RELATIVIZED WEAK MIXING OF UNCOUNTABLE ORDER

DOUGLAS McMAHON

Introduction. We show that if Y is a metric minimal flow and $\theta: Y \to Z$ in an open homomorphism that has a section (i.e., a RIM), and if $S(\theta) = R(\theta)$, then °Y^Ω contains a dense set of transitive points, where Ω is the first uncountable ordinal

$$Y^{\Omega} = \prod \{ Y: 1 \leq \alpha < \Omega \text{ and } \alpha \text{ not a limit ordinal} \}, \text{ and}$$

$$^{\circ}Y^{\Omega} = \{ y \in Y^{\Omega}: \theta(y_{\alpha}) = \theta(y_{\beta}) \text{ for } 1 \leq \alpha, \beta < \Omega \text{ and } \alpha, \beta \text{ not limit} ordinals} \}$$

 $S(\theta)$ is the relativized equicontinuous structure relation, and

 $R(\theta) = \{ (y_1, y_2) \in Y \times Y : \theta(y_1) = \theta(y_2) \}.$

We use this to generalize a result of Glasner that a metric minimal flow whose enveloping semigroup contains finitely many minimal ideals is PI, [5].

I would like to thank Professor T. S. Wu for making helpful suggestions, and thank the referee for his time and effort.

We use the methods developed in [6] to prove the above. We will use some definitions and notation from [6], [3], [4] and now introduce some further definitions and notations.

Preliminaries. Let (X, T) be a flow (transformation group) with compact Hausdorff phase space. We will write X for both the flow (X, T)and the phase space. If X is point-transitive, let X_m denote the set of transitive points in X; when X is metric, X_m is a dense G_{δ} set. $\phi: X \to Y$ will denote a homomorphism of X onto Y. For a homomorphism ϕ of X onto Y,

$$R_m(\phi) = \{(x, x') \in X_m \times X_m : \phi(x) = \phi(x')\},$$

$$Q_m(\phi) = \{(x, x') \in R_m(\phi) : \text{ there exist nets } t_n \text{ in } T \text{ and}$$

$$(x_n, x_n') \text{ in } R_m(\phi) \text{ such that } (x_n, x_n') \to (x, x') \text{ and}$$

$$(x_n, x_n')t_n \to (x_0, x_0')\} \text{ for any } x_0 \text{ in } x_m.$$

 $S_m(\phi)$ is the smallest closed (in $R_m(\phi)$) invariant equivalence relation containing $Q_m(\phi)$. When X is minimal, the subscript _m is omitted.

Received June 26, 1978 and in revised form December 13, 1978.

We will denote the enveloping semigroup of X by E(X) and the set of idempotents in a minimal right ideal I of E(X) by J(I).

Suppose *Y* is minimal, $\theta: Y \to Z$, and λ is any ordinal. Let

 $Y^{\lambda} = \prod \{ Y: 1 \leq \alpha \leq \lambda \text{ and } \alpha \text{ is not a limit ordinal} \} \}$

and let

$$^{\circ}Y^{\lambda} = \{ y \in Y^{\lambda} : \theta(y_{\alpha}) = \theta(y_{\beta}) \text{ for } 1 \leq \alpha, \beta < \lambda \text{ and} \\ \alpha, \beta \text{ not limit ordinals} \}$$

where y_{α} is the α -coordinate. Define θ^{λ} : ${}^{\circ}Y^{\lambda} \rightarrow Z$ by $\theta^{\lambda}(y) = \theta(y_1)$.

Let M(X) be the set of Borel probability measures on X. For μ in M(X) define μt by $\mu t(A) = \mu(At^{-1})$ for every measureable set A.

A section λ for $\theta: X \to Y$ is a homomorphism $\lambda: Y \to M(X)$ such that $\hat{\phi}(\lambda_y) = \delta_y$ where $\hat{\phi}(\lambda_y)(A) = \lambda_y \phi^{-1}(A)$ for every Borel subset A of Y and δ_y is the point mass at y. (See [4] or [6].)

