{0} D_{1} C_{1}, B_{0} A_{0} C_{1}$	$m+1, m-1, m$
		$B_{0} A_{0} D_{0} C_{1}, B_{0} C_{0} D_{1} C_{1}, B_{0} A_{0} D_{0} C_{0} A_{1} B_{1} C_{1}$	$m, 1,1$
13	$B_{0} D_{0}$	$B_{0} A_{0} D_{0}, B_{0} A_{0} C_{1} D_{0}, B_{0} C_{0} D_{0}$	$m+1, m, 1$
		$B_{0} B_{1} A_{1} C_{0} D_{0}, B_{0} B_{1} A_{1} D_{1} C_{0} D_{0}$	m, m
14	$B_{0} D_{1}$	$B_{0} B_{1} A_{1} D_{1}, B_{0} B_{1} A_{1} C_{0} D_{1}, B_{0} A_{0} C_{1} D_{1}$	$m+1, m-1, m$
		$B_{0} A_{0} D_{0} C_{1} D_{1}, B_{0} C_{0} D_{1}, B_{0} A_{0} D_{0} C_{0} A_{1} B_{1} C_{1} D_{1}$	m, 1, 1
15	$c_{0} c_{1}$	$C_{0} D_{1} C_{1}, C_{0} A_{1} D_{1} C_{1}, C_{0} D_{0} A_{0} C_{1}$	m, m, m
		$C_{0} D_{0} C_{1}, C_{0} B_{0} B_{1} C_{1}, C_{0} D_{0} A_{0} B_{0} B_{1} A_{1} D_{1} C_{1}$	$m, 1,1$

Case	Edge	Types of Paths	Number of Paths
16	$D_{0} D_{1}$	$D_{0} C_{1} D_{1}, D_{0} C_{0} D_{1}, D_{0} C_{0} A_{1} D_{1}, D_{0} A_{0} C_{1} D_{1}$	m, m, m, m
		$D_{0} C_{0} B_{0} B_{1} A_{1} D_{1}, D_{0} A_{0} B_{0} B_{1} C_{1} D_{1}$	1,1

By the terminology of the previous section, G is r-good for all $r \equiv 0(\bmod 4)$ and G^{\prime} is $r \operatorname{good}$ for all $r \equiv 2(\bmod 4)$.

THEOREM 1. For $r \geq 4, r \equiv 0$ (mod 4) there are infinitely many r-regular r-connected grophs with cyclability not greater than $6 r-4$.

Proof. For each value of r we first construct an infinite family of r-regular, r-connected graphs as follows: let G_{r} be the multigraph described in Lemma 2, Case 1. Let G_{r}^{\prime} be the graph obtained from G_{r} after applying step (ii) of Meredith's construction. By Meredith's theorem, G_{r}^{\prime} is an r-regular r-connected graph. Let G_{r}^{*} be a graph obtained from G_{r}^{\prime} by replacing the $r / 2$ disjoint edges in G_{r}^{\prime}, corresponding to the edges $A_{i} B_{i}, i=0,1,2$, in G, by an arbitrary r-regular, r-connected graph H_{p}. (Figure 2, p. 8, shows a graph G_{4}^{*}, with 54 vertices, obtained from G_{4}^{\prime} by using K_{5} for replacing the indicated edges.) By Lemma $1, G_{r}^{*}$ is r-regular and r-connected.

Let $S_{r} \subseteq V\left(G_{r}^{*}\right)$ contain the $r-1$ vertices of the smaller color class of each copy of the six $K_{r-1, r}$'s used in step (ii) and also contain one vertex from each of the three replacement graphs H_{r}.

CLAIM. No cycle in G_{r}^{*} contains S_{r}. Assume that such a cycle C, does exist. Since C contains all the vertices in $\left\{S_{1}, \ldots, S_{r-1}\right\}$ (Figure 3, p. 9), it must contain all vertices of the corresponding $K_{r-1, r}$. Therefore, C can use exactly two edges from the set $\left\{e_{1}, \ldots, e_{k}, f_{1}, \ldots, f_{l}\right\}$. Similarly, C uses exactly two edges from the set $\left\{e_{1}^{\prime}, \ldots, e_{k}^{\prime}, f_{1}^{\prime}, \ldots, f_{l}^{\prime}\right\}$.

FIGURE 2
Since a vertex of H_{r} is contained in C, C must contain at least two edges from $\left\{e_{1}, \ldots, e_{k}, e_{1}^{\prime}, \ldots, e_{k}^{\prime}\right\}$. If C has two edges from $\left\{e_{1}, \ldots, e_{k}\right\}$, it cannot contain any edge from $\left\{f_{1}, \ldots, f_{l}\right\}$. Therefore C has either zero or two edges from $\left\{e_{l}^{\prime}, \ldots, e_{k}^{\prime}\right\}$ and connot contain any edge from the set $\left\{f_{1}^{\prime}, \ldots, f_{l}^{\prime}\right\}$. But then C cannot contain any vertices outside the configuration in Figure 3. It follows that C will have to contain one edge from each of $\left\{e_{1}, \ldots, e_{k}\right\},\left\{e_{1}^{\prime}, \ldots, e_{k}^{\prime}\right\}$, $\left\{f_{1}, \ldots, f_{2}\right\}$ and $\left\{f_{1}^{\prime}, \ldots, f_{l}^{\prime}\right\}$.

