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Abstract

We propose a new adaptive and composite Barzilai–Borwein (BB) step size by
integrating the advantages of such existing step sizes. Particularly, the proposed step
size is an optimal weighted mean of two classical BB step sizes and the weights are
updated at each iteration in accordance with the quality of the classical BB step sizes.
Combined with the steepest descent direction, the adaptive and composite BB step size
is incorporated into the development of an algorithm such that it is efficient to solve
large-scale optimization problems. We prove that the developed algorithm is globally
convergent and it R-linearly converges when applied to solve strictly convex quadratic
minimization problems. Compared with the state-of-the-art algorithms available in the
literature, the proposed step size is more efficient in solving ill-posed or large-scale
benchmark test problems.
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1. Introduction
It is well known that large-scale optimization techniques are applied more and more
to the fields of industrial engineering and management sciences, such as signal
processing [25], machine learning [22] and newsboy problems [5, 20, 28]. On the
other hand, it is still a challenge to develop an efficient numerical algorithm for solving
these large-scale optimization problems, especially for improvement of computational
efficiency which meets practical requirements [26, 29]. In the past two decades, it
has attracted much attention from applied mathematicians and experts in engineering,
since the existing optimizers cannot be directly applied to solve these problems.

We consider the following large-scale optimization problem:

min f (x), x ∈ Rn, (1.1)
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where f : Rn → R is continuously differentiable and n ≥ 1000 in general. To solve
problem (1.1), a popular iterative format is constructed as

xk+1 = xk + αkdk,

where αk is a step size and dk is a search direction. Thus, {xk} is an approximate
solution sequence of problem (1.1).

One of the most popular choices for the search directions is generated by the
Newton method or the quasi-Newton method (see the articles by Dennis and Moré [12]
and Wan et al. [24]). Although these methods have superlinear convergence, they
are not suitable for solving large-scale optimization problems, since it is difficult to
compute and store the (approximate) Hessian matrices of f at each iteration (see the
articles by Deng and Wan [11] and Huang et al. [18]). To overcome the drawbacks
in the Newton-type or the quasi-Newton-type methods, numerous spectral gradient
methods [6, 17, 19] and conjugate gradient methods [11] have been presented to solve
(1.1). Numerical experiments are often employed to show the advantages of their
numerical efficiency in solving large-scale optimization problems.

The most direct and the simplest search direction is dk = −∇ f (xk), which is
referred to as the steepest descent method. However, owing to its poor convergence
rate [17, 18], this method is not often applicable to solve problem (1.1). To exploit
its advantages to the full, choice of a suitable step size is often necessary such
that its numerical efficiency may beat that of the other methods. Actually, it has
been shown that the steepest descent method with the Barzilai–Borwein (BB) step
size is R-superlinearly convergent for the two-dimensional quadratic minimization
problems [2]. For quadratic minimization problems with any dimension, it has also
been proved that the method is still globally convergent [21] and the convergence rate
is R-linear [10].

The so-called BB step sizes were first proposed by Barzilai and Borwein [2],
where two formats of the step sizes were constructed by approximations to the secant
equations. Specifically, the BB step sizes are given by

αBB1
k =

sT
k−1sk−1

sT
k−1yk−1

(1.2)

and

αBB2
k =

sT
k−1yk−1

yT
k−1yk−1

, (1.3)

where sk−1 = xk − xk−1 and yk−1 = ∇ f (xk) − ∇ f (xk−1). Denote gk = ∇ f (xk). Then
yk−1 = gk − gk−1. The two classical BB step sizes, αBB1

k and αBB2
k , have been

successfully applied for solving many problems, such as convex constrained
optimization [3, 9], nonnegative matrix factorization [15], compressive sensing [14]
and image restoration [4].
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Inspired by the BB methods [2], Zhou et al. [30] presented an adaptive Barzilai and
Borwein (ABB) step size, given by

αABB
k =

{
αBB2

k if αBB2
k /αBB1

k < κ,

αBB1
k otherwise,

(1.4)

where κ ∈ (0, 1). It is clear that the above ABB method can adaptively choose a small
step size or a large step size at each iteration. Although the ABB method in [30] is
still linearly convergent in the quadratic case, numerical experiments on some typical
test problems indicate that it outperforms the classical BB methods. Huang et al. [16]
used the step size (1.4) in nonnegative matrix factorization, combined with a descent
direction on the basis of a projected gradient strategy.

