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SYMMETRIC GEODESICS ON CONFORMAL COMPACTIFICATIONS
OF EUCLIDEAN JORDAN ALGEBRAS

SANG YOUL LEE, YONGDO LIM AND CHAN-YOUNG PARK

In this article we define symmetric geodesies on conformal compactifications of Eu-
clidean Jordan algebras and classify symmetric geodesies for the Euclidean Jordan
algebra of all n x n symmetric real matrices. Furthermore, we show that the closed
geodesies for the Euclidean Jordan algebra of all 2 x 2 symmetric real matrices are
realised as the torus knots in the Shilov boundary of a Lie ball.

1. INTRODUCTION AND PRELIMINARIES

A commutative algebra V over field R or C with product xy is said to be a Jordan
algebra if for all elements x,y in V, x(x2y) = x2(xy). For x € V, let L(x) be the linear
map of V defined by L(x)y — xy, and let P(x) = 2L(x)2 - L(x2). A finite dimensional
real Jordan algebra V is called a Euclidean Jordan algebra if it admits an inner product
(x | y) such that (xy | z) = (y \ xz). Let V be a Euclidean Jordan algebra with
identity e and let Q be the set of squares, and let fl be the interior of Q. Then Q. is a
self-dual cone and the group G(fi) := {g € GL(V) \ gfi, = Q} acts on it transitively.
The tube domain TQ := V + iQ, associated with Q, is a symmetric tube domain which is
biholomorphically isomorphic to a bounded symmetric domain via a Cayley transform.
The Lie group G(Tn) of all biholomorphic automorphisms on the tube domain Tn can
be described in the following way: an element in G(Q.) acts on the tube domain Tn by
9(z) — 9ix) + w(y): z = x + iy. For x € V, the translation by x, tx : z H-> Z + x is a
holomorphic automorphism of Tn and the group N+ of all real translations is an Abelian
group isomorphic to the vector space V. The map j : z H» -z~l, the symmetry at ie,
belongs to G{Tn). Let tx - j o tx o j , N~ = j o N+ o j . Then G(Tn) is generated by
N+,G{V.) and j [4].

Let n* be the Lie algebra of N± and let h be the Lie algebra of G(£l). Then the Lie
algebra g(Tn) of G(Tn) can be identified with n+ + h + n~ in the following way:
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Let gt be a one-parameter subgroup of G(Tn). Then

defines a vector field on TQ and the set of vector fields obtained in this way is a real Lie
subalgebra for the usual Lie bracket. We can write Xf(z) = Df(z)(X(z)), where, for
each z, X{z) is a vector in Vc = V+iV. Then the Lie algebra of G(Tn) is the set of vector
fields of the form X(z) - u + Tz + P(z)v, where u,v G V and T G h [4, Theorem X.5.10].
Note that the vector field X(z) = P(z)v corresponds to the one-parameter subgroup ttv

in TV- [4]. A vector field X in g(Tn), X(z) = u + Tz + P(z)v, can be identified with
(u, T, v) G V x (j x V. Then

n+ = {(u,O,0) | u e V } e V,

n" = {(0,0,i;) | v€ V} ^ V.

It is known [9] that g(Tn) is a symmetric algebra of Cayley type. Hence

{X,h,Y) G n+ x G(fi) x n~ H4 (expX)h(expY) G N+G(n)N~

is a diffeomorphism and N+G(Cl)N~ is a dense open subset in G(Tn). Set P = G(Q)N~.
Then P is a maximal parabolic subgroup of G(TQ) and the homogeneous space M :=
G(T(i)/P is a compact real manifold containing V as an open dense subset, that is, a real
conformal compactification of the Jordan algebra V. The embedding V -> A-f is given
by i H> fTP. Furthermore, the set N+G(Q)N~ can be characterised by the elements
g € G(TQ) such that 5 • 0 £ V, where 0 is the base point P corresponding to the zero
vector in V [3, 7].

