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Ext and OrderExt Classes of Certain
Automorphisms of C∗-Algebras Arising
from Cantor Minimal Systems
Hiroki Matui

Abstract. Giordano, Putnam and Skau showed that the transformation group C∗-algebra arising from
a Cantor minimal system is an AT-algebra, and classified it by its K-theory. For approximately inner
automorphisms that preserve C(X), we will determine their classes in the Ext and OrderExt groups,
and introduce a new invariant for the closure of the topological full group. We will also prove that
every automorphism in the kernel of the homomorphism into the Ext group is homotopic to an inner
automorphism, which extends Kishimoto’s result.

1 Introduction

Let (X, φ) be a topological dynamical system on a compact Hausdorff space X with
a homeomorphism φ. The transformation group C∗-algebra C∗(X, φ) is the univer-
sal C∗-algebra generated by C(X), the algebra of continuous functions on X, and a
unitary element that implements the action of φ. One of the long standing prob-
lems is to find a dynamical condition which characterizes the isomorphism class of
the transformation group C∗-algebra. Giordano, Putnam and Skau solved this prob-
lem for the Cantor minimal systems [5]. They introduced the notion of strong orbit
equivalence and showed that two Cantor minimal systems are strong orbit equivalent
if and only if their transformation group C∗-algebras are isomorphic. Here, a Cantor
minimal system means a minimal system on the Cantor set, where the Cantor set is
a compact, metrizable, totally disconnected and perfect space, and a minimal system
means there is no nontrivial closed invariant subset, which implies the C∗-algebra is
simple. Their theory was the first example where K-theory gave a classification for
minimal topological dynamical systems. In their subsequent paper [6], they defined
several kinds of full groups and proved that these groups are complete invariants for
orbit equivalence, strong orbit equivalence and flip conjugacy respectively. These
results are analogous to the results in the measurable dynamical setting.

The C∗-algebra theoretic aspect of the above results is indebted to Elliott’s cele-
brated classification theorem of simple real rank zero AT-algebras using K-theory
[3]. Since his classification was accomplished, structure of the automorphism groups
of algebras in this class has been studied by several authors [4], [10], [11], [12], [13].
Among others, Kishimoto and Kumjian introduced two homomorphisms from the
closure of the inner automorphisms to the Ext and OrderExt groups of K-groups, and
they investigated the ranges and kernels of these homomorphisms in [10], [11] and
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[13]. One of purposes of this paper is to compute these homomorphisms for con-
crete automorphisms arising from Cantor minimal systems, and to introduce a new
invariant for Cantor minimal systems using these homomorphisms. There are two
kinds of natural automorphisms of the transformation group C∗-algebra of a Cantor
minimal system: those arising from the normalizers of the topological full group and
those arising from T-valued cocycles of the transformation [6]. In [6], the notion
of the mod map was introduced, which is a homomorphism from the normalizers
to the automorphism group of the K-group, and it is shown that the kernel of the
mod map is the closure of the topological full group. We will give a concrete formula
for a homomorphism from the kernel of the mod map to the Ext group of K-group
in terms of the dynamical system. It turns out that this invariant may differ within
a strong orbit equivalence class. We will also investigate the structure of T-valued
cocycles using the OrderExt group. As a byproduct, we will extend Kishimoto’s the-
orem about the kernel of the homomorphism into the Ext group [13] to the case of
C∗-algebras arising from Cantor minimal systems.

In the measurable dynamical setting, the importance of cocycles was pointed out
by Mackey in [14] and a systematic study was initiated by Zimmer in [21]. Extensions
of Cantor minimal systems are investigated in [7] when the factor maps are almost
one-to-one. The other purpose of this paper is to examine p to one factor maps
between Cantor minimal systems and describe them using the cocycle theory which
will be introduced in Section 3. From an element in the dimension group of a Cantor
minimal system, we can form an extension system and a shift map on the sheets. We
state the K-theoretical condition which ensures that the extension system becomes a
minimal system in Lemma 3.6. In Section 7 this construction gives many examples
of p to one factor maps and homeomorphisms of order p which commute with the
minimal homeomorphism. We will show that the kernel of the homomorphism to
the Ext group may be bigger than the topological full group in the last example.

Acknowledgements The author is grateful to Professor Izumi for his helpful advice
and encouragement.

2 Preliminaries

At first we must recall the basic facts about Cantor minimal systems from [5] and
[6]. Let C∗(X, φ) be the crossed product C∗-algebra constructed from a topological
dynamical system (X, φ). We denote by δ the implementing unitary. The reader may
refer to [19] for the general theory of transformation group C∗-algebras.

Theorem 2.1 ([5, Theorem 1.15]) Let (X, φ) be a Cantor minimal system. Then
C∗(X, φ) is a simple real rank zero AT-algebra with the K1-group Z. Moreover any
simple unital dimension group except Z can be realized as the K0-group of this algebra.

We recall that a C∗-algebra is an AT-algebra if it is expressible as an inductive limit
of T-algebras; a T-algebra is a direct sum of matrix algebras over C(T). Let

Bφ = { f − f ◦ φ−1 ; f ∈ C(X,Z)}
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be the subgroup of coboundaries of C(X,Z). By the Pimsner-Voiculescu exact se-
quence, we get that K0(X, φ) is order isomorphic to C(X,Z)/Bφ. We denote by [ f ]
the equivalence class of f in K0(X, φ). According to Elliott’s theorem [3], C∗(X, φ)’s
are classified by the simple dimension groups K0(X, φ)’s.

The following is one of the main results in [5].

Theorem 2.2 ([5, Theorem 2.1]) Let (Xi , φi), i = 1, 2, be Cantor minimal systems.
The following are equivalent:

(i) The C∗-algebras C∗(Xi , φi), i = 1, 2, are isomorphic,
(ii) The dimension groups K0(Xi , φi), i = 1, 2, are order isomorphic by a map pre-

serving distinguished order units,
(iii) (Xi, φi), i = 1, 2, are strong orbit equivalent.

We need the notion of topological full groups and mod maps. If (X, φ) is a Cantor
minimal system, we define the topological full group τ [φ] to be

{γ ∈ Homeo(X) ; ∃n ∈ C(X,Z) such that γ(x) = φn(x)(x) for all x ∈ X},

and N(τ [φ]) the normalizer of τ [φ] in Homeo(X). Let UN
(

C(X),C∗(X, φ)
)

be the
unitary normalizer group of C(X) in C∗(X, φ). In [17, Lemma 5.1], it was shown that
for ψ ∈ τ [φ] there exists vψ in UN

(
C(X),C∗(X, φ)

)
such that vψ f v∗ψ = f ◦ ψ−1 for

all f ∈ C(X), and vψ is uniquely determined up to U
(

C(X)
)

. The general case is
well studied in [20].

When (X, φ) is a Cantor minimal system,we use the following notation:

AutC(X)

(
C∗(X, φ)

)
=
{
α ∈ Aut

(
C∗(X, φ)

)
; α
(

C(X)
)
= C(X)

}
,

InnC(X)

(
C∗(X, φ)

)
= AutC(X)

(
C∗(X, φ)

)
∩ Inn

(
C∗(X, φ)

)
,

Uφ =
{

f ( f ◦ φ) ; f ∈ U
(

C(X)
)}
.

For f ∈ U
(

C(X)
)

we define the element ι( f ) in AutC(X)

(
C∗(X, φ)

)
by

ι( f )(g) = g for all g ∈ C(X), ι( f )(δ) = δ f .

The automorphism α ∈ AutC(X)

(
C∗(X, φ)

)
determines a homeomorphism π(α) on

X such that

α(g) = g ◦ π(α)−1 for all g ∈ C(X).

Then we have the following.

Proposition 2.3 ([6, Proposition 2.4]) If (X, φ) is a Cantor minimal system, we have
the following two short exact sequences:

(i) 1→ Uφ
ι
−→ InnC(X)

(
C∗(X, φ)

) π
−→ τ [φ]→ 1,

(ii) 1→ U
(

C(X)
) ι
−→ AutC(X)

(
C∗(X, φ)

) π
−→ N(τ [φ])→ 1.
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Moreover these exact sequences split.

Let s : N(τ [φ]) → AutC(X)

(
C∗(X, φ)

)
denote the homomorphism defined for

γ ∈ N(τ [φ]) by

s(γ)( f ) = f ◦ γ−1, s(γ)(δ) = vψ,

where ψ ∈ τ [φ] satisfies γ ◦ φ ◦ γ−1 = ψ and vψ is the unitary normalizer corre-
sponding to ψ. Then we have π ◦ s(γ) = γ for all γ ∈ N(τ [φ]). In Sections 5 and 6
we will discuss the above automorphisms ι( f ) and s(γ).