Dai et al. [8] conducted an analysis on the geometrical mean of αBB1
k and αBB2

k
for the two-dimensional strictly convex quadratic minimization problems, and R-
superlinear convergence was established. Very recently, using a new approximation
model, Huang and Wan [17] also obtained the BB step size

αNBB
k =

√
sT

k−1sk−1

yT
k−1yk−1

=

√
αBB1

k αBB2
k . (1.5)

It turns out to be the geometrical mean of αBB1
k and αBB2

k , which was directly presented
by Dai et al. [8]. Apart from their results, the global convergence has been established,
as the step size (1.5) is applied to solving the quadratic minimization problems with
any size of dimension [17]. Furthermore, based on a new nonmonotone line search,
αNBB

k was employed to develop an efficient algorithm for solving nonsmooth and
nonlinear systems of equations [17].

Motivated by the superlinear convergence behaviour of the BB methods in the
literature, here we intend to construct a new adaptive and composite BB step size
by the weighted mean of two classical BB step sizes. To integrate the advantages
of the existing BB step sizes, we update the weights at each iteration in accordance
with the quality of two types of BB step sizes. Thus, our step size is adaptive and
composite, which is different from the other BB step sizes. We are also interested
in the convergence properties and numerical performance of the developed algorithm
in this paper, which utilizes the simplest gradient method and the proposed step size.
Owing to lower cost of computation and storage, the developed algorithm presented in
the paper is suitable for solving large-scale optimization problems.

The rest of this paper is organized as follows. In the next section, we present the
new adaptive and composite BB step size and develop an algorithm. In Section 3,
convergence theory is established as the developed algorithm is applied to solve
quadratic minimization problems. Numerical performance of the algorithm is reported
in Section 4. Finally, we draw some conclusions in Section 5.
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2. Adaptive and composite BB step size and algorithm

In this section, we propose a new adaptive and composite BB step size. Then,
combined with the steepest descent direction, a new gradient algorithm has been
developed.

Following Barzilai and Borwein [2], we know that αBB1
k and αBB2

k are the optimal
solutions of the optimization problems

min
α
‖α−1sk−1 − yk−1‖

2 and min
α
‖αyk−1 − sk−1‖

2,

respectively.
Clearly, compared with each other, the potential inferiority of αBB1

k and αBB2
k can be

observed in
‖αBB1

k yk−1 − sk−1‖
2 ≥ ‖αBB2

k yk−1 − sk−1‖
2

and
‖(αBB2

k )−1sk−1 − yk−1‖
2 ≥ ‖(αBB1

k )−1sk−1 − yk−1‖
2,

respectively. Therefore, to integrate the individual advantages of αBB1
k and αBB2

k , we
construct a new step size

αCBB
k =

R2

R1 + R2
αBB1

k +
R1

R1 + R2
αBB2

k , (2.1)

where {
R1 = ‖αBB1

k yk−1 − sk−1‖
2 − ‖αBB2

k yk−1 − sk−1‖
2,

R2 = ‖(αBB2
k )−1sk−1 − yk−1‖

2 − ‖(αBB1
k )−1sk−1 − yk−1‖

2.
(2.2)

Note that
‖αBB2

k yk−1 − sk−1‖
2 = 0, ‖(αBB1

k )−1sk−1 − yk−1‖
2 = 0,

R1 = ‖αBB1
k yk−1 − sk−1‖

2, R2 = ‖(αBB2
k )−1sk−1 − yk−1‖

2.