For X 6 fl(Tn), we assign f(X) G (0, oo] as follows: if the solution x(t) of the
system x'(t) = X(x(t)) with the initial value x(0) - 0 stays in V for all t G K+, then
/(X) = oo. Otherwise, f{X) is the first positive time reaching the boundary dV C Ai.
In this case the solution x(t) is given by exp tX • 0. One way to evaluate f{X) using
the fact that g • 0 G V if and only if 5 G N+G(Q.)N~ is to decompose the exponential
exp tX into N+G(Q)N~. Some explicit formulae for the factorisation of exp X for certain
X € q := n+ + n~ were given in [6, 7, 10].

Let Conc(n)(q) be the set of closed, generating convex cones in q which are invariant
under the adjoint action of G(Q). Then (see [8, 5]) ConG(n)(q) = {Cp, -Cp,Ct, -Ct},
where Cv = {(u,0,-v) € g{Tn) \ u,v € U},Ct = {(u,0,v) € g(Tn) | u,v € H} . It turns
out [8, 9] that the wedge h + Cp (respectively, h - Cp ) is a Lie wedge of the compression
semigroup of fi (respectively, —Q) with a triple factorisation in N+G(Q)N~. Hence for
A'e ( l j±Cp), /(*) = 00.

To complete a semisimple Jordan algebra V of classical type to a symmetric space,
Makarevic [11] used the term of geodesies in V that originate at the zero point. In
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a Euclidean Jordan algebra V, these geodesies are eventually of the form a(t,a) :=

exptXa • 0, where Xa = (a, 0, a) € q. Our main interest is in these geodesies and,

in particular, in closed geodesies invariant for the symmetry j , which are said to be

symmetric geodesies.

In this paper we shall confine ourselves to the Jordan algebra V = Sym(n, R) of

n x n real symmetric matrices. An explicit expression of the exit time function / on

±Ct is given in Section 3. In Section 4, we classify symmetric geodesies and characterise

some properties of these geodesies. In Section 5, we show that the closed geodesies for

the Euclidean Jordan algebra V — Sym(2, R) of all 2 x 2 symmetric real matrices are

realised as the torus knots in the Shilov boundary £2 of a Lie ball.

2. S Y M P L E C T I C G R O U P S

For a natural number n, Mn(M) denotes the space of all n by n real matrices,

and A € Mn(R) is symmetric (skew-symmetric) means that A* = A (A1 = —A). Let

Sym(n,R) (respectively Skew(n, K)) be the space of all symmetric (respectively, skew-

symmetric) n by n matrices. For a positive semi-definite symmetric matrix A, by A1/2

we shall mean the square root of A. Let A € Sym(n, R) have the spectral decomposition
n

A = Yl KCi, where {CJ is a complete system of orthogonal projections. Then the
i=l

spectral norm \A\ of A is defined by \A\ — max{|Ai| , • • • , |A n |} .
Let (• I •) be the skew-symmetric form on R2" defined by (u \ v) = (Ju \ v) for u,v E

R2n, where J = I I. Here, / stands for the n x n identity matrix. The symplectic

group Sp(2n, R) on R2" is the Lie group of all invertible transformations 5 = 1 I
\ C D)

satisfying one of the following equivalent conditions:

(1) g preserves (• | •)•

(2) g'Jg = J.

(3) AlC, BlD are symmetric and AlD - ClB - I.

The Lie algebra of Sp(2n, R) is given by

sp(2n, R) - U z A Xe Mn(R), Y, Z € Sym(n, R)

It has a Cartan decomposition sp(2ra, R) = p © 6, where

X 6 Skew(n,R),K € Sym(n,I
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Let r = I I € GL{2n, R) and let r{g) - r • g • r for g 6 Sp(2n, R). Then r is an

involution on Sp(2n, R). The differential dr of r at the identity is given by

fx Y\ (x -Y\
dr

Z -X* -Z -X1 / '

The Lie algebra sp(2n, R) can be decomposed as the +l-eigenspace h and the —1-
eigenspace q of dr:

where

sp(2n,R) = fj© q = h©n + ©n , q = n+ffin ,

'0 Y

n =
^0 0\

Kz o)
(X 0

Z€Sym(n,R)L

A xeMn(R)\.

Let Â * be the Lie subgroup of Sp(2n, R) corresponding n* respectively. Then

'I A
N+ =

N~ =

Let

H =

Sym(n,R) \ =expn+,

A € Sym(n, R) > = exp n~.

A€GL{n,]

Note that H = {g e Sp(2n,R) | r(g) = g).