We would like to review the definition of the mod map on the topological full
group. When a homeomorphism γ preserves the coboundary subgroup Bφ, we can
define an automorphism mod(γ) on K0(X, φ) as

mod(γ)([ f ]) = [ f ◦ γ−1]

for all f ∈ C(X,Z). It is easily checked that the normalizers of the topological full
group preserve Bφ, and the automorphism s(γ) on C∗(X, φ) induces the automor-
phism mod(γ) on the K0-group when γ is in N(τ [φ]).

Equip Homeo(X) with the topology of pointwise convergence in norm on C(X).

Proposition 2.4 ([6, Proposition 2.11]) In the above setting we have ker(mod) =
τ [φ].

Although γ ∈ N(τ [φ]) is in the kernel of the mod map, s(γ) may induce the non-
trivial automorphism on the K1-group, which is isomorphic to the integer group. We
define

T(φ) = {γ ∈ N(τ [φ]) ; γ induces identity maps on K-groups}.

The set T(φ) is a subgroup of N(τ [φ]) and we investigate this group in Section 5.

Let us now recall the description of the normalizer N(τ [φ]) of τ [φ] in terms of a
semi-direct product group. When (X, φ) is a Cantor minimal system, we set

Cε(φ) = {γ ∈ Homeo(X) ; γ ◦ φ ◦ γ−1 = φ or γ ◦ φ ◦ γ−1 = φ−1},

C+(φ) = {γ ∈ Homeo(X) ; γ ◦ φ ◦ γ−1 = φ}.

Note that Cε(φ) is contained in N(τ [φ]).

Proposition 2.5 ([6, Proposition 5.11]) If τ [φ] � Cε(φ) denotes the semi-direct
product of the topological full group of φ by Cε(φ), then we get the following short exact
sequences:

0→ Z
i
−→ τ [φ] � Cε(φ)

Φ
−→ N(τ [φ])→ 0,

where i and Φ are defined by i(n) = (φn, φ−n) and Φ(γ, η) = γ ◦ η.

We also obtain

Φ−1
(

T(φ)
)
= τ [φ] �

(
C+(φ) ∩ τ [φ]

)
from the above exact sequence.
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3 Extensions and Cocycles

In this section we study extensions of Cantor minimal systems. Note that similar
results can be found in [15]. If (X, φ) and (Y, ψ) are topological dynamical systems,
(Y, ψ) is called an extension of (X, φ), and (X, φ) a factor of (Y, ψ) when there is a
continuous map π from Y to X such that φ◦π = π ◦ψ. We denote it by π : (Y, ψ)→
(X, φ). The map π is called a factor map. If (X, φ) is a minimal system, π is surjective.

We will examine the case that a factor map π is a p to one surjective local homeo-
morphism for a fixed natural number p. Here the local homeomorphism means that
for each y ∈ Y there is an open neighborhood U of y such that π(U ) is open in X
and π|U is a homeomorphism. A local homeomorphism is an open map, and a p to
one surjective local homeomorphism is called a p to one covering map. We remark
that almost one to one factors are investigated in [7].

Lemma 3.1 When π : Y → X is a p to one covering map between topological spaces
and X is compact and 0-dimensional, the space Y is homeomorphic to the Cartesian
product of X and {0, 1, . . . , p − 1}, with π corresponding to the projection onto X.

Proof For each x ∈ X, we can choose a preimage y of x and a clopen neighbor-
hood Ux of y on which the covering map π is a homeomorphism. Since the fam-
ily {π(Ux)}x∈X is an open covering of X, there exists a finite set of clopen subsets
U1,U2, . . . ,Un such that on each Uk the map π is a homeomorphism and {π(Uk)}k

covers X. Set

V1 = U1,

V2 = V1 ∪
(

U2 \ π
−1
(
π(V1)

))
,

...

Vn = Vn−1 ∪
(

Un \ π
−1
(
π(Vn−1)

))
,

inductively. Then Vn is a clopen set on which the map π is a homeomorphism, and
π(Vn) equals X. We can regard the clopen set Vn of Y as a copy of X, and the map π as
a p − 1 to one covering map on the complement of Vn. By repeating this argument,
we can separate the space Y into p copies of X, say p sheets, and the map π is a
homeomorphism on each sheet.

Let (X, φ) be a Cantor minimal system, and π : (Y, ψ) → (X, φ) a p to one cov-
ering map. We would like to describe this extension by a symmetric group valued
cocycle on (X, φ). When Y is identified with X × {0, 1, . . . , p − 1}, there exists
c : X → Sp such that

ψ(x, k) =
(
φ(x), c(x)(k)

)
for all (x, k) ∈ Y . The p to one extension system (Y, ψ) is completely determined by
this map c.
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A continuous map c : X → Sp is called a Sp-valued cocycle on X. We can associate
the p to one extension system with the cocycle c in the above way.

Definition 3.2 Let (X, φ) be a dynamical system, and c, c ′ cocycles on (X, φ). We
say that c and c ′ are cohomologous if there is a continuous map b : X → Sp such that

b
(
φ(x)

)
c(x)b(x)−1 = c ′(x)

for all x ∈ X. A cocycle c is a coboundary if there is a map b : X → Sp

c(x) = b
(
φ(x)

)
b(x)−1

for all x ∈ X.

The following lemma shows that the cohomologous cocycles represent equivalent
extensions.

Lemma 3.3 Let ci (i = 1, 2) be cocycles on a dynamical system (X, φ), and πi :
(Yi , ψi)→ (X, φ) the associated extensions. Then the following are equivalent:

(i) ci (i = 1, 2) are cohomologous,
(ii) The two extensions are equivalent; i.e., there exists a homeomorphismΨ from Y1 to

Y2 such that ψ2 ◦Ψ = Ψ ◦ ψ1 and π2 ◦Ψ = π1.

We would like to consider the minimal extension systems, and describe the cocycle
condition that guarantees that the associated extension system becomes minimal.

Lemma 3.4 Let (X, φ) be a Cantor minimal system, and π : (Y, ψ) → (X, φ) a p to
one extension. When c : X → Sp represents this extension, the following are equivalent:

(i) (Y, ψ) is minimal,
(ii) (Y, ψ) is topologically transitive, which means that there exists a point whose orbit

is dense in Y ,
(iii) If a cocycle c ′ is cohomologous to c, the subgroup generated by {c ′(x) ; x ∈ X} acts

transitively on {0, 1, . . . , p − 1}.

Proof We only show (iii) ⇒ (i). Let F be a non-empty closed subset of Y which
is invariant under ψ. The minimality of the system (X, φ) implies π(F) = X. For
arbitrary points x1, x2 ∈ X, let qi be the cardinality of the set π−1(xi) ∩ F. From the
minimality of (X, φ) and the compactness of the space Y , we can choose a sequence
{an} such that φan (x1) converges to x2 and ψan (y) converges for every y ∈ π−1(x1)∩
F. Since the map π is a local homeomorphism, y �→ limn→∞ ψan (y) is an injective
map from π−1(x1)∩ F to π−1(x2)∩ F, and so q1 ≤ q2. In the same way we can show
q2 ≤ q1. Hence there exists a natural number q such that the cardinality of the set
π−1(x) ∩ F equals q for every x ∈ X.

By Lemma 3.1, we may assume Y is divided into p clopen sheets, namely Y1,Y2,
. . . ,Y p. For every point x ∈ X, there exists a unique collection of q sheets Yi(1),Yi(2),
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. . . ,Yi(q) uniquely such that x is included in π(F ∩ Yi(k)) for k = 1, 2, . . . , q. Thus X
is the disjoint union of closed sets

⋂
i∈Q

π(F ∩Yi),

where Q runs over all subsets of {1, 2, . . . , p} with cardinality q. This means that X is
partitioned into

(p
q

)
clopen sets. Therefore F is a clopen set. By changing the cocycle,

we can assume that F is exactly the union of q sheets, which contradicts (iii).

In the rest of this section, we consider Zp-valued cocycles. If c is a Zp-valued
cocycle, we may regard c as an element of C(X,Z)/pC(X,Z). Then c and c ′ are
cohomologous if and only if there exists a function b ∈ C(X,Z) such that

c(x)− c ′(x) = b
(
φ(x)

)
− b(x)

for all x ∈ X, where the equation is understood modulo p. The set of cocycles which
are cohomologous to zero is called the coboundary subgroup. We define the Zp-
valued cohomology group H1

φ(X,Zp) as the quotient of the group of Zp-valued co-
cycles by the coboundary subgroup.

Lemma 3.5 If (X, φ) is a Cantor minimal system, the Zp-valued cohomology group
H1
φ(X,Zp) is isomorphic to K0(X, φ)/pK0(X, φ).

Proof There are natural quotient maps from C(X,Z) to H1
φ(X,Zp) and to

K0(X, φ)/pK0(X, φ). The image of f ∈ C(X,Z) is zero in H1
φ(X,Zp) if and only

if there exists a function g ∈ C(X,Z) such that f (x) = g
(
φ(x)

)
− g(x) for all x ∈ X,

where the equation is understood modulo p. On the other hand, the image of f is
zero in K0(X, φ)/pK0(X, φ) if and only if there exist functions g, h ∈ C(X,Z) such
that f − ph = g ◦ φ− g. So the kernels of these two homomorphisms coincide.