A homomorphism ϕ form Y onto Z is stongly proximal if for every measure $\mu \in M(X)$ with $\hat{\phi}(\mu) = \delta_y$ for some y in Y, there exists a net t_n in T such that $\lim \mu t_i = \delta_x$ for some x in X.

We say that a minimal flow is *strictly* SPI if there is an ordinal λ and flows $X_{\alpha}, \alpha \leq \lambda$ such that

(i) X_0 is the trivial flow

(ii) for every $\alpha < \lambda$ there exist a homomorphism $\phi_{\alpha}: X_{\alpha+1} \to X_{\alpha}$ which is strongly proximal or almost periodic,

(iii) for a limit ordinal $\alpha \leq \lambda$, $X_{\alpha} = \text{inv} \lim \{X_{\beta}: \beta < \alpha\}$ (iv) $X_{\lambda} = X$.

A minimal flow is an SPI flow if there exist a strictly SPI flow X' and a proximal homomorphism $\phi: X' \to X$.

1. PROPOSITION. Let X and Y be minimal flows. If $\theta: X \to Y$ is proximal, then the set of minimal ideals in E(X) and E(Y) have the same cardinality.

Proof. Let ϕ be the induced semigroup homomorphism from E(X) onto E(Y). We need to show that ϕ is one-to-one. Suppose $I_1 \neq I_2$ are minimal ideals in E(X) with $I = \phi(I_1) = \phi(I_2)$. Let $u \in J_1$ and $u^* \in J_2$ such that $uu^* = u$ where J_1 and J_2 are the idempotents in I_1 and I_2 respectively. Then

 $\phi(u) = \phi(uu^*) = \phi(u)\phi(u^*) = \phi(u^*) \in J,$

the set of idempotents in $I \subseteq E(Y)$. So for every x in X,

$$\theta(xu) = \theta(x)\theta(u) = \theta(x)\theta(u^*) = \theta(xu^*),$$

so xu and xu^* are proximal and therefore $xu = xu^*$ since $xuu^* = xu$. But $xu = xu^*$ implies $u = u^*$ and

 $I_1 = uE(X) = u^*E(X) = I_2,$

a contradiction.

2. PROPOSITION. Let λ be an ordinal. Suppose $\theta: Y \to Z$ is not a proximal extension and $y \in {}^{\circ}Y^{\lambda}$ is a point with dense orbit in ${}^{\circ}Y^{\lambda}$. Then (a) E(Y) has at least $2^{\lambda-1}$ minimal right ideals and (b) there exists a minimal right ideal I such that

 $y_1J(I) \supseteq \{y_{\alpha}: y_{\alpha} \text{ is the } \alpha \text{-coordinate of } y\}.$

Proof. (a) Fix a minimal right ideal $I \subseteq E(Y)$. The set

 $B = \{y_{\alpha}: y_{\alpha} \text{ is the } \alpha \text{-coordinate of } y\}$

is contained in $Y_0 = \theta^{-1}(\theta^{\lambda}(y)) \subseteq Y$. Since θ is not proximal there exist y', y^* in Y_0 such that $y' \neq y^*$ and $y'u = y', y^*u = y^*$ for some u in J(I). Let

 $F = \{ \alpha \colon 2 \leq \alpha \leq \lambda, \alpha \text{ not a limit ordinal} \}$

and let L be a non-empty proper subset of F. Since y is a transitive point, there is an element q in E(Y) such that

$$y_{\alpha}q = y' \text{ if } \alpha \in L,$$

 $y_{\alpha}q = y^* \text{ if } \alpha \in F \setminus L, \text{ and}$
 $y_1q = y^*.$

Let $I_L = qI$. We will now show that $L \to I_L$ is a one-to-one map and thus (a) follows. Indeed if $I_{L_1} = I_{L_2}$ and $f \in L_2 \setminus L_1$ (say) and q_1, q_2 are the associated q's, then $q_1I = q_2I$; so $q_2u = q_2p$ for some p in I and therefore

$$y^* = y^*u = y_1q_2u = y_1q_1p = y^*p$$
 and
 $y' = y'u = y_fq_2u = y_fq_1p = y^*p;$

a contradiction.