Denote µk = R2/(R1 + R2). Then the equation (2.1) can be written as

αCBB
k = µkα

BB1
k + (1 − µk)αBB2

k , (2.3)

where 0 ≤ µk ≤ 1. Observe that αCBB
k is the weighted mean of αBB1

k and αBB2
k .

Therefore, αCBB
k is a composite step size. On the other hand, the weight µk may be

different at each iteration, which is updated by integrating the advantages of αBB1
k and

αBB2
k . From this viewpoint, αCBB

k is adaptive.

Remark 2.1. The step size αABB
k in (1.4) is also called the ABB step size [30], since one

can choose a small step size αBB2
k or a large step size αBB1

k at each iteration. However,
by definition, the meaning of the word “adaptive” in our paper is different from that of
Zhou et al. [30]. In particular, our step size αCBB

k in (2.3) can integrate the advantages
of αBB1

k and αBB2
k , since it is the weighted mean of αBB1

k and αBB2
k based on a measure

of their qualities by (2.2), rather than an either–or decision as done by Zhou et al. [30].
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Remark 2.2. Additionally, as shown by Barzilai and Borwein [2], both αBB1
k I and

αBB2
k I are scalar approximations to the inverse of ∇2 f (xk). From (2.3), we know that
αCBB

k is also an approximation to the inverse of ∇2 f (xk).

In virtue of an earlier idea [30], we modify αABB
k in (1.4) as

αCABB
k =

{
αBB2

k if αBB2
k /αBB1

k < κ,

αCBB
k otherwise.

(2.4)

Similar to αABB
k , note that αCABB

k is also adaptive.
With the help of the new BB step size (2.3) or (2.4), we develop Algorithm 1 on the

basis of the simplest steepest descent method.

Algorithm 1 New gradient method with adaptive and composite BB step size
Step 0 (Initialization). Given initial x0 ∈ Rn and α0 > 0 ∈ R, choose a tolerance ε > 0.
Set k := 0.
Step 1 (Termination). If ‖∇ f (xk)‖ ≤ ε, then the algorithm stops. Otherwise, go to
Step 2.
Step 2 (Search direction). Compute dk := −∇ f (xk). Go to Step 3.
Step 3 (Update). Set xk+1 := xk + αkdk.
Step 4 (CBB step size). Compute sk, yk and αk+1 = αCBB

k+1 by (2.3). Go to Step 5.
Step 5 (Update). Set k := k + 1. Go to Step 1.

A special case of problem (1.1) is the following quadratic minimization model:

min f (x) = 1
2 xT Ax − bT x, x ∈ Rn, (2.5)

where A ∈ Rn×n is a symmetric and positive-definite (SPD) matrix and b ∈ Rn is a given
vector. In the next section, we will give some convergence analyses about Algorithm 1
for solving model (2.5). We first present a basic property for αCBB

k and αCABB
k .

Let xk, xk−1 ∈ Rn be two given points. Then, since gk = ∇ f (xk) = Axk − b, we have
yk−1 = Ask−1. Now, from (1.2) and (1.3),

αBB1
k =

sT
k−1sk−1

sT
k−1Ask−1

, (2.6)

αBB2
k =

sT
k−1Ask−1

sT
k−1A2sk−1

. (2.7)

Proposition 2.3. Let αk be defined by (2.3) or (2.4). Then, for any SPD matrix A, the
following inequalities hold:{

0 < λ−1
n ≤ α

CBB
k ≤ λ−1

1 for all k,
0 < λ−1

n ≤ α
CABB
k ≤ λ−1

1 for all k,
(2.8)

where λ1 and λn are the smallest and the largest eigenvalues of A, respectively.
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Proof. From (2.6), (2.7) and by definition [23, Definition 1.2.9], it follows that(
αBB1

k I
)−1 is the Rayleigh quotient of A at sk−1 and

(
αBB2

k I
)−1 is that of A at

√
Ask−1.

