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RELATIVIZED WEAK MIXING OF UNCOUNTABLE 
ORDER 

DOUGLAS McMAHON 

Introduction. We show that if F is a metric minimal flow and 6:Y-^Z 
in an open homomorphism that has a section (i.e., a RIM), and if 
S(6) = R(6), then °Ff i contains a dense set of transitive points, where £2 
is the first uncountable ordinal 

Ffi = I1{F:1 S et < 12 and a not a limit ordinal}, and 

° F f i = {y £ Y°:d(ya) = d(y0) for 1 ^ a, 0 < Q and ct, 0 not limit 
ordinals}, 

S(6) is the relativized equicontinuous structure relation, and 

R(e) = {(yi,y2) e YX Y:e(yi) =e(y2)\. 

We use this to generalize a result of Glasner that a metric minimal flow 
whose enveloping semigroup contains finitely many minimal ideals is 
PI, [5]. 

I would like to thank Professor T. S. Wu for making helpful sugges
tions, and thank the referee for his time and effort. 

We use the methods developed in [6] to prove the above. We will use 
some definitions and notation from [6], [3], [4] and now introduce some 
further definitions and notations. 

Preliminaries. Let (X, T) be a flow (transformation group) with 
compact Hausdorff phase space. We will write X for both the flow (X} T) 
and the phase space. If X is point-transitive, let Xm denote the set of 
transitive points in X; when X is metric, Xm is a dense G& set. <i>\X —» Y 
will denote a homomorphism of X onto Y. For a homomorphism <j> of X 
onto F, 

{(x,xr) Ç Xm XXm:ct>(x) = 0(x')}, 

{(x, x') Ç Rm(<l>): there exist nets /w in T and 

(xnf Xn) in Rm(<t)) such that (xn, x'w) —> (x, x') and 

(xn, xn')tn —> (x0, Xo')} for any x0 in xm. 

Sm(<t>) is the smallest closed (in Rm(<j>)) invariant equivalence relation 
containing Qm(<t>). When X is minimal, the subscript m is omitted. 
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We will denote the enveloping semigroup of X by E(X) and the set 
of idempotents in a minimal right ideal I of E(X) by / ( / ) . 

Suppose F is minimal, 0: F —> Z, and X is any ordinal. Let 

Fx = Il{ F: 1 S ot ^ X and a is not a limit ordinal)} 

and let 

°yx = [y ç. Y\ 6{ya) = 0(3^) for 1 ^ a, /3 < X and 
a, £ not limit ordinals} 

where ya is the a-coordinate. Define 0X: °FX —> Z by 0x(j) = 0(^i). 
Let AT(X) be the set of Borel probability measures on X. For n in 

M(X) define lit by /^G4) = V>(At~l) for every measureable set A. 
A section X for 0:X —> F is a homomorphism X: F —> ikf(X) such that 

0(\j,) = by where $(Xy)(A) = \y<l>~l(A) for every Borel subset A of F 
and ^ is the point mass at y. (See [4] or [6].) 

A homomorphism <j> form F onto Z is stongly proximal if for every 
measure M 6 M(X) with 0(M) = 5̂  for some y in F, there exists a net 
tn in 7̂  such that lim \xti = ĉ  for some x in X. 

We say that a minimal flow is strictly SPI if there is an ordinal X and 
flows Xa,a g X such that 

(i) X0 is the trivial flow 
(ii) for every a < X there exist a homomorphism # a :X a + i —» Xa which 

is strongly proximal or almost periodic, 
(iii) for a limit ordinal a ^ X, Xa = inv lim {Xp'.ft < a] 
(iv) Xx = X. 
A minimal flow is an SPI flow if there exist a strictly SPI flow X' and 

a proximal homomorphism <j>:X' —* X. 

1. PROPOSITION. Let X and Y be minimal flows. Ifd'.X —» Y is proximal, 
then the set of minimal ideals in E(X) and E(Y) have the same cardinality. 

Proof. Let <t> be the induced semigroup homomorphism from E(X) onto 
E(Y). We need to show that </> is one-to-one. Suppose 7i ^ 12 are minimal 
ideals in E(X) with 7 = #(A) = #(^2). Let w Ç J\ and w* Ç 72 such 
that uu* = u where J\ and J 2 are the idempotents in i \ and 72 respec
tively. Then 

</>(w) = <l>(uu*) = <t>(u)<j)(u*) = 0(w*) G / , 

the set of idempotents in / ÇZ E{Y). So for every x in X, 

0(*w) = 6(x)6(u) = 0(x)0(>*) = 0(xw*), 

so x^ and xw* are proximal and therefore xu = xu* since xww* = xu. 
But xw = xu* implies u = u* and 

Ji = uE(X) = w*£(X) = J2f 

a contradiction. 
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2. PROPOSITION. Let X be an ordinal. Suppose 0: F —> Z is not a proximal 
extension and y Ç °YX is a point with dense orbit in ° F \ Then (a) E{ Y) has 
at least 2X_1 minimal right ideals and (b) there exists a minimal right ideal 
I such that 

y\J(I) 2 {ja- ya is the a-coordinate of y}. 