(b) Let $p \in E(Y)$ such that $y_{\alpha}p = y_1$ for all α . Let u be an idempotent of some minimal right ideal in E(Y) for which $y_1u = y_1$. Then puE(Y) = Iis a minimal right ideal and $y_{\alpha}pu = y_1u = y_1$ for all α . So for every q in I, $\{y_{\alpha}q\}$ is a singleton. Also for each y_{α} there is a v_{α} in J(I) such that $y_{\alpha}v_{\alpha} = y_{\alpha}$. Therefore $y_{\alpha} = y_1v_{\alpha}$ and $\{y_{\alpha}\} \subseteq y_1J(I)$.

Remark. The assumption that y is a transitive point is stronger than we need.

3. LEMMA. Suppose X and N are point-transitive, metric flows and Z is a common factor. Suppose $\phi: X \to Z$ is an open homomorphism, $\Psi: N \to Z$ has a section μ , and z_0 is an element of Z for which the support of μ_{z_0} equals $N_0 = \Psi^{-1}(z_0)$. Suppose

$$S_m(\phi) \cap X_0 \times X_0 = R_m(\phi) \cap X_0 \times X_0$$
 where $X_0 = \phi^{-1}(z_0)$.

Suppose $X_0 \cap X_m$ is dense in X_0 and $N_0 \cap N_m$ is dense in N_0 . Then for

each $x_0 \in X_0 \cap X_m$, the set

 $D(x_0) = \{n \in N_0: (x_0, n) \text{ has dense orbit in } Z \circ ZN\}$

is a dense G_{δ} subset of N_0 .

Proof. (This proof is similar to that of Lemma 1.10 of [6].) Fix $x_0 \in X_0 \cap X_m$. Note $R_m(\theta)(x_0) = X_0 \cap X_m$, so $S_m(\phi)(x_0) = X_0 \cap X_m$. Let $\{U_i\}, \{V_i\}$ be countable families of open sets in X, N respectively such that the set of $U_i \circ^z V_i$ is a countable base of non-empty sets for the topology on $X \circ^z N$. Fix *i*. Let W be any non-empty, relative open subset of N_0 and

 $N^* = cls ((\{x_0\} \times W)T).$

Then $\{x'\} \times W \subseteq N^*$ for all $x' \in S_m(\phi)(x_0)$ by Corollary 1.4 of [6]. So $(X_0 \cap X_m) \times W \subseteq N^*$. So $X_0 \times W \subseteq N^*$. Now there exists w in W with dense orbit, so for some t in T and x' in X_0 , $(x', w)t \in U_i \times V_i$ since ϕ is open. So $N^* \cap (U_i \times V_i) \neq \emptyset$ and there exists s in T and w' in W such that $(x_0, w')s \in U_i \times V_i$. Now since W was an arbitrary open set in N_0 , the set

 $A_i = \{a \in N_0: (x_0, a)t \in U_i \times V_i \text{ for some } t \text{ in } T\}$

is dense in N_0 , clearly it is open in N_0 . Then $D(x_0) = \bigcap_{i=1}^{\infty} A_i$ is a dense G_{δ} subset of N_0 .

4. THEOREM. Suppose Y is a metric minimal flow, and suppose $\theta: Y \to Z$ is open, has a section, and $S(\theta) = R(\theta)$. Then °Y° contains a dense set D of transitive points, where Ω is the first uncountable ordinal. In addition for each y in Y there exists (y_{α}) in D with $y_1 = y$.

Proof. Let μ be a section for θ . Note that by 3.3 of [3] there exists a residual set of points z_0 in Z such that $Y_0 = \theta^{-1}(z_0)$ equals the support of μ_{z_0} . Fix one such z_0 . Let

 $H\lambda = (\theta^{\lambda})^{-1}(z_0)$ and $K\lambda \subseteq H\lambda$

be the set of points in $H\lambda$ with dense orbit in ${}^{\circ}Y^{\lambda}$. (Note: $H_1 = Y_0$, $H\lambda = Y_0^{\lambda}$).