Since the matrix A is SPD, using the properties of the Rayleigh quotient [23, Theorem
1.2.10],

0 < λ1 ≤ (αBB1
k )−1 ≤ λn, 0 < λ1 ≤ (αBB2

k )−1 ≤ λn for all k,

where λ1 and λn are the smallest and the largest eigenvalues of A, respectively.
Consequently,

0 < λ−1
n ≤ α

BB1
k ≤ λ−1

1 , 0 < λ−1
n ≤ α

BB2
k ≤ λ−1

1 for all k.

Thus, for αCBB
k defined by (2.3),

0 < λ−1
n = µkλ

−1
n + (1 − µk)λ−1

n ≤ α
CBB
k ≤ µkλ

−1
1 + (1 − µk)λ−1

1 = λ−1
1 .

Since both αCBB
k and αBB2

k satisfy the inequalities in (2.8), it follows from the definition
of αCABB

k that
0 < λ−1

n ≤ α
CABB
k ≤ λ−1

1 for all k,

which completes the proof. �

3. Convergence analysis

In this section, we establish the global convergence of Algorithm 1 as it is applied
to solve the quadratic minimization problems. In addition, its R-linear convergence
is also established. Before establishing the convergence theory, we first state the
following results.

Lemma 3.1. Let f be defined by (2.5) and let x∗ be the unique minimizer of f . Suppose
that {xk} is a sequence generated by Algorithm 1. Denote ek = x∗ − xk. Then:

(1) Aek = dk;
(2) ek+1 = αk((1/αk)I − A)ek.

Lemma 3.2. Let f be defined by (2.5). Let {v1, v2, . . . , vn} be the orthonormal
eigenvectors of A, corresponding to the eigenvalues {λ1, λ2, . . . , λn}, respectively,
where λ1 ≤ λ2 ≤ · · · ≤ λn. Suppose that {xk} is a sequence generated by Algorithm 1.
Then

ek+1 =

n∑
i=1

c(k+1)
i vi, (3.1)

where

c(k+1)
i =

k∏
j=0

(1 − α jλi)c0
i . (3.2)

Proofs of Lemmas 3.1 and 3.2 are similar to those of Huang and Wan [17] and hence
omitted here.
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Remark 3.3. By Lemma 3.2, we know that the convergence of the sequence {ek}

depends on the behaviour of each of the sequences {c(k)
i }, i = 1, 2, . . . , n. In

Theorem 3.6, we prove that all of these sequences converge to zero, that is, ek → 0
as k→∞.

Lemma 3.4. Let {c(k)
1 } be a sequence defined by (3.2). Then c(k)

1 converges Q-linearly to
zero with convergence factor ĉ = 1 − (λ1/λn).

Since αCBB
k satisfies (2.8), it follows directly from [21] that Lemma 3.4 is true.

Using Lemmas 3.1, 3.2 and 3.4, we now further prove the following result.

Lemma 3.5. Let {c(k)
l } be the sequences defined by (3.2), l = 1, . . . ,n. If all the sequences

{c(k)
1 }, {c

(k)
2 }, . . . , {c

(k)
l } converge to zero, then

lim inf
k→∞

|c(k)
l+1| = 0.

Proof. By contradiction, suppose that there exists a constant ε > 0 such that for all k,

(c(k)
l+1)2λ2

l+1 > ε. (3.3)

From Lemma 3.1,

sk = xk+1 − xk = αkdk = αkAek and yk = Ask = αkA2ek.

Using equation (3.1) and the orthonormality of {v1, v2, . . . , vn} yields

αBB1
k+1 =

sT
k sk

sT
k yk

=
(Aek)T (Aek)
(Aek)T (A2ek)

=

∑n
i=1(c(k)

i )2λ2
i∑n

i=1(c(k)
i )2λ3

i

(3.4)

and

αBB2
k+1 =

sT
k yk

yT
k yk

=
(Aek)T (A2ek)
(A2ek)T (A2ek)

=

∑n
i=1(c(k)

i )2λ3
i∑n

i=1(c(k)
i )2λ4

i

.