We also denote the equivalence class in K0(X, φ)/pK0(X, φ) by [ f ].

In the next lemma, we describe the K-theoretical condition which completely de-
termines when the extension system associated with a Zp-valued cocycle becomes a
minimal system.

Lemma 3.6 Let (X, φ) be a Cantor minimal system, [h] in K0(X, φ)/pK0(X, φ), and
π : (Y, ψ) → (X, φ) a corresponding p to one covering map. Then (Y, ψ) is a minimal
system if and only if

k[h] �= 0 in K0(X, φ)/pK0(X, φ)

for k = 1, 2, . . . , p − 1.
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Proof Let k[h] be zero in K0(X, φ)/pK0(X, φ). We would like to prove that the sys-
tem (Y, ψ) is not minimal. It suffices to consider the case that p is a multiple of k, say
lk. We may assume

Y = X × {0, 1, . . . , p − 1},

ψ(x, k) =
(
φ(x), k + h(x)

)
,

π(x, k) = x

for all (x, k) ∈ Y , where k + h(x) is understood modulo p. Let us define a homeo-
morphism γ on Y as γ(x, k) = (x, k + 1). The map γ commutes with ψ. We call γ
the shift map. We set Y0 = X × {0, 1, . . . , l − 1} and a homeomorphism ψ0 on Y0

such as

ψ0(x,m) =
(
φ(x),m + h(x)

)
,

where m + h(x) is understood modulo l. Then we can easily see that the factor
map π factors through (Y0, ψ0), and (Y0, ψ0) is an extension of (X, φ) which cor-
responds to [h] in K0(X, φ)/lK0(X, φ). Since K0(X, φ) is torsion free, k[h] = 0 in
K0(X, φ)/pK0(X, φ) implies that [h] is zero in K0(X, φ)/lK0(X, φ) and the system
(Y0, ψ0) is not minimal. As a factor of a minimal system is also minimal, we can
conclude that (Y, ψ) is not minimal.

To prove the other direction, we first consider the case h = 1. We would like
to show that (Y, ψ) is minimal under the assumption that k[1] is not zero in
K0(X, φ)/pK0(X, φ) for k = 1, 2, . . . , p − 1. Let F be the closure of the orbit
{ψn(x, 0) ; n ∈ Z} for a point x ∈ X. By the proof of Lemma 3.4, F is a clopen set. If
(x, k) is included in F, there exists a sequence {an}∞n=1 such that ψan (x, 0)→ (x, k) as
n goes to infinity. Then

(x, 2k) = γk(x, k)

= γk
(

lim
n→∞

ψan (x, 0)
)

= lim
n→∞

ψan
(
γk(x, 0)

)
= lim

n→∞
ψan (x, k)

exists in F. Hence we can find a natural number l, which satisfies that (x, k) ∈ F if
and only if k is a multiple of l. The number l is a divisor of p. Since F is a clopen set,
we can choose a clopen neighborhood E of x in X, which satisfies that E × {k} ⊂ F
if and only if k is a multiple of l. Thus, whenever φn(x) is in E, n is a multiple of
l, because the extension system (Y, ψ) is associated with [1]. When one considers
the first return map on E and the associated clopen partition of X, one sees that this
implies that the height of each tower is a multiple of l. So [1] in K0(X, φ) is divisible
by l. From the assumption l must be 1, and F equals to Y .
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In the general case we need the tower construction of [6]. We may assume the
function h is strictly positive. Let X̃ be the space {(x, j) ; x ∈ X, j = 1, 2, . . . , h(x)}
with the topology induced from X × N, and φ̃ the homeomorphism on X̃ satisfying

φ̃(x, j) =

{
(x, j + 1) j < h(x)(
φ(x), 1

)
j = h(x).

Then, the system (X̃, φ̃) is a Cantor minimal system and there is an order isomor-
phism from the dimension group K0(X, φ) to K0(X̃, φ̃), sending the element [h] to
the order unit [1]. Let us denote by (Ỹ , ψ̃) the extension system of (X̃, φ̃) associated
with [1] ∈ K0(X̃, φ̃)/pK0(X̃, φ̃). Thus,

Ỹ = {(x, j, k) ; x ∈ X, 1 ≤ j ≤ h(x), 0 ≤ k ≤ p − 1},

and

ψ̃(x, j, k) =

{
(x, j + 1, k + 1) j < h(x)(
φ(x), 1, k + 1

)
j = h(x),

where k + 1 is understood modulo p. From the preceding paragraph, the system
(Ỹ , ψ̃) becomes a Cantor minimal system. The first return map on the clopen set
{(x, 1, k) ; x ∈ X, 0 ≤ k ≤ p − 1} is given by

(x, 1, k) �→
(
φ(x), 1, k + h(x)

)
,

and this system is obviously isomorphic to (Y, ψ). Therefore (Y, ψ) is minimal.

As a corollary of the above lemma, we can discuss the minimality of the product
system of a Cantor minimal system and the odometer system. The odometer systems
are basic examples of Cantor minimal systems. We refer the reader to Section VIII.4
of [1] for details of the odometer systems. Let {mn}∞n=1 be a sequence of natural
numbers such that mn+1 is a multiple of mn for each n, and (Y, ψ) the odometer
system of type {mn}n.

Proposition 3.7 When (X, φ) is a Cantor minimal system and (Y, ψ) is as above, the
product system (X×Y, φ×ψ) is again a Cantor minimal system if and only if [1] in the
dimension group K0(X, φ) is not divisible by any natural numbers which are divisors of
some mn.

Proof Let Yn be {0, 1, . . . ,mn − 1}, and ψn the shift map on Yn sending k to k +
1. The odometer system (Y, ψ) can be written as the projective limit system of
{(Yn, ψn)}n. Hence the product system (X×Y, φ×ψ) is the projective limit system of
{(X×Yn, φ×ψn)}n. The system (X×Yn, φ×ψn) is the mn to one extension system
of (X, φ) associated with [1] in K0(X, φ)/mnK0(X, φ).
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If (X×Y, φ×ψ) is a minimal system, (X×Yn, φ×ψn) becomes a minimal system
for every n, because this system is a factor of (X×Y, φ×ψ). By virtue of Lemma 3.6,
[1] in the dimension group cannot have a common divisor with any mn’s.

In order to prove the other implication, it suffices to check that the projective limit
system of minimal systems is also minimal. This is trivial.

Let [h] be an element of K0(X, φ)/pK0(X, φ), and (Y, ψ) the associated extension
system. We use the same notation of Lemma 3.6. The shift map γ on Y commutes
with ψ and γ p = id. Let us denote by β the automorphism of C∗(Y, ψ) such that

β(δ) = δ, β( f ) = f ◦ γ−1 for all f ∈ C(Y ).

We also define an automorphism α of C∗(X, φ) by

α(δ) =
(

exp
−2πih

p

)
δ, α( f ) = f for all f ∈ C(X),

where C∗(X, φ) is regarded as a sub-C∗-algebra of C∗(Y, ψ) with the same imple-
menting unitary δ.

Both the automorphismsα and β can be viewed as Zp-actions. By checking Land-
stad’s condition [16, 7.8.2], one verifies the following result.

Proposition 3.8 In the above setting, the C∗-dynamical systems
(

C∗(X, φ) �α Zp, α̂,

Zp

)
and
(

C∗(Y, ψ), β,Zp

)
are covariantly isomorphic, where α̂ denotes the dual action

of α.

We also remark that the group homomorphism from K0(X, φ) to K0(Y, ψ) which
is induced by the inclusion map is injective if the systems are minimal ([8, Proposi-
tion 3.1]). When γ denotes the shift map, we have

K0(X, φ) =
{ p−1∑

k=0

γk
∗(a) ; a ∈ K0(Y, ψ)

}
.

4 Ext and OrderExt Groups

We would like to recall the notion of Ext and OrderExt groups for K-groups of C∗-
algebras. The readers may refer to [10], [11] for details.

When A is a unital C∗-algebra and α is an automorphism of A, the mapping torus
of α is the C∗-algebra

Mα =
{

x ∈ C([0, 1],A) ; α
(

x(0)
)
= x(1)

}
,

and the suspension of A is given by

SA = {x ∈ C([0, 1],A) ; x(0) = x(1) = 0}.
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If α is an approximately inner automorphism, then from the short exact sequence

0→ SA→ Mα → A→ 0,

one obtains a pair of short exact sequences:

0→ K1−i(A)→ Ki(Mα)→ Ki(A)→ 0,

for i = 0, 1. Let ηi(α) denote the class of this sequence in Ext
(

Ki(A),K1−i(A)
)

.
Since K1(A) is always the integer group if A arises from a Cantor minimal system,

η1(α) is trivial for all α in Inn(A). So we may consider only η0(α).