LEMMA 2 . 1 . An element g — I I € Sp(2n, R) can be written (uniquely)
\C DJ

as a triple product in N+HN~ if and only if D is invertible. In this case the (unique)
factorisation is given by

A B
C D

i BD-l

o /
-1)1 A\( I o\
0 D) \D-lC I

PROOF: See [9].

https://doi.org/10.1017/S0004972700032810 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700032810


[5] Symmetric Geodesies 191

THEOREM 2 . 2 . Let P - HN~. Then P is a closed subgroup ofG := Sp(2n,K)
and the homogeneous space M := G/P is a compact real manifold with V := Sym(n, R)
as an open dense subset. The embedding ofV into M. is given by

Furthermore, for g = I 1 G Sp(2n,K) and X G V with g-X eV, we have

dan algebras [1, 2, 3].

3. Ad(#)-lNVARiANT CONES

Let

I / 0 .
Ct = -B 0,

A, B > 0 } ,
0

Then Ct, -Ct,Cf, -Cp are pointed, generating Ad(#)-invariant convex cones in q.
n

Let A £ V = Sym(n,R) have the spectral decomposition A = J2^iCi- If 5 is a
t=i

real valued function on an interval containing all eigenvalues A{, then we shall define an
element g(A) € V by the formula g(A) = J29(^i)Ci- For instance, cosv4, sin A are

i=l
defined in this way.

n
LEMMA 3 . 1 . Let A € V with the spectral decomposition A — Y^ \C{. Then

t=i

cos(i/l) is singular if and only if
(k )

for some i and for some k G Z.
n

PROOF: This follows from the fact that cos(L4) = $D(costAj)Ci is invertible if and
i=l

only if cos tXt ^ 0 for all i. 0

For A G Mn(K), we let

*=o
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PROPOSITION 3 . 2 . LetA,BeV. Then

° tA\ = ( c(~t2AB) tAs{-t2BA)\
\-tB 0 ) ~ \-tBs(-t2AB) c{-t2BA) ) '

In particular,

( 0 *>l\ _ f cos(tA) sin{tA)\
eXP\-tA Oj~\-sm(tA) cos(tA))'

Moreover, if A and B are positive definite matrices, then exp I I equals

B1'2 B1'2 [c

PROOF: This follows from a direct matrix computation. D
n

COROLLARY 3 . 3 . Let A = J^ AA € V be the spectral decomposition of A.

Then I = 1

I ° t A \ n a ^ 7T(2ifc + l )

[ ) 0 € 9 v t L
for some i and for some k 6 Z.

PROOF: This follows from Lemma 2.1, Lemma 3.1, and Proposition 3.2. D

COROLLARY 3 . 4 . Let A,B ^ 0, (that is, A and B are positive semi-definite
n

matrices). Let £} AjCj be the spectral decomposition of BXI2AB1/2. Then
:=1

exp n • 0 € dV <=> t = i ^ !

for some i and for some k € Z.

PROOF: First, we show that for A,B J> 0, Det c(-BA) = Det
where Det is the determinant function. Choose An,Bn > 0 such that An -* A and
Bn -¥ B. Then

c(-BnAn) = B^[cos(B^2

Thus

Det c(-BA) = lim Det c(-BnAn)
n->oo

= lim Det
n—*oo

= Det cos(S1/2
J4B1/2)1/2.
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Now by Lemma 2.1, Lemma 3.1, and Proposition 3.2,

if and only if c(-t2BA) is singular if and only if cost(Bl/2AB1^2)1^2 is singular if and
only if t = (n(2k + l))/(2\/Xl) for some i and for some k e Z. D

THEOREM 3 . 5 . The exit function f is continuous on Ct. In particular,

BU2ABi/2 = 0 \

PROOF: By Corollary 3.4, / (_° A j - TT

(A B\ ( Dt — Bl\

I € Sp(2n,R), ff"1 = I. Therefore
if A,B ^ 0, then

/ -tA\ ( 0 M V 1

6XP [tB 0 eXP - tf l 0

c{-t2BA)1 -t(As(-t2BA)Y\
Bs(-t2AB)Y c(-t2ABY ) '\t(Bs{-t2AB)) c{-t2ABY J

Since c(-t2AB)1 = c(-t2BA), the map / is given on -Ct by

(0 -A\

\B 0 J /

Hence / is continuous on -Ct-

4. GEODESICS ON M

Let A eV = Sym(n,K). Set XA := I J e E. Then it is known [11] that a
N oy

geodesic in V originating at the origin 0 with direction A is of the form

, .. „ ( cost A sintA\
a(t, A) := exp t ^ • 0 = „ • 0.v ' ' v \ s i n M costly

PROPOSITION 4 . 1 . LetAeV.

