A FUNNEL SECTION PROPERTY FOR SYSTEMS WITH QUASIMONOTONE INCREASING RIGHT-HAND SIDE

GERD HERZOG

Mathematisches Institut I, Universität Karlsruhe, D-76128 Karlsruhe, Germany e-mail:gerd.herzog@math.uni-karlsruhe.de

(Received 27 July, 1998)

Abstract. Let u' = f(t, u), $u(0) = u_0$ be an initial value problem with quasimonotone increasing right-hand side. We prove that if u, v are solutions such that $u(t_0) \ll v(t_0)$ then there is a solution w with $u(t_0) < w(t_0) < v(t_0)$.

1991 Mathematics Subject Classification. 34A99.

1. Introduction. Let $u_0 \in \mathbb{R}^n$, and $f: [0, T] \times \mathbb{R}^n \to \mathbb{R}^n$ be continuous with $||f(t, x)|| \le c$, $(t, x) \in [0, T] \times \mathbb{R}^n$. We consider the initial value problem

$$u' = f(t, u), \quad u(0) = u_0.$$
 (1)

Let L denote the Kneser funnel of problem (1); that is

$$L := \{ u \in C([0, T], \mathbb{R}^n) : u \text{ solves } (1) \}.$$

According to Kneser's Theorem L is compact and connected; see for example [1, p. 24]. In particular for $t_0 \in [0, T]$ the funnel section

$$L_{t_0} = \{u(t_0) : u \in L\}$$

is a compact and connected subset of \mathbb{R}^n . For further investigations of the topological properties of funnels and funnel sections see [3], [4], [6] and references given there. In this paper we will consider the case that \mathbb{R}^n is ordered by a cone and that f is in addition quasimonotone increasing.

Consider \mathbb{R}^n together with a partial ordering \leq induced by a cone K. A *cone* K is a closed convex subset of \mathbb{R}^n with $\lambda K \subseteq K$, $\lambda \geq 0$, and $K \cap (-K) = \{0\}$. We will always assume that K is solid; that is Int $K \neq \emptyset$. As usual $x \leq y \iff y - x \in K$, and we use the notations x < y if $x \leq y$ but $x \neq y$, and $x \ll y$ if $y - x \in$ Int K. Let K^* denote the dual wedge; that is the set of all continuous linear functionals φ on \mathbb{R}^n with $\varphi(x) \geq 0$, $x \geq 0$. For $x \leq y$ let [x, y] be the order interval $\{z \in \mathbb{R}^n : x \leq z \leq y\}$. Since K is solid we can fix $p \in$ Int K and norm \mathbb{R}^n by the Minkowski functional $||\cdot||$ of [-p, p]. For the sequel let $K_r(x)$ denote the closed ball $\{y \in \mathbb{R}^n : ||x - y|| \leq r\}$. Finally let $C([0, T], \mathbb{R}^n)$ be endowed with the corresponding maximum norm $||\cdot||_{\infty}$.

Let $D \subset \mathbb{R}^n$. A function $f: [0, T] \times D \to \mathbb{R}^n$ is called *quasimonotone increasing* (in the sense of Volkmann [7]) if

$$t \in [0, T], x, y \in D, x \le y, \varphi \in K^*, \varphi(x) = \varphi(y) \Rightarrow \varphi(f(t, x)) \le \varphi(f(t, y)).$$

For quasimonotone increasing right-hand sides in problem (1) we prove the following additional structure of L_{t_0} .

THEOREM 1. Let $f: [0, T] \times \mathbb{R}^n \to \mathbb{R}^n$ be quasimonotone increasing, let $u, v \in L$ and $t_0 \in (0, T]$. If $u(t_0) \ll v(t_0)$, then there exists $w \in L$ such that $u(t_0) < w(t_0) < v(t_0)$.

REMARKS. 1. Under the assumptions of Theorem 1 there is always a maximal and a minimal solution of problem (1); that is, there are functions $\underline{u}, \overline{u} \in L$ such that $\underline{u}(t) \leq u(t) \leq \overline{u}(t)$, $t \in [0, T]$, for each $u \in L$. See [5].