There are two distinguished normal subgroups of Inn(A) containing Inn(A). One
is the group HInn(A) of automorphisms that are homotopic to elements of Inn(A)
and the other is the group AInn(A) of asymptotically inner automorphisms. It is easy
to see that

Inn(A) ⊂ AInn(A) ⊂ HInn(A) ⊂ Inn(A).

Theorem 4.1 ([10, Corollary 3.10]) If A is a unital simple AT-algebra with real rank
zero, the map η0 ⊕ η1 from Inn(A) to

⊕1
i=0 Ext

(
Ki(A),K1−i(A)

)
is a surjective homo-

morphism. Moreover the kernel of this map contains the group HInn(A).

Under some additional conditions, Kishimoto proved that the kernel of η0 ⊕ η1 is
precisely HInn(A).

Theorem 4.2 ([13, Corollary 2.3]) Let A be a simple unital AT-algebra of real rank
zero with a unique tracial state τ such that K1(A) �= Z. Then the quotient
Inn(A)/HInn(A) is isomorphic to

⊕1
i=0 Ext

(
Ki(A),K1−i(A)

)
with the isomorphism

induced by η0 ⊕ η1.

Let TA be the set of tracial states on A. When A is C∗(X, φ), there is a one-to-
one correspondence between TA and Mφ, the set of invariant measures on X. For a
unitary u ∈ Mα such that t �→ u(t) is piecewise C1 and for µ ∈ TA, we define

µ̃(u) =
1

2πi

∫ 1

0
µ
(

u̇(t)u(t)∗
)

dt.

By extending this definition to the matrix algebra over Mα, we obtain a homomor-
phism µ̃ : K1(Mα) → R. Since µ �→ µ̃(u) is continuous and affine, we get a homo-
morphism Rα : K1(Mα)→ Aff(TA) such that

Rα([u])(µ) = µ̃(u).

We call Rα the rotation map.
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Lemma 4.3 ([11, Lemma 2.2]) For an approximately inner automorphism α of a
simple unital C∗-algebra A, the following diagram commutes:

K0(A)
i

−−−−→ K1(Mα)

D Rα

Aff(TA),

where D is the canonical pairing of K0(A) with TA.

Let

0→ K0(A)
i
→ E→ K1(A)→ 0

be an exact sequence with a map R : E → Aff(TA) satisfying R ◦ i = D. We call
the set of all pairs (E,R) the order-extensions of

(
K1(A),K0(A)

)
and denote it by

OrderExt
(

K1(A),K0(A)
)

. We are able to define an abelian group structure on

OrderExt
(

K1(A),K0(A)
)

in the same fashion as for the usual Ext groups.

Theorem 4.4 ([11, Theorem 4.4]) Let A be a simple unital AT-algebra with real rank
zero. Then the natural map

η̃1 ⊕ η0 : Inn(A)→ OrderExt
(

K1(A),K0(A)
)
⊕ Ext

(
K0(A),K1(A)

)
is a surjective homomorphism. Moreover the kernel of this map coincides with AInn(A).

In the case of C∗(X, φ), η1 was always trivial. That is, if α is in Inn(A), K1(Mα) is
isomorphic to the group K0(A)⊕Z. Therefore we only need the value of the generator
of Z by the rotation map.

Lemma 4.5 When the C∗-algebra A satisfies K1(A) ∼= Z, the order-extension group
OrderExt

(
K1(A),K0(A)

)
is isomorphic to the group Aff(TA)/K0(A).

Proof Let (E,R) be an order-extension of
(

K1(A),K0(A)
)

. That is, E is an extension
of K1(A) by K0(A) and R is a homomorphism to Aff(TA) with commutativity in the
following diagram:

0→ K0(A)
i
−→ E

q
−→ K1(A)→ 0

D R

Aff(TA),

where D is the canonical pairing of K0(A) with TA. Since K1(A) is the integer group,
this sequence splits by a homomorphism r : K1(A)→ E. We can define a map π from
OrderExt

(
K1(A),K0(A)

)
to Aff(TA)/K0(A), sending (E,R) to R

(
r(u)
)

where u rep-

resents the generator of K1(A). If r ′ is any other splitting, then R
(

r(u)
)
−R
(

r ′(u)
)
∈

D
(

K0(A)
)

, and so the map π is well defined. The surjectivity of π is obvious. To

prove injectivity, let us assume R
(

r(u)
)

is in K0(A). We can check condition 2 of

Proposition 2.5 in [11] easily, hence (E,R) is zero in OrderExt
(

K1(A),K0(A)
)

.
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5 Computation of Ext Classes

In this section we introduce a new invariant for the subgroup T(φ) of N(τ [φ]), which
acts trivially on the K-groups, by calculating the class η0(α) ∈ Ext

(
K0(X, φ),Z

)
when α is in

InnC(X)

(
C∗(X, φ)

)
= AutC(X)

(
C∗(X, φ)

)
∩ Inn

(
C∗(X, φ)

)
.

When the automorphismα of C∗(X, φ) preserves the maximal abelian C∗-algebra
C(X), α can be written as the product of two kinds of automorphisms (Proposi-
tion 2.3(ii)). In Section 2, we defined the automorphisms ι(g) for g ∈ U

(
C(X)

)
and s(γ) for γ ∈ N(τ [φ]). At first, we examine ι(g) and see that this automorphism
determines the zero element in the Ext group.

Thanks to (ii) of Proposition 2.3 and the next lemma, we have ι(g) ∈
InnC(X)

(
C∗(X, φ)

)
.

Lemma 5.1 If (X, φ) is a Cantor minimal system, Uφ is dense in U
(

C(X)
)

.

Proof Take a unitary g ∈ C(X) arbitrarily. Since X is 0-dimensional, there exists a
self-adjoint element h in C(X) such that g = exp 2πih. The function h determines
a continuous affine function on Mφ, which is canonically identified with the state
space of K0(X, φ). As K0(X, φ) is a simple dimension group, K0(X, φ) is dense in
Aff(Mφ) in the sup norm [2, Theorem 4.4]. Thus, for arbitrarily small ε > 0 there
exists f ∈ C(X,Z) such that

|µ( f − h)| < ε

for all µ ∈ Mφ, and g = exp 2πi(h− f ). Using the same argument as in Lemma 2.4
of [8], one can obtain a Kakutani-Rohlin partition {Y (k, j) ; k = 1, 2, . . . ,K, j =
0, 1, . . . ,mk − 1} [9, Section 4], which satisfies

∣∣∣ 1

mk

mk−1∑
j=0

( f − h)
(
φ j(x)

) ∣∣∣ < ε

for k = 1, 2, . . . ,K and all x ∈ Y (k, 0). Hence there is a function l ∈ C(X,R), such
that

‖ f − h− (l − l ◦ φ)‖∞ < ε,

which implies ‖g − exp 2πi(l− l ◦ φ)‖∞ is small.

Since ι(g) is an approximately inner automorphism, we can consider η0

(
ι(g)
)

for

g ∈ U
(

C(X)
)

.

Lemma 5.2 Let (X, φ) be a Cantor minimal system. The automorphism ι(g) is in
HInn

(
C∗(X, φ)

)
, for all g ∈ U

(
C(X)

)
. So η0

(
ι(g)
)

is trivial.

https://doi.org/10.4153/CJM-2001-014-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-014-9


338 Hiroki Matui

Proof One can take the logarithm of a given g. From the above lemma, ι0(g) is in
HInn

(
C∗(X, φ)

)
. By Theorem 4.1, η0

(
ι(g)
)

is trivial.

Now, we examine the class of s(γ) in Ext
(

K0(X, φ),Z
)

, and describe this new
invariant with dynamical language. By virtue of the remark after Proposition 2.5, we
may assume γ is in C+(φ) ∩ τ [φ], and thanks to Elliott’s theorem we have s(γ) ∈
Inn
(

C∗(X, φ)
)

.

If (X, φ) is a Cantor minimal system, A{y} denotes the AF-subalgebra of C∗(X, φ)
for y ∈ X [17, Section 3]. Take a sequence of Kakutani-Rohlin partitions {Pn}∞n=1

and an increasing sequence of finite dimensional C∗-subalgebras {An}∞n=1, such that

C(Pn) equals the diagonal algebra of An and A{y} =
⋃∞

n=1 An.

Let γ be in C+(φ) ∩ τ [φ], and A be the C∗-algebra C∗(X, φ). Define

Ms(γ),n =
{

x ∈ C
(

[0, 1],C∗(X, φ)
)

; s(γ)
(

x(0)
)
= x(1), x(0) ∈ An

}
,

Ms(γ),{y} =
{

x ∈ C
(

[0, 1],C∗(X, φ)
)

; s(γ)
(

x(0)
)
= x(1), x(0) ∈ A{y}

}
.