(1) If sin tA — 0 (respectively, cos tA — 0) then cos tA (respectively, sin MJ is
invertible.
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(2) The geodesic a(t, A) touches the boundary of V at time t0 if and only if
cos t0A is singular. In particular, if cos tA is invertible, then a(t, A) =
tantA

(3) The geodesic a(t, A) is closed if and only ifa(t0, A) = 0 for some t0 / 0 if
and only if sin toA — 0 for some to ^ 0.

(4) For the geodesic a(t,A), t - n/(2\A\) is the first positive time it touches
the boundary ofV.

(5) a{t, t'A) = a{tt', A) for any t, t1 6 E.

PROOF: (1) and (5) are obvious. (2) follows from Lemma 2.1 and Proposition 3.2.
By the definition of closed geodesic, ct(t, A) is closed if and only if a(t0, A) = 0 for some
to ^ 0. By Lemma 2.1 and Proposition 3.2, this is equivalent to the condition sin to/1 = 0.
(4) follows from Corollary 3.3. D

The period of a non-constant closed geodesic a(t, A) is the smallest positive real
number to satisfying a(to, A) = 0. Set

E c = { r { p u • •• , p n ) e R n \ r ^ 0 , Pi: i n t e g e r } .

In this setting, we always assume that the integers p{ have no common divisors.
n

THEOREM 4 . 2 . Let A - £ \C{ be the spectral decomposition of A. Then
t=i

a(t, A) is a closed geodesic if and only if (Xi, • • • , An) € Ec. If A ^ 0 and (Ai, • • • , An) =
T(P\, • • • ,Pn) € Ec, then -n Jr is the period ofa(t, A).

PROOF: Suppose that a{t, A) is a closed geodesic. If A — 0, then all \ are zero and
hence (Ai, • • • , An) = 0(1, • • • , 1) € Ec. Suppose that A ^ 0. Let Xk be the first non-zero
eigenvalue of A. By Proposition 4.1(3), there exists t0 ^ 0 such that sint0A = 0. This
implies that sin t0 A, = 0 for alii = 1,2, • • • , n. From this, we conclude that Ai/A* g Q (the
field of rational numbers) for alH = 1,2, • • • , n. Then for i — k+l, • • • ,n, there exists r; €
Q such that Aj = A r̂*. By multiplying by the least common multiple of the denominators
of then , we can rewrite (A^- • • , Afc, • •• ,An) asr(0, • •• ,0,pk,pk+i,- • • ,pn) € EC for some
Pi £ Z, r > 0.

Conversely, suppose that (Ai, • • • , An) = r(p\, • • • ,pn) e Ec. If r = 0, then a(t, A) =
0 is constant and hence is a closed geodesic. If r ^ 0, then sin(7r/r)Aj = sinpi7r = 0 for
all i. This implies that s\n{Tr/r)A — 0 and hence a(t, A) is a closed geodesic.

Finally suppose that A ^ 0 and a(t0, A) = 0 for some t0 > 0. Since A ^ 0, r / 0
and pk 7̂  0 for some k. Hence sintoA/t = sintorp^. = 0 implies that to = (mn/rp).)
for some integer m. If pk = ±1, then t0 ^ n/r. Suppose pk ^ ±1. Sincejpj} have
no common divisors, there exists j ^ k such that pj ^ 0 and pk and Pj are relatively
prime. Since sintoAj = sintorpj = 0, to = (m'ft/rpj) for some integer m'. Therefore
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to = (rmr/rpk) = (m'-rr/rpj). Since pk and pj are relatively prime, p* must divide m and
hence t0 ^ ir/r. D

Set j = j I € Sp(2n, K). Then j is an involution on M and for an invertible

n
element A = £ AjC,-, j • ,4 = - X " 1 .

t=i

PROPOSITION 4 . 3 . Let A g K . Then the following conditions are equivalent:

(1) For any t € R, there exists t' (depends on t) such that j • a(t, A) = a(t', A).