- 2. In dimension n = 1 every function is quasimonotone increasing $(K = [0, \infty);$ < and \ll means the same), L_{t_0} is a point or a compact interval, and if $u(t_0) < v(t_0)$ then Theorem 1 can be proved by starting at $\eta \in (u(t_0), v(t_0))$ and going left along a solution until one hits u or \overline{u} . This proof of course does not work for $n \ge 2$.
- 3. In Theorem 1 it is not supposed that u(t) and v(t) are comparable for all t. The assertion of Theorem 1 is equivalent to $x, y \in L_{t_0}$, $x \ll y$ implies that there exists $z \in L_{t_0}$ such that x < z < y. In fact the proof shows that $x < z \ll y$ is possible. By an analogous proof one can obtain $x \ll z < y$.
- 4. An analogous local version $(f:[0,T]\times K_r(u_0)\to\mathbb{R}^n,\ ||f||\leq c$ and $t_0\in(0,\min\{T,r/c\}])$ of Theorem 1 holds. The proof is more technical but is essentially the same.
- 5. Consider dimension n = 2 and $K = \{(x, y) \in \mathbb{R}^2 : x \ge 0, y \ge 0\}$. Set $\alpha = 1/10$. For example the set defined by

$$([-1, 1]^2) \setminus \{(x, y) : -\alpha < y + x < \alpha, y < x\}$$

is compact, connected, contains a maximal and a minimal element, but cannot be a funnel section if f is quasimonotone increasing according to Theorem 1 (although it can be a funnel section if f is not quasimonotone increasing; see [6, Corollary (5.5)]).

Note added in proof. Dr. Roland Uhl showed me the following example. Consider $f: [0,2] \times \mathbb{R}^2 \to \mathbb{R}^2$, $f(t,x,y) = (4((1-t)_+)(x_+)^{1/2}, 2((x+y-1)_+)^{1/2})$. This function is monotone in (x,y) (with respect to K as in 5.), and for problem (1) with $u_0 = (0,0)$ we have $L_2 = ([0,1] \times \{0\}) \cup (\{1\} \times [0,1])$.

$$f(t, x, y) = (4(1-t)_{+}(x_{+})^{1/2}, 2((x+y-1)_{+})^{1/2}).$$

2. Proof. To prove Theorem 1 we shall use the following Proposition.

PROPOSITION 1. Let $\varepsilon > 0$ and R > 0. Then there is a continuous function $f_{\varepsilon} : [0, T] \times \mathbb{R}^n \to \mathbb{R}^n$ such that:

 $1 ||f(t, x) - f_{\varepsilon}(t, x)|| \le \varepsilon, \quad (t, x) \in [0, T] \times K_R(u_0);$

 $2 ||f_{\varepsilon}(t,x)|| \leq c, \quad (t,x) \in [0,T] \times \mathbb{R}^n;$

3 there exists $L_{\varepsilon} \geq 0$ such that

$$||f_{\varepsilon}(t,x)-f_{\varepsilon}(t,y)|| \leq L_{\varepsilon}||x-y||, \quad (t,x),(t,y) \in [0,T] \times \mathbb{R}^{n};$$

4 f_{ε} is quasimonotone increasing.

Proof. Let $0 < \delta < 1$ be such that $||f(t, x) - f(t, y)|| \le \varepsilon$ if (t, x), $(t, y) \in [0, T] \times K_{R+1}(u_0)$ with $||x - y|| \le \delta$. Let $h \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$ be such that

$$h(x) \ge 0, \ x \in \mathbb{R}^n, \quad \text{supp } h \subset K_{\delta}(0), \quad \int_{\mathbb{R}^n} h(x) \ dx = 1.$$

Now let $f_{\varepsilon}: [0, T] \times \mathbb{R}^n \to \mathbb{R}^n$ be defined by

$$f_{\varepsilon}(t,x) := \int_{\mathbb{R}^n} h(\xi - x) f(t,\xi) \ d\xi = \int_{\mathbb{R}^n} h(\xi) f(t,\xi + x) \ d\xi.$$