The Ext class η0

(
s(γ)
)

is obtained from the exact sequence:

0→ SC∗(X, φ)→ Ms(γ) → C∗(X, φ)→ 0.

Since the inclusion map from A{y} to C∗(X, φ) induces an isomorphism on K0-
groups [17, Theorem 4.1], the center arrow in the following commutative diagram

0 −−−−→ SC∗(X, φ) −−−−→ Ms(γ),{y} −−−−→ A{y} −−−−→ 0∥∥∥ � �
0 −−−−→ SC∗(X, φ) −−−−→ Ms(γ) −−−−→ C∗(X, φ) −−−−→ 0

also induces an isomorphism of the K0-groups. Thus, the Ext class η0

(
s(γ)
)

is given
by the exact sequence:

0→ K1

(
C∗(X, φ)

)
→ K0(Ms(γ),{y})→ K0(A{y})→ 0.

This sequence is obtained by the inductive limit of:

0 −−−−→ K1

(
C∗(X, φ)

)
−−−−→ K0(Ms(γ),n) −−−−→ K0(An) −−−−→ 0∥∥∥ in

� �
0 −−−−→ K1

(
C∗(X, φ)

)
−−−−→ K0(Ms(γ),n+1) −−−−→ K0(An+1) −−−−→ 0

for n = 1, 2, . . . . Since K0(An) is the direct sum of Z, the above exact sequences split.
In each summand of An we fix a minimal projection in C(Pn), and denote by Cn the
set of these projections.
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For each n, one can take a unitary vn in UN
(

C(X),C∗(X, φ)
)

satisfying

vn f v∗n = f ◦ γ−1 for f ∈ C(Pn),

because γ is in the closure of τ [φ]. Let vn(t) be a unitary path in M2

(
C∗(X, φ)

)
such

that

vn(0) =

[
1 0
0 1

]
, vn(1) =

[
vn 0
0 v∗n

]
.

Then

t �→ vn(t)

[
p 0
0 0

]
vn(t)∗

is a well defined projection of M2(Ms(γ),n) for all p ∈ Cn. We define the map ρn :
K0(An)→ K0(Ms(γ),n) by sending [p] to the K0-class of this projection.

Let us denote by∆ the infinitesimal generator of the dual action of T on C∗(X, φ).
∆ is a derivation defined on some dense subalgebra, satisfying

∆
( N∑

k=−N

δk fk

)
= 2πi

N∑
k=−N

kδk fk,

for fk ∈ C(X), −N ≤ k ≤ N [6, Section 5]. When v =
∑N

k=−N δ
k fk is in

UN
(

C(X),C∗(X, φ)
)

, we have

v∗∆(v) = 2πi
N∑

k=−N

k fk,

and the K1 class of the unitary v is given by

1

2πi
µ
(

v∗∆(v)
)
∈ Z.

The following lemma is the main part of the calculation, in which we formulate
the embeddings of the n-th step exact sequence into the n + 1-th step exact sequence,
using the tools of the dynamical system.

Lemma 5.3 Let {pk}l
k=1 ⊂ Cn+1 and q ∈ Cn be projections such that [q] =∑l

k=1 mk[pk] for some mk ∈ N in K0(An+1), and µ an invariant measure. Then we
have

in ◦ ρn([q])−
l∑

k=1

mkρn+1([pk])

=
1

2πi

(
µ
(

v∗n∆(vn)q
)
−

l∑
k=1

mkµ
(

v∗n+1∆(vn+1)pk

))
,

where K1

(
C∗(X, φ)

)
is identified with the integer group.
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Proof We prove the equality only when l = 1 and m1 = 1. One can compute the
general case in the same way. We put p = p1. Then

in ◦ ρn([q])− ρn+1([p])

is represented as the difference of the projections

e(t) = Ad

[
vn(t) 0

0 vn+1(t)

]



q
0

1− p
0






and

f (t) = Ad vn+1(t)

([
1 0
0 0

])
.

The element [vn+1] in K1

(
C∗(X, φ)

)
equals the difference of the projection f and

t �→

[
1 0
0 0

]
.

If q = δk pδ∗k, the projection e is equal to

t �→ u(t)




1
0

0
0


 u(t)∗,

where the unitary u of M4

(
C
(

[0, 1],C∗(X, φ)
))

is

u(t) =

[
vn(t) 0

0 vn+1(t)

]
1 0 0 0
0 1 0 0
0 0 δ∗k 0
0 0 0 1






q 0 1− q 0
0 1 0 0

1− q 0 q 0
0 0 0 1


 .

Let ũ be a unitary of M4(Ms(γ)) such that

ũ(0) =




q 0 (1− q)δk 0
0 1 0 0

1− q 0 qδk 0
0 0 0 1


 .

Then e is equivalent to ũeũ∗ and ũu(0) = 1. By computing the 1-1 entry of ũu(1), we
get the unitary vnq + δkvn+1δ

∗k(1− q). So we have

in ◦ ρn([q])− ρn+1([p]) = [vnq + δkvn+1δ
∗k(1− q)]− [vn+1]

=
1

2πi

(
µ
(

v∗n∆(vn)q
)
− µ
(

v∗n+1∆(vn+1)p
))
.
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We must review the definition of the Ext group. The exact sequence

0→ Z→ R→ R/Z→ 0

is an injective resolution of Z. So we can regard the group Ext
(

K0(X, φ),Z
)

as the

cokernel of the map from Hom
(

K0(X, φ),R
)

to Hom
(

K0(X, φ),R/Z
)

. Let us de-

note by κ the quotient map from Hom
(

K0(X, φ),R/Z
)

to Ext
(

K0(X, φ),Z
)

.

For a homeomorphism γ ∈ C+(φ) ∩ τ [φ], we would like to define an element
Φ(γ) of Hom

(
K0(X, φ),R/Z

)
. Fix an invariant measure µ.

Take a function f ∈ C(X,Z) arbitrarily. Since γ is in the kernel of the mod map,
there exists a function g ∈ C(X,Z) such that

f − f ◦ γ−1 = g − g ◦ φ−1,

and g is determined uniquely up to constant functions. So we put

Φ(γ)([ f ]) = µ(g) + Z.

Lemma 5.4 The map Φ(γ) is well defined and Φ is a homomorphism from C+(φ) ∩
τ [φ] to Hom

(
K0(X, φ),R/Z

)
.

Proof For f ∈ C(X,Z) we have

f − f ◦ φ−1 − ( f − f ◦ φ−1) ◦ γ−1 = f − f ◦ γ−1 − ( f − f ◦ γ−1) ◦ φ−1,

which implies

Φ(γ)([ f − f ◦ φ−1]) = µ( f − f ◦ γ−1) + Z

= 0 + Z.

Therefore Φ(γ) is a well defined homomorphism from K0(X, φ). One can easily
check that Φ is a group homomorphism.

Now we can state the main theorem, which says that the map κ ◦ Φ gives us an
invariant, taking its value in the Ext group, for a homeomorphism which acts on the
K-groups trivially.

Theorem 5.5 When (X, φ) is a Cantor minimal system, η0

(
s(γ)
)

equals κ◦Φ(γ) for

γ ∈ C+(φ) ∩ τ [φ].

Proof To get the element in Hom
(

K0(X, φ),R/Z
)

from the exact sequence

0→ K1

(
C∗(X, φ)

)
→ K0(Ms(γ),{y})→ K0(X, φ)→ 0,

https://doi.org/10.4153/CJM-2001-014-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-014-9


342 Hiroki Matui

we must find a map from K0(Ms(γ),{y}) to R which extends the natural isomorphism

K1

(
C∗(X, φ)

)
∼= Z. For each n the group K0(Ms(γ),n) is isomorphic to

Z⊕
⊕
p∈Cn

Z,

and the generators are [δ] and ρn([p]) (p ∈ Cn). Let us define a homomorphism
from K0(Ms(γ),n) to R by

[δ] �→ 1

ρn([p]) �→
1

2πi
µ
(

v∗n∆(vn)p
)
.

Then by Lemma 5.3, we have a well defined homomorphism from K0(Ms(γ),{y}) to R.

Hence we obtain a map which sends [p] to (2πi)−1µ
(

v∗n∆(vn)p
)

+ Z. We would
like to see that this map agrees with Φ(γ). Since vn is a unitary normalizer of C(X),
there exist projections {pk}k∈Z ⊂ C(X) such that p =

∑
pk, which is actually a finite

sum, and vn pk = δ
k pk for each k. When one puts

gk =



∑k−1

i=0 δ
i pkδ

∗i k > 0

0 k = 0

−
∑−k

i=1 δ
∗i pkδ

i k < 0,

the equation

pk − δ
k pkδ

∗k = gk − δgkδ
∗

holds. Thus, we have

p − p ◦ γ−1 = p − vn pv∗n

=
∑

pk − vn pkv∗n

=
∑

pk − δ
k pkδ

∗k

=
∑

gk − δgkδ
∗,

and µ(gk) = kµ(pk), which implies

Φ(γ)([p]) = µ
(∑

gk

)
+ Z

=
∑

kµ(pk) + Z

=
1

2πi
µ
(

v∗n∆(vn)p
)

+ Z.