(2) There exists a non-zero real number t0 € R such that j -a ( i , A) = a(t+t0, A)
far nil ( P R .

(3) There exists a non-zero reai number to such that costo^l = 0.

In particular, if a geodesic a(t, A) satisfies one of these conditions, then A is invertible.

PROOF: By Lemma 2.1, we have

(4.1) (exptXA)j - J ) e P if and only if costal = 0.
^COSL4 smtA I

(1) implies (3) : Let t be a non-zero real number. Then there is a real number t'
such that j • a(t, A) = a(t\ A). That is, j exp tXA • 0 = exp t'XA • 0. Since jXAj~l = XA,
we have

0 = exp(-t'XA)jexptXA • 0

= exp(-t'XA)jexptXAj-lj-0

= exp(—t'XA) exp tXAj • 0.

Hence (exp(t - t')XA)j 6 P. Set to = t - t'. Then t0 ^ 0 since j is not in P. Therefore
by (4.1) cost0A = 0.

(3) implies (2) : Suppose that cosi0^ = 0 for some non-zero t0 € R. Then by (4.1),
(exp t0XA)j -0 = 0 and hence for any t € R,

j{exptXA) • 0 = j(exp(t + to)XA)(exp -t0XA) • 0

= j{exp{t + tQ)XA)j • 0

= j(exp(t + to)XA)rl • 0

= (exp(t + to)XA) • 0.

Therefore j • a(t, A) = a(t +10, A).

(2) implies (1): Trivial.

Now suppose cos t 0 ^ = 0 for some t0 / 0. Then cost0Ai = 0 and hence A; ^ 0 for

all i. Therefore A is invertible. D
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DEFINITION. A closed geodesic a(t, A) is said to be symmetric if it satisfies one of
the conditions of Proposition 4.3.

Set K* = R \ {0}. Let Es be the subset of (K')n

Es = {r(pi,p2, • • • ,pn) I r > 0, Pi : odd integer}.

Then Es is a subgroup of (R*)n under the usual multiplication.
n

THEOREM 4 . 4 . Let A = £ Xid eV be the spectral decomposition of A. Then

a(t, A) is a symmetric geodesic if and only if (Ai, • • • , An) € Es.

P R O O F : If (Ai, • •• , An) = r(pi,- • • ,pn) € Es, then cos(7r/2r);4 = 0. Hence a(t,A)
is symmetric. Conversely, suppose that a(t, A) is symmetric. Then by Propositions 4.1
and 4.3, cosi.4 = 0 and sin?A - 0 for some t ^ 0 and ? € E. By Theorem 4.2,
(Ai, • • • , An) = r(pi, • • • ,pn) for some integers p{ which have no common divisors. Since
A is invertible (by Proposition 4.3), r and the p,'s are all non-zero. Note that cost A = 0
implies that pi — pj is even for all i, j = 1, • • • , n. If p\ is even, then all the p^'s are even.
But this is impossible since they have no common divisors. Thus p\ is odd and hence all
the pi's are odd integers. D

n
COROLLARY 4 . 5 . Let a(t, A) be a symmetric geodesic. Let A = Y^, rptCi be

t=i

the spectral decomposition of A. Then j • a(t, A) = a(t + (Tr/2r),A). In particular,
j 0 = a(?r/2r, A).

P R O O F : Let a(t,A) be a symmetric geodesic. Note that r > 0 and the p^s are
all odd numbers (they have no common divisors). Set A' = (l/r)A. For i = 1, • • • ,n,
tan(£ + n/2)pi = — cot(tpi) whenever it is defined. This implies that for every t > 0 with
j-a(t,A')eV,

j • a(t, A') = - cottA' = tan(i + ^JA'= a(+t + -, A1).

Because V is dense in A4, the equality holds for all t. By Proposition 4.1, we have

j • a{t, A)=j- a{tr, A') = a(tr + | , A1) = a ( t + ^ , A ) .