Since the sequences {c(k)
1 }, {c

(k)
2 }, . . . , {c

(k)
l } are all convergent to zero, there exists k̂

sufficiently large such that for any k ≥ k̂,

l∑
i=1

(c(k)
i )2λ2

i <
ε

2
. (3.5)

From (3.4) and (3.5),

αBB1
k+1 <

(ε/2) +
∑n

i=l+1(c(k)
i )2λ2

i∑n
i=l+1(c(k)

i )2λ3
i

. (3.6)

Note that the function q : R+ → R, given by

q(x) =
a + x

bx
, a, b > 0,
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is monotonically decreasing in (0,∞). Combined with (3.6) and, since

n∑
i=l+1

(c(k)
i )2λ3

i ≥

( n∑
i=l+1

(c(k)
i )2λ2

i

)
λl+1

n∑
i=l+1

(c(k)
i )2λ2

i ≥ (ck
l+1)2λ2

l+1 > ε,

αBB1
k+1 <

(ε/2) +
∑n

i=l+1(c(k)
i )2λ2

i∑n
i=l+1(c(k)

i )2λ2
i λl+1

≤
(ε/2) + ε

ελl+1
=

3
2
λ−1

l+1.

Consequently, for all k ≥ k̂,
λ−1

n ≤ α
BB1
k+1 ≤

3
2λ
−1
l+1.

Similarly, we can prove that for all k ≥ k̂,

αBB2
k+1 <

(ε/2)λl+1 +
∑n

i=l+1(c(k)
i )2λ3

i∑n
i=l+1(c(k)

i )2λ4
i

<
(ε/2)λl+1 + ελl+1

ελ2
l+1

=
3
2
λ−1

l+1

and, therefore,
λ−1

n ≤ α
BB2
k+1 ≤

3
2λ
−1
l+1.

By definition of αk in (2.3), it follows that for all k ≥ k̂ + 1,

λ−1
n ≤ αk ≤

3
2λ
−1
l+1.

Using the fact that c(k+1)
l+1 = (1 − αkλl+1)c(k)

l+1, we know that for all k ≥ k̂ + 1,

|c(k+1)
l+1 | ≤ |1 − αkλl+1||c

(k)
l+1| ≤ ĉ|c(k)

l+1|,

where

ĉ = max
{1

2
, 1 −

λl+1

λn

}
< 1.

Thus, c(k)
l+1 converges to zero as k→∞, which contradicts (3.3). Therefore, we have

proved that
lim inf

k→∞
|c(k)

l+1| = 0. �

Based on Proposition 2.3 and Lemmas 3.1, 3.2 and 3.5, now we establish the global
convergence theory of Algorithm 1.

Theorem 3.6. Let {xk} be a sequence generated when Algorithm 1 is used to solve
model (2.5). Let x∗ be the unique minimizer of (2.5). Then either there exists an
integer j such that x j = x∗, or the sequence {xk} converges to x∗.

Proof. If there exists an integer j such that x j = x∗, then the result holds. Suppose that
there is no finite integer j such that x j = x∗. We are going to prove that the sequence
{ek} converges to zero.
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From (3.1) and the orthonormality of the eigenvectors,

‖ek‖
2
2 =

n∑
i=1

(c(k)
i )2.

Thus, the error sequence {ek} converges to zero if and only if each of the sequences
{c(k)

i }, i = 1, 2, . . . , n, converges to zero.
By contradiction, we assume that some of the sequences of {c(k)

i } do not converge
to zero. Suppose that {c(k)

p } is the first sequence which does not converge to zero. By
Lemma 3.4, we have p ≥ 2. Since all the sequences {c(k)

1 }, . . . , {c
(k)
p−1} converge to zero,

for a given ε > 0, there exists k̂ sufficiently large such that for all k ≥ k̂, the following
inequality holds:

p−1∑
i=1

(c(k)
i )2λ2

i <
ε

2
. (3.7)

By Lemma 3.5, we know that lim infk→∞ |c
(k)
p | = 0. Thus, there exists kp ≥ k̂ such that

(c(kp)
p )2λ2

p < ε.