Proof, (a) Fix a minimal right ideal I ÇI E(Y). The set 

B — {ya: ya is the «-coordinate of y) 

is contained in F0 = 0~l(0x(y)) Q Y. Since S is not proximal there exist 
y', y* in F0 such that y' 7e y* and y'u = y', y*u = y* for some u in / ( / ) . 
Let 

F = {a: 2 ^ a: ^ X, a: not a limit ordinal} 

and let L be a non-empty proper subset of F. Since y is a transitive point, 
there is an element q in £ ( F ) such that 

yaq = y if a G L, 

:y«# = y* if « ^ F\L, and 

yi? = ?*. 

Let IL = #7. We will now show that L —» 7^ is a one-to-one map and thus 
(a) follows. Indeed if 7Ll = IL2 and / G Z^Va (say) and qu q2 are the 
associated g's, then qil = q2T, so ^ = qip for some p in I and therefore 

y* = y w = yxq2u — y\q\p = 3>*£ and 

y' = y'u = yfq2u = yfqxp = y*p; 

a contradiction. 
(b) Let p £ E(Y) such that yap = 3/1 for all a. Let w be an idempotent 

of some minimal right ideal in E{ Y) for which yxu = yx. Then puE{ Y) = I 
is a minimal right ideal and yapu = yiw = y\ for all a. So for every q in 
Z, {̂ aSÎ is a singleton. Also for each ;ya there is a y« in / ( / ) such that 
yava = ya. Therefore ya = yi«;a and {ya} C yiJ{I). 

Remark. The assumption that y is a transitive point is stronger than 
we need. 

3. LEMMA. Suppose X and N are point-transitive, metric flows and Z is a 
common factor. Suppose 4>\X —• Z is an open homomorphism, y.N—>Z 
has a section JU, and z0 is an element of Z for which the support of nzo equals 
No = V-^Zo). Suppose 

Sm(<l>) C\ X0 X X0 = Rm(<f>) H I o X l o where X0 = 4>~l(z0). 

Suppose Xo r\ Xm is dense in X0 and N0 f^ Nm is dense in N0. Then for 
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each Xo G XQ C\ Xm, the set 

D(xo) = \n £ No: (x0, n) has dense orbit in Z o ZN\ 

is a dense G s subset of No. 

Proof. (This proof is similar to that of Lemma 1.10 of [6].) Fix 
xo G Xo Pi Xm. Note Rm(0)(xo) = X0 H Xm, so 5m(0)(xo) = X0 H Xw. 
Let { £/*}, { F,} be countable families of open sets in X, N respectively 
such that the set of Ui ozVi is a countable base of non-empty sets for the 
topology on X ozN. Fix i. Let W be any non-empty, relative open subset 
of No and 

iv* = cis (({xo} x wor). 

Then {x'\ XWQN* for all s ' G Sw(«)(*<>) by Corollary 1.4 of [6]. 
So (ZQ n i J X l F Ç N*. SoXoXWQ N*. Now there exists w'mW 
with dense orbit, so for some tin T and x' in X0, (#', u>)£ G Z7̂  X F* since 
0 is open. So iV* C\ ( £7* X F*) 5̂  0 and there exists 5 in T and «/ in W 
such that (x0, w')s G t/f X F?-. Now since IF was an arbitrary open set 
in iVo, the set 

Ai = {a G 7V0: (x0, a)/ G t / j X Fi for some / in T\ 

is dense in iVo, clearly it is open in No. Then D(xo) = r\f A t is a dense 
GÔ subset of iVo. 

4. THEOREM. Suppose Y is a metric minimal flow, and suppose 
d:Y—>Z is open, has a section, and S(6) = R(0). Then °F° contains a 
dense set D of transitive points, where 12 is the first uncountable ordinal. In 
addition for each y in Y there exists (ya) in D with yi = y. 

Proof. Let /x be a section for 6. Note that by 3.3 of [3] there exists a 
residual set of points z0 in Z such that Y0 = 6~~1(zo) equals the support 
of jjLZ0. Fix one such z0. Let 

HX = (d^-^zo) and KX C HX 

be the set of points in HX with dense orbit in °FX. (Note: Hi = F0, 
HX = F0

X). 
We are going to wish to apply Lemma 3 with X and N replaced by 

°FX and Y respectively for every X < 12 (note that for X < 12, °FX is 
metric, also °FX —» Z has a section). To do this we will need to establish 
that KX is dense in HX and that 

sm(ex) r\Hxx HX = Rm(e*) r\Hxx HX. 