D

COROLLARY 4 . 6 . Leta(t,A) be a symmetric geodesic. Ifa(to,A) e dV, then
j • a(t0, A) e V.

n
P R O O F : Let 5ZrP»C> be the spectral decomposition of A. Since a(to,A) S dV,

i=l

costo^ is singular. Hence to = (^/2rpO7r f°r s o m e i an<i an odd integer k. Since, by
Corollary 4.5, j • a(t0, A) = a(t0 + (ir/2r),A), we claim that cos(i0 + (ir/2r))rpj ^ 0 for
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all j = 1, • • • , n. It then follows from cos(i0 + (^/2r))rpj = cos((A;p;/2pi) + (pj/2)-n) =
— sin((/cpj/2pi)7r) ^ 0 because Pi,Pj, and k are odd integers. This ends the proof. D

REMARKS 4.7. (1) By Corollary 4.6, boundary points in a symmetric geodesic curve
have to move into V by the symmetry j . This property distinguishes symmetric geodesies
among closed geodesies. Let a(t, A) be a non-constant closed geodesic. Then it touches
the boundary dV finitely many times (Proposition 4.1 (4)). Suppose that a(t, A) is non-
symmetric. Then an eigenvalue A* of A is rpk for some even integer p^. Here, •n/r is the
period of the given geodesic curve. Since {pt := Aj/r} have no common divisors, pj is odd
for some j . This implies that sin((7r/2r)rpjt) = 0 and cos((7r/2r)rp,) = 0. Therefore,
a({n/2r), A) £ dV and j • a((n/2r), A) e dV.

"1+ 1~"'•* ^ * "\r\f\ o cirr t irf iafrip rrorvrlocii^ ™rltll tVlf* Qr*Pf*t.rE*l HpPOTTinnsit.lOTl A ^2

J^rpiQ. Let A' = (l/r)A. If a(io,^') € SV, then t0 is of the form (k/2pi)ir for

some i and some odd integer k. Since 2pi — k is an odd number, COS(TT — tg)pi =
cos((2pi - k)/2))n = 0. Hence a(n - to,A') € dV. If 0 < t0 < TT/2, then
7r/2 < 7T — t0 = (l — {k/2pi))n < ir. Similarly if TT/2 < t0 < TT, then 0 < ir - t0 < n/2.
This implies the number of boundary points in the geodesic curve a(t, A') is odd, centred
at the time TT/2. This holds for A since a(t, A') = a((t/r), A). Moreover ir/r - ir/(2\A\)
is the last time of touching the boundary since TT/(2|>1|) is the first one. In the case n = 2,
one may easily show that the number of boundary points in the symmetric geodesic curve
a{t,A) ispi+p2- 1.

5. C L O S E D G E O D E S I C S F O R Sym(2,R)

Let V = Sym(2,R) and let Q, be the symmetric cone of positive definite 2 x 2

symmetric real matrices. Then the tube domain Tn :— V + iQ, can be realised as a

bounded symmetric domain V in the complex plane Vc := V + iV as follows: we define

D(p) = {Z £ Vc\Z + il£GL(2,C)},

D(c) = {W e Vc | / - W € GL(2, C)}

and for all Z € D(p), W € D(c),

p{Z) = (Z - H)(Z

c{W) =i{I

Then the map p is a holomorphic bijection of D(p) onto D(c) and c, called the Cayley
transform, is its inverse. The closure of Tn in V c is contained in D(p). The image
V :— p(Tn) of p is known as a bounded symmetric domain, called a Lie ball (open unit
ball with respect to the spectral norm) [4]. We define E2 as the set of invertible elements
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in Vc such that Z~l = Z. It is known [4] that £2 is the Shilov boundary of V, which is
a compact connected 3-dimensional manifold, and is exactly equal to p(V).

Let c = {C{}?=1 be a complete system of orthogonal projections (Jordan frame) and
2

let V(c) be the subspace of V generated by C^s. Then for A —
t = i

(5.2)

Since (A* — i)/(Xi + i) € Sl, the unit circle in C, for i = 1,2, we conclude that p(V(c))
is diffeomorphic to the torus T2 = Sl x Sx embedded in £2.

For a geodesic curve a(t, A) in M, we let 2(t, A) := p(a(t, A)) be the corresponding
geodesic on £2- From (5.2), we have the following.