We are going to wish to apply Lemma 3 with X and N replaced by $^{\circ}Y^{\lambda}$ and Y respectively for every $\lambda < \Omega$ (note that for $\lambda < \Omega$, $^{\circ}Y^{\lambda}$ is metric, also $^{\circ}Y^{\lambda} \rightarrow Z$ has a section). To do this we will need to establish that $K\lambda$ is dense in $H\lambda$ and that

$$S_m(\theta^{\lambda}) \cap H\lambda \times H\lambda = R_m(\theta^{\lambda}) \cap H\lambda \times H\lambda.$$

It is easy to see that $K\lambda$ is dense in $H\lambda$ for finite λ by applying Lemma 3 with X and N replaced by Y and $^{\circ}Y^{\lambda}$ respectively (in reverse of that above).

Now to show $S_m(\theta^{\lambda}) \cap H\lambda \times H\lambda = R_m(\theta^{\lambda}) \cap H\lambda \times H\lambda$ for λ finite, note

$$R(\theta^{\lambda}) \cap H\lambda \times H\lambda = H2\lambda \text{ and} P_m(\theta^{\lambda}) \cap H\lambda \times H\lambda \supseteq K2\lambda$$

and so is dense in $R(\theta^{\lambda}) \cap H\lambda \times H\lambda$ and thus in $R_m(\theta^{\lambda}) \cap H\lambda \times H\lambda$. So clearly

$$S_m(\theta^{\lambda}) \cap H\lambda \times H\lambda = R_m(\theta^{\lambda}) \cap H\lambda \times H\lambda.$$

Now for λ countably infinite we note that once it is shown for the first countably infinite ordinal, ω , that $K\omega$ is dense in $H\omega$, it follows that $K\lambda$ is dense in $H\lambda$ since $H\lambda$ is simply a reordering of components of $H\omega$. Also then it follows that

$$S_m(\theta^{\lambda}) \cap H\lambda \times H\lambda = R_m(\theta^{\lambda}) \cap H\lambda \times H\lambda$$

as above.

Now, to show that $K\omega$ is dense in $H\omega$, let A be any relative open set in $H\omega$, then $A \supseteq \prod_{\alpha < \omega} A_{\alpha}$ where all but finitely many of the A_{α} 's equal Y_0 . Let $\lambda_0 < \omega$ be larger than the last α with $A_{\alpha} \neq Y_0$. Then let

 $y^{\lambda_0} \in K\lambda_0 \cap \prod \{A_{\alpha}: \alpha \leq \lambda_0\}.$

Now apply (3) to $X = {}^{\circ}Y^{\lambda_0}$, N = Y and extend y^{λ_0} to a transitive point y^{λ_0+1} in $H(\lambda_0 + 1)$ with $y_{\alpha}{}^{\lambda_0+1} = y_{\alpha}{}^{\lambda_0}$ for $\alpha \leq y_0$. Continue by extending y^{λ_0+1} to a y^{λ_0+2} , etc. Define y^{ω} by $y_{\lambda}{}^{\omega} = y_{\lambda}{}^{\lambda}$ for $\omega > \lambda \geq \lambda_0$ and $y_{\lambda}{}^{\omega} = y_{\lambda}{}^{\lambda_0}$ for $\lambda < \lambda_0$. Then $y^{\omega} \in A$ and is a transitive point. So $K\omega$ is dense in $H\omega$.

The proof that K^{Ω} is dense in H^{Ω} is similar.

(Note the proof for ω could be simplified by using the notions of topological transitivity and the fact that ${}^{\circ}Y_{0}^{\omega}$ is metric; the above approach is used since it clearly generalizes to the non-metric case of Ω .)

In addition, we see that for each $y \in Y_0$, one can construct a transitive point whose first coordinate is y. Note Y_0 is a fiber that equals the support of the measure of that fiber. To show this is true for all y in Y, we will provide the first two steps of an induction from which it will be clear how one proceeds.