It is easy to see that KX is dense in HX for finite X by applying Lemma 3 
with X and N replaced by Y and ° Fx respectively (in reverse of that 
above). 
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Now to show Sm(6x) C\HXX H\ = Rm(0x) C\ HX X HX for X finite, 
note 

R(6X) r\H\X HX = H2X and 
Pm(Ox)r\H\ X HX ^K2X 

and so is dense in R(6X) C\ HX X HX and thus in Rm(6x) C\ HX X HX. So 
clearly 

sm(ex) r\mx m = Rm(ex) nmx HX. 
Now for X countably infinite we note that once it is shown for the first 

countably infinite ordinal, co, that Ku is dense in Ha>, it follows that KX 
is dense in HX since HX is simply a reordering of components of Hœ. Also 
then it follows that 

sm(0x) r\H\x HX = Rm(ex) nmx HX 
as above. 

Now, to show that Koo is dense in Hoo, let A be any relative open set in 
Hœ, then A 2rL*<co^4a where all but finitely many of the Aa's equal F0. 
Let X0 < co be larger than the last a with Aa 9^ Fo. Then let 

yo e Kx0nU{Aa:a ^ x0}. 
Now apply (3) to X = ° FXo, iV = F and extend 3>Xo to a transitive point 
ŷXo+i m ^(X0 + 1) with ya

Xo+1 = 3>a
Xo for a ^ 3>0. Continue by extending 

y\o+i -̂0 a ^xo+2^ e t c Defin e y* ^y ^ = yx\ for co > X ̂  X0 and y^ = y\Xo 

for X < X0. Then yœ £ A and is a transitive point. So Kœ is dense in Ho). 
The proof that Xs2 is dense in HQ is similar. 

(Note the proof for co could be simplified by using the notions of 
topological transitivity and the fact that °Y" is metric; the above 
approach is used since it clearly generalizes to the non-metric case of 
Î2.) 

In addition, we see that for each y 6 F0, one can construct a transitive 
point whose first coordinate is y. Note F0 is a fiber that equals the support 
of the measure of that fiber. To show this is true for all y in F, we will 
provide the first two steps of an induction from which it will be clear how 
one proceeds. 

Fix 3/0 in F, let z0 = 0(yo), F0 = 0_1(so), and let /i be a section for 
6: Y —> Z and Bz be the support of /x2. Let W be any relative open subset 
of BZQ and consider 

TV* = cls(({;yo} X W)T). 

Then \y\ X W C iV* for y in F0 by Corollary 1.4 of [6] since S(0) = 
R(6). Continuing as in the proof of Lemma 3 we see that there exists a 
dense GÔ set of points y in BZQ for which (y0, y) is a transitive point in ° F2. 

Now consider a transitive point (y0, yo') in °F2 and let PF be a relative 

https://doi.org/10.4153/CJM-1980-042-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-042-4


564 DOUGLAS MCMAHON 

open subset of BZQ. Consider 

TV* = cls(({(^o,V)} X W)T). 

Then {(y, y')} X W C TV* for every transitive point (y, yf) in F0 X F0 

by Corollary 1.4 of [6] since (y, y', y0, yo') is in the orbit closure of a 
transitive point in ° F4 (the existence of which we showed in Theorem 4), 
and thus in Sm(6). So 

(Fo XBZ0) XWQN*. 

In particular, 

(Bzo X £20) X {W} C TV* for w in IF. 

Let F* £ F, 2* = 0(;y*), then we see that Proposition 2.2 of [6] implies 

Bz* X Bz* X {y*} Ç TV*. 

Now by choosing 2* such that Bz* = #-1(z*) and using the openness of 
6 we see that ( F o F) o F Ç TV*. Then by proceeding as in the proof of 
Lemma 3 we see that there exists a dense G0 subset of points y in Bz such 
that (yo,yo',y) is a transitive point in °F3 . Continuing in this manner 
we can extend y0 to a transitive point in ° Ffi. 

5. LEMMA. Le£ X, F, Z &£ minimal sets. Suppose <t>\X —•» Z /zas a section 
n and 6: Y —* Z is strongly proximal. Let W he a minimal subset of X o ZY 
and 7Ti, 7T2 &£ the projections of W onto X, Y respectively. Then W2 has a 
section \y such that \y = fie(y) X ôy on W. 