2
PROPOSITION 5 . 1 . Let A = ^2 XiCi be the spectral decomposition of A. Then

t=i

2

a(t,A)=J2eiin+2Xit)Ci.
1=1

2
PROOF: For t > 0 with a(t,,4) € V, p(a(*,,4)) = £((tanA,i - i)/(tan A** + i))Ci.

1=1

The result then follows from

- — sin2 Ajtcos2 Ajt - 2isin Ajtcos Xtt = e'(7r+2Ait).
it + i

D

A torus knot is a simple closed curve embedded on the standard torus T2 = S1 x S1 in
C2. Any point of T2 has coordinates (e'*,e'*). We have the standard meridian-longitude
generator system of H^T2) = Z © Z:

m : e*s •-> (el9,1), meridian,

€ : e'9 >->• (l,e'fl), longitude.

A torus knot is said to be of type (p, q), denoted by T(p,q), if it is homologous to
pm + qt on T2 and p and g are coprime integers. A torus knot T(p, q) is trivial if and
only if either p = ±1 or q — ±1 . Two nontrivial torus knots T(p,q) and T(p',q') are
equivalent if and only if (p', q') is equal to one of (p, q), (q,p), ( -p , q), or ( -p, -g) [12].

2
THEOREM 5 . 2 . Let A = £) rpjCj (r ^ 0, p* € Z) be the spectral decomposition

t=i

of A € Sym(2,R) and iet a(£, yl) be tie corresponding closed geodesic in M. Then

a(t, A)(0 ^ t ^ 7r/r) is t ie torus knot of type (\pi\, \P2\)-
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PROOF: Let K = {a(t, A) € ^ = £2 1 0 ^ * ^ ^fr). By Proposition 5.1, K is a
simple closed curve on the standard torus T2 = S1 x S1 embedded in C2. Since a(t,A)
is a closed geodesic, p\ and p2 are relatively prime integers. Now

K = {ein{ei2rpit,ei2rp2t) € T2 | 0 ^ t < n/r}

= {{-eiins, -eip2S) e T2 | 0 ^ s ^ 2TT}.

Hence K is the torus knot of type (|pi|, \p2\). D

FUTURE DIRECTIONS: In subsequent papers, we shall study the periodicity of symmetric
geodesies for the Euclidean Jordan algebra Sym(2, R) of all 2 x 2 symmetric real matrices,
realised in the Shilov boundary E2 which is a non-orientable closed 3-manirold. By an
investigation of some finite group actions on an orientable double covering space of the
Shilov boundary E2, we shall give a certain class of knots and links in S3 corresponding
to the Euclidean Jordan algebra Sym(2, R) and will discuss their properties.

6. APPENDIX

Let X(R) be the Lie algebra of all smooth vector fields on R. For g —
a b

V v
SL(2, R), we consider the linear fractional transformation g(x) = (ax + b)(cx + d) x. This
defines a local action on R and a global action on S1. The induced Lie homomorphism
<f>: sl{2, R) —> X(R) is given by

c —a

In this case, q, f), and Cp are given by

It is easy to show that /(f) ± Cp) = oo. Now let X =

'dx

a b

c —a
€ s/(2,R). Note that

X{x)=b + 2ax-cx2. Set a = \a? + bc\ ' . For b ^ 0 and c ^ 0, the differential equation
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x'(t) = X(x{t)),x{0) = 0, has the solution:

a a
- H—tanh
c c
a a
- H—coth
c c

at + tanh
1 (—']

\ a )

at + coth J | —

a a I , a
tan ai-f tan ' -

c c

Then the function / is given by

oo

oo

oo

a"1

tanh"11 —

a

tan"1 —
a

7T

I 2a

if a2 + 6c = 0,

if a2 + bc> 0, 6c > 0,

if a2 + 6c> 0, 6c < 0,

if a2 + 6c < 0.

if X € h ± Cp,

if a2 + 6c = 0, a ^ 0,

if a2 + 6c> 0, 6c < 0, a < 0

if a2 + 6c = 0, a > 0,

if a2 + 6c> 0, 6c < 0, a > 0,

if a2 + be < 0, a > 0,

if a2 + 6c < 0, a ^ 0.
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