Fix y_0 in Y, let $z_0 = \theta(y_0)$, $Y_0 = \theta^{-1}(z_0)$, and let μ be a section for $\theta: Y \to Z$ and B_z be the support of μ_z . Let W be any relative open subset of B_{z_0} and consider

 $N^* = \operatorname{cls}((\{y_0\} \times W)T).$

Then $\{y\} \times W \subseteq N^*$ for y in Y_0 by Corollary 1.4 of [6] since $S(\theta) = R(\theta)$. Continuing as in the proof of Lemma 3 we see that there exists a dense G_{δ} set of points y in B_{z_0} for which (y_0, y) is a transitive point in °Y².

Now consider a transitive point (y_0, y_0') in $^{\circ}Y^2$ and let W be a relative

open subset of B_{z_0} . Consider

 $N^* = cls((\{(y_0, y_0')\} \times W)T).$

Then $\{(y, y')\} \times W \subseteq N^*$ for every transitive point (y, y') in $Y_0 \times Y_0$ by Corollary 1.4 of [6] since (y, y', y_0, y_0') is in the orbit closure of a transitive point in $^{\circ}Y^4$ (the existence of which we showed in Theorem 4), and thus in $S_m(\theta)$. So

 $(Y_0 \times B_{z_0}) \times W \subseteq N^*.$

In particular,

 $(B_{z_0} \times B_{z_0}) \times \{W\} \subseteq N^*$ for w in W.

Let $Y^* \in Y, z^* = \theta(y^*)$, then we see that Proposition 2.2 of [6] implies

 $B_{z^*} \times B_{z^*} \times \{y^*\} \subseteq N^*.$

Now by choosing z^* such that $B_{z^*} = \theta^{-1}(z^*)$ and using the openness of θ we see that $(Y \circ Y) \circ Y \subseteq N^*$. Then by proceeding as in the proof of Lemma 3 we see that there exists a dense G_{δ} subset of points y in B_z such that (y_0, y_0', y) is a transitive point in °Y³. Continuing in this manner we can extend y_0 to a transitive point in °Y⁹.

5. LEMMA. Let X, Y, Z be minimal sets. Suppose $\phi: X \to Z$ has a section μ and $\theta: Y \to Z$ is strongly proximal. Let W be a minimal subset of $X \circ {}^{Z}Y$ and π_1, π_2 be the projections of W onto X, Y respectively. Then π_2 has a section λ_y such that $\lambda_y = \mu_{\theta(y)} \times \delta_y$ on W.

Proof. Fix any z_0 in Z. Let ν be a Borel probability measure on W such that $\hat{\pi}_1(\nu) = \mu_{z_0}$ (at least one exists). Now $\hat{\pi}_2(\nu)$ is a measure on Y with $\hat{\theta}(\hat{\pi}_2(\nu)) = \delta_{z_0}$, so for some y in Y (and thus every y in Y) there is a net t_n in T such that

 $\lim \hat{\pi}_2(\nu)t_n = \delta_{\nu}.$

We may assume $\lambda = \lim \nu t_n$ exists. Clearly

 $\theta(y) = \lim z_0 t_n.$

Also

 $\lim \hat{\pi}_{1}(\nu)t_{n} = \lim \mu_{z_{0}}t_{n} = \lim \mu_{z_{0}}t_{n} = \mu_{\theta(y)}.$

If $y \in B$,

$$\lambda((A \times B) \cap W) = \lambda([(A \times Y) \cap W] \cap [(X \times B) \cap W])$$

= $\lambda[A \times Y) \cap W] + \lambda[(X \times B) \cap W] - \lambda([(A \times Y) \cap W])$
 $\cup [(X \times B) \cap W]) = \mu_{\theta(y)}(A)$ since
 $\lambda[(X \times B) \cap W] = \delta_{y}(B) = 1$ and $\gamma[(A \times Y) \cap W] = \mu_{\theta(y)}(A)$.

If $y \notin B$, $\lambda((A \times B) \cap W) \leq \lambda((X \times B) \cap W) = \delta_y(B) = 0$; so $\lambda((A \times B) \cap W) = \mu_{\theta(y)}(A) \cdot \delta_y(B).$

So we see $\lambda = \mu_{\theta(y)} \times \delta_y$ restricted to W. Note that therefore

supp $\mu_{\theta(Y)} \times \{y\} \subseteq W$

since $\lambda(W) = 1$.