This equation holds for every p ∈ Cn, and so we have the conclusion.

In Section 7, we will look at several examples illustrating the range and the kernel
of this invariant.
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6 Computation of OrderExt Classes

In the preceding section, we proved that the automorphism ι(g) for g ∈ U
(

C(X)
)

is approximately inner but its class η0

(
ι(g)
)

is always zero in the Ext group. So we
will consider the OrderExt group, in order to obtain more information about ι(g).
In this section, we will compute the OrderExt classes of automorphisms arising from
dynamical systems and describe them in the context of dynamical systems.

We must remark that in light of Lemma 4.5 we only consider the value of [δ] by
the associated rotation map.

By the remark after Proposition 2.5, γ ∈ T(φ) is decomposed as a product of
σ ∈ τ [φ] and τ ∈ C+(φ)∩ ker(mod). The constant valued function t �→ δ is a lift of
δ in Ms(τ ), which implies that the value of a lift of [δ] by the rotation map associated
with s(γ) is always zero. Thus η̃1

(
s(γ)
)

is trivial for all γ ∈ T(φ), and we cannot get
any information of s(γ) from the OrderExt group.

We would like to consider the case of ι(g) for g ∈ U
(

C(X)
)

. Take a self-adjoint
element h ∈ C(X) such that g = exp 2πih. Then

u : t �→ (exp 2πith)δ

is a unitary lifting of δ in Mι(g). By the definition of the rotation map, we have

Rι(g)([u])(µ) =
1

2πi

∫ 1

0
µ
(

u̇(t)u(t)∗
)

dt

=
1

2πi

∫ 1

0
µ(2πih) dt

= µ(h),

for µ ∈ Mφ.
From this computation, we can determine the kernel of the map from the unitary

group of C(X) to the OrderExt group.

Proposition 6.1 Let (X, φ) be a Cantor minimal system. For a unitary g ∈ C(X), the
following conditions are equivalent:

(i) The automorphism ι(g) is in the kernel of η̃1.
(ii) There exists a self-adjoint element h ∈ C(X) such that g = exp 2πih and µ(h) =

0 for every µ ∈ Mφ.
(iii) The unitary g is asymptotically homotopic to the coboundary subgroup Uφ. That

is there exists a continuous map [0, 1) � t �→ gt ∈ U
(

C(X)
)

such that gt (gt ◦ φ)
goes to g as t goes to one.

Proof (i)⇒ (ii). Suppose g = exp 2πih. By assumption there is f ∈ C(X,Z) which
satisfies

Rι(g)([δ])(µ) = µ( f )
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for all µ ∈ Mφ. Hence we get g = exp 2πi(h− f ) and µ(h− f ) = 0.
(ii)⇒ (i) is trivial.
(ii)⇒ (iii). Using the same argument as in Lemma 5.1, we can find self-adjoint

elements fn ∈ C(X) for n = 1, 2, . . . , satisfying

‖h + ( f − f ◦ φ)‖∞ <
1

n
.

Combining the fn linearly, we obtain a unitary path {gt}t∈[0,1) ⊂ Uφ such that

lim
t→1

gt (gt ◦ φ) = g.

Hence g is asymptotically homotopic to Uφ.
(iii)⇒ (ii). Let {gt}t∈[0,1) be a unitary path in Uφ and gt (gt ◦ φ) → g as t → 1.

We can take a continuous path {ht}t∈[0,1) ⊂ C(X)s.a. such that gt = exp 2πiht . Let f
be a self-adjoint element such that g = exp 2πi f . Then

lim
t→1

exp 2πi(ht − ht ◦ φ) = lim
t→1

gt (gt ◦ φ)

= g = exp 2πi f ,

which implies that there exists h ∈ C(X,Z) such that

lim
t→1

ht − ht ◦ φ = f + h.

Therefore µ( f + h) = 0 for µ ∈ Mφ.

Next, we would like to examine the range of the homomorphism η̃1 ◦ ι from
U
(

C(X)
)

to the OrderExt group.

Lemma 6.2 When (X, φ) is a Cantor minimal system, the natural map from C(X)s.a.

to Aff(Mφ) is surjective. Thus, the map η̃1 ◦ ι is a surjective map.

Proof Let h be a continuous affine function on Mφ. We define

F = {τ ∈ C(X)∗ ; τ ( f ◦ φ) = τ ( f ) for all f ∈ C(X)}.

Since F is the linear span of Mφ, we can extend h to a linear map from F. Moreover
we can see that h is weak-∗ continuous on the unit ball of F. The algebra C(X) is
norm closed in the dual of F. So we have that h is weak-∗ continuous on the whole
of F. By the Hahn-Banach theorem, we can extend h to a weak-∗ continuous map h̃
defined on C(X)∗. Then (h̃ + h̃∗)/2 is the desired element.

From the above lemma we get the following corollary, which is an extension of a
theorem of Kishimoto (Theorem 4.2).
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Theorem 6.3 Let A be a unital simple AT-algebra with real rank zero. Suppose K1(A)
is isomorphic to Z. Then the kernel of η0 ⊕ η1 is HInn(A).

Proof We may assume A is isomorphic to C∗(X, φ) for some Cantor minimal system
(X, φ). Let α ∈ Inn(A) be in the kernel. From the above lemma we can choose a
unitary g ∈ C(X) such as

η̃1

(
ι(g)
)
= η̃1(α)

in OrderExt
(

Z,K0(A)
)

. By Theorem 4.4, ι(g) ◦ α−1 is included in AInn(A). Since
ι(g) is homotopic to the identity, the automorphism α is in HInn(A).

7 Examples

(1) The first example is the odometer system. The reader may refer to Section VIII.4
of [1]. Let {mn}n be a sequence of natural numbers such that mn+1 is a multiple of
mn for each n, and (X, φ) an odometer system of type {mn}n. The dimension group
K0(X, φ) is order isomorphic to a subgroup of Q.

We would like to know the range and the kernel of the group homomorphism
η0 ◦ s from T(φ) to the Ext group. We must remark that the mod map is zero because
the dimension group admits no non-trivial automorphisms.

The space X is a topological abelian group with the unit (0, 0, 0, . . . ) and φ acts by
adding (1, 0, 0, . . . ). Hence every element of the commutant group C+(φ) is obtained
by adding a certain element of X. So we have

X ∼= C+(φ) = {φn ; n ∈ Z}.

Let the homeomorphism γ be the element in the commutant group C+(φ), which
corresponds to (a1, a2, a3, . . . ) in X. When we take the characteristic function f

on the clopen set {(

n︷ ︸︸ ︷
0, 0, . . . , 0, ∗, ∗, . . . )} as the representative of 1/mn in K0(X, φ),

there exists a function

g =
N∑

i=0

f ◦ φ−i,

where N = a1+a2m1+a3m2+· · ·+anmn−1−1, and it satisfies f− f ◦γ−1 = g−g◦φ−1.
We have

µ(g) =
1

mn
(a1 + a2m1 + a3m2 + · · · + anmn−1)

for the unique invariant measure µ. Hence, by Theorem 5.5, η0

(
s(γ)
)

is represented
as the group homomorphism from K0(X, φ) to R/Z sending

1

mn
�→

1

mn
(a1 + a2m1 + a3m2 + · · · + anmn−1) + Z.
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We would like to see that the group Ext
(

K0(X, φ),Z
)

is isomorphic to X/Z, where
the integer group is contained in X as the orbit of the unit by φ. We define a group
homomorphism F from Hom

(
K0(X, φ),R/Z

)
to X/Z in the following way. Let q be

an element of Hom
(

K0(X, φ),R/Z
)

. We can fix real numbers qn for n = 0, 1, 2, . . .
such that q(1/mn) = qn + Z, where m0 equals 1. Then mnqn−q0 is an integer. Hence,
we can define the map F0 from Hom

(
K0(X, φ),R/Z

)
to X by

F0(q) = {mnqn − q0}
∞
n=1,

where X is identified with the projective limit of the group Z/mnZ and each sum-
mand is understood modulo mn. Since

(mn+1qn+1 − q0)− (mnqn − q0) = mn

( mn+1

mn
qn+1 − qn

)
and mn+1qn+1/mn − qn is an integer, the map F0 is well defined. Moreover F0 is
surjective. Let F be the composition of F0 and the quotient map from X to X/Z.
The map F is a well defined group homomorphism and the kernel is exactly the set
of liftable maps from K0(X, φ) to R/Z. Thus, F induces an isomorphism between
Ext
(

K0(X, φ),Z
)

and X/Z.
So we see that η0 ◦ s is a surjective map from C+(φ) to the Ext group, and its kernel

is only {φn ; n ∈ Z}. In this case we have got a topological version of Theorem 4.1.
Let us now consider the extension system. When the supernatural number {mn}n

and a natural number p do not have a common divisor, we can construct a p to one
covering map π : (Y, ψ) → (X, φ) associated with [1] ∈ K0(X, φ)/pK0(X, φ). Then
we can easily see that (Y, ψ) is also an odometer system of type {pmn}n. Of course,
the shift map on Y acts trivially on K0(Y, ψ).