By standard reasoning (see [2, S.25]) 1, 2 and 3 hold. To prove 4 let (t, x), $(t, y) \in [0, T] \times \mathbb{R}^n$ and $\varphi \in K^*$ with $x \le y$ and $\varphi(x) = \varphi(y)$. Then $\xi + x \le \xi + y$ and $\varphi(\xi + x) = \varphi(\xi + y)$, for each $\xi \in \mathbb{R}^n$, and therefore

$$\varphi(f_{\varepsilon}(t,x)) = \int_{\mathbb{R}^n} h(\xi)\varphi(f(t,\xi+x)) \ d\xi \le$$

$$\int_{\mathbb{R}^n} h(\xi)\varphi(f(t,\xi+y)) \ d\xi = \varphi(f_{\varepsilon}(t,y)).$$

Proof of Theorem 1. Let $u, v \in L$ with $u(t_0) \ll v(t_0)$. We set R = T(c+3). Fix $\varepsilon \in (0, 1)$. There is a function $f_{\varepsilon} : [0, T] \times \mathbb{R}^n \to \mathbb{R}^n$, as in Proposition 1. We set

$$q(\varepsilon) := ||f(\cdot, u) - f_{\varepsilon}(\cdot, u)||_{\infty} + ||f(\cdot, v) - f_{\varepsilon}(\cdot, v)||_{\infty}.$$

For $\lambda \in [0, 1]$ we consider the function $F_{\lambda} : [0, T] \times \mathbb{R}^n \to \mathbb{R}^n$ defined by $F_{\lambda}(t, x) =$

$$f_{\varepsilon}(t,x) + (1-\lambda)(f(t,u(t)) - f_{\varepsilon}(t,u(t))) + \lambda(f(t,v(t)) - f_{\varepsilon}(t,v(t))) + \lambda q(\varepsilon)p.$$

Now consider the initial value problems

$$w'_{\lambda} = F_{\lambda}(t, w_{\lambda}), \quad w_{\lambda}(0) = u_0, \qquad (\lambda \in [0, 1]).$$

Since F_{λ} is Lipschitz the solutions $w_{\lambda}: [0, T] \to \mathbb{R}^n$ are unique and depend continuously on $\lambda \in [0, 1]$, and we have $w_0(t) = u(t)$, $t \in [0, T]$. Moreover we have $v(t) \leq w_1(t)$, $t \in [0, T]$, and $w_{\lambda}(t) \leq w_{\mu}(t)$, $t \in [0, T]$ if $0 \leq \lambda \leq \mu \leq 1$. For $t \in [0, T]$, we have

$$v'(t) - F_1(t, v(t)) = -q(\varepsilon)p \le 0 = w'_1(t) - F_1(t, w_1(t)), \quad v(0) = u_0 = w_1(0).$$

Since F_{λ} is Lipschitz and quasimonotone increasing we have $v(t) \leq w_1(t)$ according to a classical theorem on differential inequalities; see [7]. To prove the second inequality consider

$$\frac{d}{d\lambda}\Big((1-\lambda)(f(t,u(t))-f_{\varepsilon}(t,u(t)))+\lambda(f(t,v(t))-f_{\varepsilon}(t,v(t)))+\lambda q(\varepsilon)p\Big)=$$
$$-(f(t,u(t))-f_{\varepsilon}(t,u(t)))+(f(t,v(t))-f_{\varepsilon}(t,v(t)))+q(\varepsilon)p\geq 0,$$

according to the property $||x||p-x \ge 0$ of the chosen norm. Therefore $F_{\lambda}(t,x)-f_{\varepsilon}(t,x)$ is monotone increasing in λ (and independent of x). Hence for $\lambda \le \mu$ and $t \in [0,T]$

$$w'_{\lambda}(t) - F_{\lambda}(t, w_{\lambda}(t)) = 0 \le w'_{\mu}(t) - F_{\lambda}(t, w_{\mu}(t)), \quad w_{\lambda}(0) = u_0 = w_{\mu}(0).$$