Contraction of each copy of $K_{r-1, r}$ to a single vertex would yield a cycle in G that contains the three edges $A_{0} B_{0}, A_{1} B_{1}$, and $A_{2} B_{2}$. It is easy to see that such a cycle does not exist. This proves our claim.
Since $\left|S_{r}\right|=6(r-1)+3$, the cyclability of each graph G_{r}^{*} thus obtained

$G\left(G^{\prime}\right)$

G_{r}

G_{r}^{*}

FIGURE 3
is at most $6 r-4$ as claimed.
THEOREM 2. For $r \geq 6, r \equiv 2(\bmod 4)$ there are infinitely many r-regular r-connected graphs with cyclability not greater than $8 r-5$.

Proof. Let G_{r} be the multigraph described in Lemma 2, case 2. Let G_{r}^{\prime} be obtained from G_{r} by applying step (ii) of Meredith's construction to it, and let G_{r}^{*} be obtained from G_{r}^{\prime} by replacing the $r / 2$ disjoint edges of G_{r}^{\prime}, corresponding to the edges $A_{0} B_{0}, A_{1} B_{1}, C_{0} D_{0}$, and $C_{1} D_{1}$ in G^{\prime} by arbitrary copies of r-regular, r-connected graphs H_{r}. For the set $S_{r} \subseteq V\left(G_{r}^{*}\right)$, containing the $8(r-1)$ vertices of the smaller color class of each $K_{r-1, r}$ and a single vertex from each of the four graphs H_{r}, an identical argument to the proof of Theorem 1 , shows that any cycle in G_{r}^{*} containing S_{r}, will yield a cycle in G^{\prime} containing the edges $A_{0} B_{0}, A_{1} B_{1}, C_{0} D_{0}$, and $C_{1} D_{1}$. Since such a cycle does not exist, S_{r} is not contained in a cycle. Hence the cyclability of G_{r}^{*} is at most $8 r-5$ as claimed.

4. Concluding remarks

The modification of Meredith's construction enables us to construct many r-regular, r-connected graphs with prescribed properties. The basic idea is to start with an r-good graph in which some edges are not contained in a cycle. In Figure 4 a 4 -connected, 4 -regular nonHamiltonian bipartite graph with 84 vertices, is described. This graph, based on the Möbius ladder, uses the fact that no cycle of the Möbius 4ladder uses the four "vertical edges".

We believe that the upper bound for the cyclability of r-regular r-connected graphs can be further improved by other choices of graphs. It seems though that another idea for odd r is needed.

FIGURE 4

References

[1] J.A. Bondy and U.S.R. Murty, Graph theory with applications (American Elsevier, New York, 1976).
[2] Vaclav Chvátal, "New directions in Hamiltonian graph theory", New directions in the theory of graphs, 65-95 (Proc. Third Ann Arbor Conf. on Graph Theory, University of Michigan, Ann Arbor, Michigan, 1971. Academic Press, New York, 1973).
[3] D.A. Holton, "Cycles through specified vertices in k-connected regular graphs", Ars Combin. 13 (1982), 129-143.
[4] D.A. Holton, B.D. McKay, M.D. Plummer and C. Thomassen, "A nine point theorem for 3-connected graphs", Combinatoria 2 (1982), 53-62.
[5] Brad Jackson and T.D. Parsons, "On r-regular r-connected nonHamiltonian graphs", Bull. Austral. Math. Soc. 24 (1981), 205-220.
[6] Brad Jackson and T.D. Parsons, "A shortness exponent for r-regular r-connected graphs", J. Graph Theory 6 (1982), 169-176.
[7] A.K. Kelmans and M.V. Lomonosov, "When m vertices in a k-connected graph cannot be walked round along a simple cycle", Discrete Math. 38 (1982), 317-322.
[8] G.H.J. Meredith, "Regular n-valent n-connected non-Hamiltonian non-n-edge colourable graphs", J. Combin. Theory Ser. B 14 (1973), 55-60.
[9] M. Rosenfeld, "Are all simple 4-polytopes Hamiltonian?", Israel J. Math. (to appear).

Department of Mathematics,
Simon Fraser University,
Burnaby,
British Columbia,
Canada V5AlS6;
Department of Mathematics,
Ben Gurion University of Negev,
Beer Sheva 84120,
Israel
and
Department of Mathematics,
University of Washington,
Seattle,
Washington 98195,
USA.

[^0]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84 $\$ \mathrm{~A} 2.00+0.00$.