(2) The Denjoy system is another basic example of Cantor minimal systems [18].
Let α ∈ [0, 1] be an irrational number, and consider the irrational rotation Rα on

the circle S1 ∼= R/Z. When Q is a countable Rα-invariant subset of S1 which contains
0, Q can be represented as the disjoint union of at most countably many orbits, say
{Rn

α(γk) = γk + nα ; n ∈ Z} for k = 1, 2, . . . ,K where each γk is in [0, 1], γ1 equals
0 and K may be infinity. We consider the abelian C∗-algebra C(X), inside the set of
Borel functions on S1, which is generated by C(S1) and

{χ[nα,nα+γk) ; n ∈ Z, k = 1, 2, . . . ,K}.

The space X is gotten from the circle by cutting at the points nα + γk for n ∈ Z and
k = 1, 2, . . . ,K. We denote by φ the irrational rotation on the space X. Then the
system (X, φ) becomes a Cantor minimal system, and we call this the Denjoy system
of type (α ; 0, γ2, γ3, . . . , γK). By [18], the dimension group K0(X, φ) is isomorphic
to

Z⊕ Z⊕
K⊕

k=2

Z
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with generators e0, e1, e2, . . . , eK , the unit e0 and µ(e0) = 1, µ(e1) = α, µ(e j) = γ j ,
for j = 2, 3, . . . ,K, where µ is the unique state.

Let π : (X, φ)→ (S1,Rα) be the obvious factor map. If γ ∈ Homeo(X) commutes
with φ, we can choose τ ∈ C+(Rα) such that Rα ◦ π(x) = π ◦ γ(x) for some x ∈ X.
Since (X, φ) is a minimal system, Rα ◦ π = π ◦ γ. Therefore the commutant group
C+(φ) consists of only the rotations, which preserve the points at which the circle is
cut. But the dimension group K0(X, φ) is a direct sum of the integer group, and the
Ext group is zero. So we cannot obtain the invariant for the commutant group in this
case.

Now, we consider the p to one extension system (Y, ψ) of (X, φ) associated with
[1] ∈ K0(X, φ)/pK0(X, φ). The first return map on one sheet of Y gives us the
system which is conjugate to (X, φp). The Cantor minimal system (X, φp) is the
Denjoy system of type (pα ; { jα + γk ; j = 0, 1, . . . , p − 1, k = 1, 2, . . . ,K}). The
dimension group K0(Y, ψ) is order isomorphic to K0(X, φp) with the map sending
the order unit [1] to [p].

Next, we examine the extension (Y, ψ) of (X, φ) associated with e1. The space Y
can be identified with the the union of p circles, and ψ(y) goes to the next circle or
sheet only when y is in the interval [0, α). So we can see the system (Y, ψ) as the
α/p-rotation on one circle with some cuts. Thus, (Y, ψ) is isomorphic to the Denjoy
system of type (α/p ; { j/p + γk/p ; j = 0, 1, . . . , p − 1, k = 1, 2, . . . ,K}). The
K-theory of this system has already been mentioned.

Finally, we would like to compute the K-group of the product system of the Denjoy
system and the odometer system (see Proposition 3.7). Let (X, φ) be the Denjoy
system of type (α ; 0), (Y, ψ) the odometer system of type {mn}n and (Yn, ψn) the
factor system of (Y, ψ) as in Proposition 3.7. We denote by (Zn, ωn) the product
system (X × Yn, φ × ψn), which is the mn to one extension system of (X, φ). By the
preceding paragraph, the dimension group of the system (Zn, ωn) is isomorphic to

K0(X, φmn ) ∼= Z⊕
mn−1⊕
k=0

Z,

with generators [1] and [χ[0,α)], [χ[α,2α)], . . . , [χ[(mn−1)α,mnα)], where these intervals
are understood as clopen sets of X, and the distinguished order unit is mn ⊕ 0. The
inclusion of C∗-algebras C∗(Zn, ωn) ⊂ C∗(Zn+1, ωn+1) induces an injective map from
K0(X, φmn ) to K0(X, φmn+1 ), sending

[1] �→ m[1]

and

[χ[kα,(k+1)α)] �→
m−1∑
j=0

[χ[( jmn+k)α,( jmn+k+1)α)]

for k = 0, 1, . . . ,mn− 1, where m is mn+1/mn. Since C∗(X×Y, φ×ψ) is isomorphic
to the inductive limit C∗-algebra of C∗(Zn, ωn), we can conclude that the dimension
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group K0(X × Y, φ× ψ) is obtained by the inductive limit of K0(X, φmn ). Therefore
it is order isomorphic to

K0(Y, ψ)⊕C(Y,Z)

with the order unit [1]⊕ 0 and a unique state such that

[ f ]⊕ g �→ µ( f ) + αµ(g)

for f , g ∈ C(Y,Z) and a unique invariant measure µ on (Y, ψ).
When the Denjoy system (X, φ) is of type (α ; 0, γ2, . . . , γK), the computation can

be done in the same fashion. The dimension group K0(X × Y, φ× ψ) is isomorphic
to

K0(Y, ψ)⊕C(Y,Z)⊕
K⊕

k=2

C(Y,Z)

with the order unit [1]⊕ 0⊕ 0 and a unique state such that

[ f ]⊕ g ⊕ (gk)K
k=2 �→ µ( f ) + αµ(g) +

K∑
k=2

γkµ(gk)

for functions f , g, g2, . . . , gK ∈ C(Y,Z).

(3)
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Figure 1 Figure 2

We give an example where the map η0 ◦ s is not surjective. We will also see that
the extension systems may not be strong orbit equivalent even if they arise from two
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Cantor minimal systems, which are strong orbit equivalent, and the same elements
of the dimension groups.

Let (X, φ) be the Cantor minimal system associated with Figure 1, where the order
is determined by a < b < c < d and e < g < f < h. Then K0(X, φ) is isomorphic
to Z[1/2]. So (X, φ) is strong orbit equivalent to the odometer system of type 2∞.

When (Z, ω) is the odometer system of type 2∞, we can define the factor map
π : (X, φ)→ (Z, ω) by

a, e �→ 0 b, g �→ 1

c, f �→ 2 d, h �→ 3,

where Z is the infinite product space of {0, 1, 2, 3}. The map π is two to one on the
orbits whose tails consist of 1 and 2, and one to one on the other orbits.

If γ ∈ Homeo(X) commutes with φ, we can choose τ ∈ C+(ω) by the same
argument of Example (2) such that τ ◦ π = π ◦ γ holds. The orbits of ω whose tails
consist of 1 and 2 must be preserved by τ . Hence we conclude that τ is ωn for some
n ∈ Z. The map γ ◦ φn commutes with φ and satisfies π = π ◦ γ ◦ φn. But π is one
to one on some orbits, thus γ ◦ φn must be the identity map. So we have

C+(φ) = {φn ; n ∈ Z},

and in this case η0 ◦ s is the zero map.
We can consider the three to one extension (Y, ψ) of (X, φ) associated with [1] ∈

Z[1/2]/3Z[1/2]. We would like to compute the dimension group K0(Y, ψ).
Let x be the point (h, h, . . . ) in X, the infinite path space, and yi = (i, h, h, . . . )

for i = 0, 1, 2 be the points in Y = {0, 1, 2} × X which are the preimages of x. By
Theorem 4.1 of [17], we get the exact sequence:

0→ Z2 → K0(A{y0,y1,y2})→ K0(Y, ψ)→ 0,

where the integer group is contained in the infinitesimal subgroup of K0(A{y0,y1,y2}).
We would like to write down the Bratteli diagram of A{y0,y1,y2}. We can see that

the clopen set {(2, h, ∗, ∗, . . . )} is transferred by ψ as follows:

(2, h, . . . )← (1, f , . . . )← (0, g, . . . )← (2, e, . . . )← (1, h, . . . ) or (1, d, . . . ),

and the clopen set {(2, d, ∗, ∗, . . . )} is transferred by ψ as follows:

(2, d, . . . )← (1, c, . . . )← (0, b, . . . )← (2, a, . . . )← (1, h, . . . ) or (1, d, . . . ).