Again we conclude that $w_{\lambda}(t) \leq w_{\mu}(t)$, $t \in [0, T]$ and, in particular, we have $u(t) \leq w_{\lambda}(t)$, $t \in [0, T]$ and $\lambda \in [0, 1]$. Next, we have $||u(t) - u_0|| \leq Tc \leq R$ and $||v(t) - u_0|| \leq Tc \leq R$, $t \in [0, T]$. Therefore, for each $\lambda \in [0, 1]$, we have

$$||F_{\lambda}(t,x)|| \le c + 3\varepsilon, \quad (t,x) \in [0,T] \times \mathbb{R}^{n}.$$

Hence

$$||w_{\lambda}(t) - u_0|| \le T(c+3\varepsilon) \le T(c+3) = R, \quad t \in [0, T];$$

that is $w_{\lambda}(t) \in K_R(u_0)$, $t \in [0, T]$, which implies that

$$||F_{\lambda}(t, w_{\lambda}(t)) - f(t, w_{\lambda}(t))|| \le 4\varepsilon, \quad t \in [0, T].$$

Since $u(t_0) \ll v(t_0)$ there exists $\delta > 0$ such that $x \ll v(t_0)$ for each $x \in K_{\delta}(u(t_0))$. We define $\Phi : C([0, T], \mathbb{R}^n) \to \mathbb{R}$ by

$$\Phi(h) = ||h(t_0) - u(t_0)|| - \delta.$$

The function Φ is continuous. We have $\Phi(w_0) = \Phi(u) = -\delta < 0$ and $\Phi(w_1) \ge \Phi(v) > 0$. Hence there exists $\lambda = \lambda(\varepsilon) \in (0, 1)$ with $\Phi(w_{\lambda}) = 0$.

According to the construction above and for $\varepsilon_k = 1/(k+1)$ we find a sequence of functions $w_k : [0, T] \to \mathbb{R}^n$ with the following properties $(k \in \mathbb{N})$:

- 1. $u(t) \leq w_k(t), t \in [0, T];$
- 2. $\Phi(w_k) = 0$;
- 3. w_k is a solution of $w'_k(t) = f(t, w_k(t)) + g_k(t)$, $w_k(0) = u_0$, with $||g_k(t)|| \le 4\varepsilon_k = 4/(k+1)$.

According to the Arzelà-Ascoli Theorem there is a limit $w \in L$ of a subsequence of $(w_k)_{k=1}^{\infty}$. We have $u(t) \leq w(t)$, $t \in [0, T]$, and $u(t_0) < w(t_0)$ since $||w(t_0) - u(t_0)|| = \delta$. According to the choice of δ we have $w(t_0) \ll v(t_0)$, especially $w(t_0) < v(t_0)$.

Acknowledgement. The author wishes to express his sincere gratitude to Prof. Dr. Roland Lemmert for helpful discussions which improved the paper.

REFERENCES

- 1. K. Deimling, *Ordinary differential equations in Banach spaces*, Lecture Notes in Mathematics No. 596 (Springer-Verlag, 1977).
 - 2. K. Deimling, Nichtlineare Gleichungen und Abbildungsgrade (Springer-Verlag, 1974).
 - 3. P. Hartman, Ordinary differential equations (John Wiley & Sons, Inc., 1964).
- **4.** E. Horst, Differential equations in Banach spaces: five examples, *Arch. Math. (Basel)* **46** (1986), 440–444.
- **5.** R. Lemmert, S. Schmidt and P. Volkmann, Ein Existenzsatz für gewöhnliche Differentialgleichungen mit quasimonoton wachsender rechter Seite, *Math. Nachr.* **153** (1991), 349–352.
 - **6.** C. C. Pugh, Funnel sections, *J. Differential Equations* **19** (1975), 270–295.
- 7. P. Volkmann, Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen, *Math. Z.* 127 (1972), 157–164.