Proof. Fix any z0 in Z. Let i^bea Borel probability measure on W such 
that TT\(V) = IJLZ(S (at least one exists). Now TT<L(V) is a measure on F with 
0(^2 00) = ôzo, so for some 3; in F (and thus every y in F) there is a net 
/n in r such that 

Hm TT2(v)tn
 = ay 

We may assume X = lim vtn exists. Clearly 

6(y) = \im z0tn. 

Also 

lim7Ti(^)/n = lim nzotn = Hm/izotn = Mec»)-

Ify € B, 

x(04 x 5) n IF) = x([04 x Y).r\ w] n [(x x B) r\ w\) 
= x[̂  x Y)nw] + x[(x x s) n w] - x([(A X F ) H ^ ] 
U [(X XB)n W]) = ne{y)(A) since 

\[(X XB)nW] = SV(B) = 1 and y[(4 X F) H W] = /ia(*>(4). 
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If y g B,\((A XB)f>iW) ^ X((Z XB)C\W) = ôy(B) = 0; so 

\((A XB)r\W) = my)(A)-bv(B). 

So we see X = new X ôy restricted to W. Note that therefore 

supp new X {y} QW 

since X(IF) = 1. 

SPI STRUCTURE THEOREM. For any minimal flow X there exist minimal 
flows Y and Z and homomorphisms d:Y—> Z, 4>:Y-^X such that Z is 
strictly SPI, <f> is strongly proximal, 6 is open and has a section, and 
S(6) = R(6). If X is metric, then there exist Y and Z that are metric. 

Proof. The theorem without the statement that 6 is open follows easily 
from 4.1 of [4]. That one could require 6 to be open was noted in [2] 
and follows easily from Lemma 5 above and from Theorem 3.1 of [7] in 
the metric case; in the nonmetric case see [1]. 

6. THEOREM. If in the SPI structure theorem with X metric, 6 is not 
proximal, then there exists at least 2fi minimal right ideals in the enveloping 
semigroup of X. 

Proof. This follows easily from the Theorem 4, Proposition 2 and 
Proposition 1. 

7. COROLLARY. Let X be a metric minimal flow. If E(X) has less than 
2" minimal ideals, then X is PI. 

8. THEOREM. If X is a metric minimal flow that is not an SPI flow, then 
for every x in X and every minimal right ideal in E(X), the set xJ(I) is 
uncountable. 

Proof. Let Y, Z, 6, and <£ be as in the SPI structure theorem. Start 
with any y in Y and any minimal right ideal / and take a v\ in / = / ( / ) 
for which yv\ = y. By Lemma 1.8 of [6], there is a point y2 such that 
(y, y2) is a transitive point in Y o ZY. Let v2 G J with y2v2 = y2. Then by 
taking intersections, there is a point 3/3 such that (y, y%) and (yv2, y3) are 
transitive points in Y ozY. Continuing wre see there is an uncountable 
set {ya: a < 12} such that (ypa, y$) in a transitive point in Y o ZY, where 
va ^ J with yava = ya. Now we wish to show that the <i>{yvay$ are all 
distinct. Suppose not, suppose <j>(yva) — <l>{yvp) for some a < 0. Since 
(yvo, y$) is a transitive point there is a p in E(Y) for which yvap = y$p 
and so 

<KyeP) = <t>(yv«P) = 4>(yv$P)-

But y$v =.yp, so we must have that yv& = yp, in which case we have a 
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transitive point (yva, yp) in Y o ZY with <t>(yva) = <j>(y^).So R(6) Q R(4>) 
and so X is a factor of Z; that is X is an SPI flow, a contradiction. 

9. COROLLARY. If X is a metric minimal flow and if xJ(I) is countable 
for some x in X and minimal right ideal I in E(X), then X is an SPI flow. 

REFERENCES 

1. J. Anslander and S. Glasner, Distal and highly proximal extensions of minimal flows, 
Preprint, U. of Maryland, Technical Report (1976). 

2. H. Furstenberg and S. Glasner, On the existence of isometric extensions, preprint. 
3. S. Glasner, Proximal flows, Lecture Notes in Math. 517 (Springer-Verlag, New York, 

1976). 
4# Relatively invariant measures, Pacific J. Math. 58 (1975), 393-410. 
5. A metric minimal flow whose enveloping semigroup contains finitely many 

minimal ideals is PI, Israel J. of Math. 22 (1975), 87-92. 
6. D. McMahon, Relativized weak disjointness and relatively invariant measures, Trans. 

AMS 236 (1978), 225-237. 
7. W. A. Veech, Point-distal flows, Amer. J. Math. 92 (1970), 205-242. 

Arizona State University, 
Tempe, Arizona 

https://doi.org/10.4153/CJM-1980-042-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-042-4