SPI STRUCTURE THEOREM. For any minimal flow X there exist minimal flows Y and Z and homomorphisms $\theta: Y \to Z$, $\phi: Y \to X$ such that Z is strictly SPI, ϕ is strongly proximal, θ is open and has a section, and $S(\theta) = R(\theta)$. If X is metric, then there exist Y and Z that are metric.

Proof. The theorem without the statement that θ is open follows easily from 4.1 of [4]. That one could require θ to be open was noted in [2] and follows easily from Lemma 5 above and from Theorem 3.1 of [7] in the metric case; in the nonmetric case see [1].

6. THEOREM. If in the SPI structure theorem with X metric, θ is not proximal, then there exists at least 2^{α} minimal right ideals in the enveloping semigroup of X.

Proof. This follows easily from the Theorem 4, Proposition 2 and Proposition 1.

7. COROLLARY. Let X be a metric minimal flow. If E(X) has less than 2° minimal ideals, then X is PI.

8. THEOREM. If X is a metric minimal flow that is not an SPI flow, then for every x in X and every minimal right ideal in E(X), the set xJ(I) is uncountable.

Proof. Let Y, Z, θ , and ϕ be as in the SPI structure theorem. Start with any y in Y and any minimal right ideal I and take a ν_1 in J = J(I)for which $y\nu_1 = y$. By Lemma 1.8 of [6], there is a point y_2 such that (y, y_2) is a transitive point in $Y \circ {}^{Z}Y$. Let $\nu_2 \in J$ with $y_2\nu_2 = y_2$. Then by taking intersections, there is a point y_3 such that (y, y_3) and $(y\nu_2, y_3)$ are transitive points in $Y \circ {}^{Z}Y$. Continuing we see there is an uncountable set $\{y_{\alpha}: \alpha < \Omega\}$ such that $(y\nu_{\alpha}, y_{\beta})$ in a transitive point in $Y \circ {}^{Z}Y$, where $\nu_{\alpha} \in J$ with $y_{\alpha}\nu_{\alpha} = y_{\alpha}$. Now we wish to show that the $\phi(y\nu_{\alpha})$'s are all distinct. Suppose not, suppose $\phi(y\nu_{\alpha}) = \phi(y\nu_{\beta})$ for some $\alpha < \beta$. Since $(y\nu_{\sigma}, y_{\beta})$ is a transitive point there is a p in E(Y) for which $y\nu_{\alpha}p = y_{\beta}p$ and so

$$\phi(y_{\beta}p) = \phi(y_{\nu_{\alpha}}p) = \phi(y_{\nu_{\beta}}p).$$

But $y_{\beta\nu} = y_{\beta}$, so we must have that $y_{\nu\beta} = y_{\beta}$, in which case we have a

transitive point $(y_{\nu_{\alpha}}, y_{\beta})$ in $Y \circ {}^{z}Y$ with $\phi(y_{\nu_{\alpha}}) = \phi(y_{\beta})$. So $R(\theta) \subseteq R(\phi)$ and so X is a factor of Z; that is X is an SPI flow, a contradiction.

9. COROLLARY. If X is a metric minimal flow and if xJ(I) is countable for some x in X and minimal right ideal I in E(X), then X is an SPI flow.

References

- 1. J. Anslander and S. Glasner, *Distal and highly proximal extensions of minimal flows*, Preprint, U. of Maryland, Technical Report (1976).
- 2. H. Furstenberg and S. Glasner, On the existence of isometric extensions, preprint.
- S. Glasner, Proximal flows, Lecture Notes in Math. 517 (Springer-Verlag, New York, 1976).
- 4. Relatively invariant measures, Pacific J. Math. 58 (1975), 393-410.
- 5. A metric minimal flow whose enveloping semigroup contains finitely many minimal ideals is PI, Israel J. of Math. 22 (1975), 87–92.
- 6. D. McMahon, Relativized weak disjointness and relatively invariant measures, Trans. AMS 236 (1978), 225–237.
- 7. W. A. Veech, Point-distal flows, Amer. J. Math. 92 (1970), 205-242.

Arizona State University, Tempe, Arizona