We denote these towers by [2, h] and [2, d]. The clopen sets {(1, h, ∗, . . . )},
{(1, d, ∗, . . . )}, {(0, h, ∗, . . . )} and {(0, d, ∗, . . . )} are transferred in a similar way
and their towers are denoted by [1, h], [1, d], [0, h], and [0, d].
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[0, d] [0, h] [1, d] [1, h] [2, d] [2, h]

first step

second step

Figure 3

By these observations, we get part of the Bratteli diagram of the AF-algebra
A{y0,y1,y2} in Figure 3. We won’t write down the complete diagram, because the figure
is too complicated. In the first step the symbol p means the clopen set

{(a, ∗, ∗, . . . )} ∪ {(b, ∗, ∗, . . . )} ∪ {(e, ∗, ∗, . . . )} ∪ {( f , ∗, ∗, . . . )}

in X, and q the complement of p. The numbers 0, 1, 2 represent each sheet, so that
0p means the clopen set

{(0, a, ∗, ∗, . . . )} ∪ {(0, b, ∗, ∗, . . . )} ∪ {(0, e, ∗, ∗, . . . )} ∪ {(0, f , ∗, ∗, . . . )}

in Y , and the others are similar. Then the inclusion from the first step to the second
step is represented by the matrix:

A =




1 1 1 0 0 1
1 1 0 1 1 0
0 1 1 1 1 0
1 0 1 1 0 1
1 0 0 1 1 1
0 1 1 0 1 1


 .

In the third step, the clopen set {(2, h, h, ∗, ∗, . . . )} is transferred by ψ as follows:

[2, h]← [1, d]← [0, h]← [2, d]← (1, h, h, . . . ) or (1, h, d, . . . ),

and the clopen set {(2, d, d, ∗, ∗, . . . )} is transferred as follows:

[2, h]← [1, h]← [0, d]← [2, d]← (1, h, h, . . . ) or (1, h, d, . . . ).

https://doi.org/10.4153/CJM-2001-014-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-014-9


Ext and OrderExt Classes of Certain Automorphisms 351

So the inclusion from the second step to the third step is represented by A, too.
The deeper steps are exactly the same. Hence the dimension group K0(A{y0,y1,y2})
is obtained as the inductive limit of Z6 with the inclusion matrix A in every step.
This dimension group has infinitesimal elements represented by t (1, 1,−1,−1, 0, 0)
and t (0, 0, 1, 1,−1,−1) in the first step, which generates the subgroup Z2. More-
over, t (2,−2,−1, 1,−1, 1) is an eigenvector of A4 with respect to the eigenvalue 9
and the elements of the dimension group represented by these vectors in each step
are infinitesimal elements. Thanks to the exact sequence, we have that the dimen-
sion group K0(Y, ψ) has a non zero infinitesimal subgroup, which implies the system
(Y, ψ) is not strong orbit equivalent to an odometer system. And the shift map acts
on K0(Y, ψ) non trivially. The commutant group C+(ψ) is generated by ψ and the
order three shift map.

Let us consider the Cantor minimal system arising from the ordered Bratteli dia-
gram Figure 2, where the order is induced by a < b < d < e < c and f < i < j <
g < h. The associated dimension group K0(X, φ) is isomorphic to Z[1/5].

By the same argument we can see that the commutant subgroup of φ is trivial.
We can define the two to one covering map π : (Y, ψ) → (X, φ) associated with

[1] ∈ Z[1/5]/2Z[1/5].
In the same way, we have the exact sequence:

0→ Z→ K0(A{y0,y1})→ K0(Y, ψ)→ 0,

where yr for r = 0, 1 are the points (r, c, c, . . . ) in Y . And the Bratteli diagram of the
AF-algebra A{y0,y1} is represented by the matrix:

A =




2 1 1 1
2 1 1 1
1 1 2 1
1 1 2 1


 .

Therefore we see that the infinitesimal subgroup of the ordered group K0(A{y0,y1}) is
isomorphic to Z, and the shift map γ acts on K0(Y, ψ) trivially. So, in this case, the
dimension group K0(Y, ψ) is isomorphic to Z[1/5] with the unit 2. Thus the system
(Y, ψ) is strong orbit equivalent to the odometer system of type 2 · 5∞.

An easy computation shows that the Ext class η0 ◦ s(γ) is a non zero element of
order two.

(4) Finally we give an example of a homeomorphismγ which satisfies η0

(
s(γ)
)
= 0,

but which is not in the topological full group.
Let (X, φ) be the Cantor minimal system represented by the diagram in Figure 4,

where the order is a < b < c < d and e < g < f < h. The dimension group
K0(X, φ) is isomorphic to

G =
{(

n,
l

4m

)
; n, l ∈ Z,m ∈ N, n + l = 0 mod 3

}
,
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with the unit (0, 3) and has a unique trace given by(
n,

l

4m

)
�→

1

3

l

4m
.

We can construct a factor map from (X, φ) to the odometer system of type 2∞

exactly as in Example (3). It is easily seen that the commutant subgroup of φ is
trivial.
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We can construct the two to one covering map π : (Y, ψ) → (X, φ) associated to
the element (−1, 1) ∈ K0(X, φ)/2K0(X, φ). The corresponding Z2-valued cocycle is
not zero on the clopen set

{(d, ∗, . . . )} ∪ {(g, ∗, . . . )} ∪ {(h, ∗, . . . )}.

We have the exact sequence:

0→ Z→ K0(A{y0,y1})→ K0(Y, ψ)→ 0,

where yr for r = 0, 1 are the points (r, h, h, . . . ) in Y = {0, 1} × X. The homeomor-
phism ψ transfers the clopen set {(1, h, ∗, . . . )} as follows:

(1, h, . . . )← (1, f , . . . )← (0, g, . . . )← (0, e, . . . )← (1, h, . . . ) or (1, d, . . . ),

and the clopen set {(1, d, ∗, . . . )} as follows:

(1, d, . . . )← (1, c, . . . )← (1, b, . . . )← (1, a, . . . )← (0, h, . . . ) or (0, d, . . . ).

The clopen sets {(0, h, ∗, . . . )} and {(0, d, ∗, . . . )} are also transferred in a similar
way. When we denote these towers by [1, h], [1, d], [0, h] and [0, d], the clopen set
{(1, h, h, ∗, . . .} goes through:

[1, h]← [1, d]← [0, h]← [0, d]← (1, h, h, ∗, . . . ) or (1, h, d, ∗, . . . ),
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and the clopen set {(1, h, d, ∗, . . . )} goes through:

[1, h]← [1, d]← [0, d]← [1, d]← (0, h, h, ∗, . . . ) or (0, h, d, ∗, . . . ).

From this, we obtain the matrix

A =




2 1 1 0
1 1 1 1
1 0 2 1
1 1 1 1


 ,

which represents the Bratteli diagram of the AF-algebra A{y0,y1}.
Then we can compute the dimension group K0(A{y0,y1}). We have that the gener-

ator of the subgroup Z is represented by the vector t (1, 0,−1, 0), which is invariant
under A, and the order two shift map γ acts trivially. The dimension group K0(Y, ψ)
can be obtained as the quotient K0(A{y0,y1})/Z, and it is order isomorphic to

{(
n,

l

4m

)
; n, l ∈ Z,m ∈ N, n = l mod 3

}
with the order unit (0, 6) and a unique state given by

(
n,

l

4m

)
�→

1

6

l

4m
.

We would like to see that the Ext class η0

(
s(γ)
)

is zero. The group K0(Y, ψ) is
algebraically isomorphic to Z ⊕ Z[1/2], and so it suffices to consider the subgroup
Z[1/2]. We remark that the order unit is expressed by 0 ⊕ 1 ∈ Z ⊕ Z[1/2]. Since
the matrix A has the eigenvalue 4 with an eigenvector t (1, 1, 1, 1), we can choose the
characteristic function f on the clopen set

{(1,

m−1︷ ︸︸ ︷
h, . . . , h, h, ∗, . . . )} ∪ {(1,

m−1︷ ︸︸ ︷
h, . . . , h, d, ∗, . . . )}

∪ {(0, h, . . . , h, h, ∗, . . . )} ∪ {(0, h, . . . , h, d, ∗, . . . )}

as the representative of the element 1/4m ∈ Z[1/2]. These functions are invariant
under γ. Hence f − f ◦ γ−1 = 0, which implies the Ext class η0

(
s(γ)
)

is zero

(Theorem 5.5). The OrderExt class η̃1

(
s(γ)
)

is also zero. Therefore the order two
automorphism s(γ) on C∗(Y, ψ) is asymptotically inner by Theorem 4.4.

8 Problems

In our final section, we would like to present some open problems.

(1) We defined a new invariant for the group T(φ) in Section 5. However, in our
examples, the range of the invariant is trivial except for the case of odometer systems
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or systems that are strong orbit equivalent to odometer systems. Does the invariant
take non-trivial values in the case of a Cantor minimal system which is not strong
orbit equivalent to an odometer system?

(2) In Section 7, we constructed an example where η0

(
s(γ)
)

becomes zero for a
non-trivial element γ of T(φ). But we don’t know why this phenomenon occurs. Can
we find a characterization of the kernel of η0 ◦ s in terms of the dynamical systems?
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