Let us analyse the properties of {c(k)
p } for k ≥ kp. Our aim is to prove that there exists

a positive constant C such that

(c(k)
p )2 ≤ C

ε

λ2
p

for all k ≥ kp.

We conduct the analysis by the following three cases.

Case (a): kp ≤ k ≤ k0 − 1.
Let k0(> kp) be the first positive integer satisfying

(c(k0−1)
p )2λ2

p < ε, (c(k0)
p )2λ2

p > ε. (3.8)

Thus, for all kp ≤ k ≤ k0 − 1,

max
kp≤k≤k0−1

{(c(k)
p )2} <

ε

λ2
p
. (3.9)

Case (b): k0, k0 + 1 and k0 + 1 < k ≤ j + 1.
If j is the first positive integer greater than k0 that satisfies

(c(k)
p )2λ2

p > ε, (c( j)
p )2λ2

p < ε for all k0 ≤ k ≤ j − 1, (3.10)

then we can replace k̂ in Lemma 3.5 by k0 and, for k0 + 1 ≤ k ≤ j, it follows from (3.7)
and (3.10) that

λ−1
n ≤ αk ≤

3
2λ
−1
p . (3.11)
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From Lemma 3.2, we obtain that for all k′ > 0,

(c(k′+1)
p )2 = (1 − αk′λp)2(c(k′)

p )2

≤

(
λn − λ1

λ1

)2
(c(k′)

p )2

≤

(
λn − λ1

λ1

)4
(c(k′−1)

p )2.

(3.12)

As for k0, from (3.8) and (3.12),

(c(k0)
p )2 ≤

(
λn − λ1

λ1

)2
(c(k0−1)

p )2

≤

(
λn − λ1

λ1

)2 ε

λ2
p
.

(3.13)

As for k0 + 1, from (3.8) and (3.12),

(c(k0+1)
p )2 ≤

(
λn − λ1

λ1

)4 ε

λ2
p
. (3.14)

Since αk satisfies (3.11), where k0 + 1 ≤ k ≤ j,

(c(k+1)
p )2 ≤ max

{1
2
, 1 −

λp

λn

}2
(c(k)

p )2

≤ (c(k0+1)
p )2

≤

(
λn − λ1

λ1

)4 ε

λ2
p
.

(3.15)

From the inequalities (3.9) and (3.13)–(3.15),

max
kp≤k≤ j+1

{(c(k)
p )2} ≤ max

{
1,

(
λn − λ1

λ1

)2
,
(
λn − λ1

λ1

)4} ε
λ2

p
.

Case (c): k ≥ j + 2.
Repeating the processes of Cases (a) and (b), as for k ≥ j + 2, we can also prove

that

max
k≥ j+2
{(c(k)

p )2} ≤ max
{
1,

(
λn − λ1

λ1

)2
,
(
λn − λ1

λ1

)4} ε
λ2

p
.

Combining Cases (a)–(c), we conclude that there exists

C = max
{
1,

(
λn − λ1

λ1

)2
,
(
λn − λ1

λ1

)4}
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such that
(c(k)

p )2 ≤ C
ε

λ2
p

for all k ≥ kp.

Define
Mε = sup

k≥kp

{(c(k)
p )2}.

Then, as ε(> 0)→ 0, Mε → 0, which implies that lim supk→∞(c(k)
p )2 = 0. Consequently,

lim
k→∞
|c(k)

p | = 0,

which contradicts that {c(k)
p } does not converge to zero. Therefore, the sequence {ek}

converges to zero. This completes the proof. �

Next, we study local convergence of Algorithm 1 and establish its R-linear
convergence result.

Theorem 3.7. Let model (2.5) be solved by Algorithm 1 and {xk} be a sequence
generated by this algorithm. Then either gk = 0 for some finite k, or the sequence
{‖gk‖} R-linearly converges to zero.

Proof. Recall that gk = ∇ f (xk), where f is the function as defined in Section 1. Since
sk = xk+1 − xk = −αkgk and yk = Ask, it directly follows from (2.6) and (2.7) that

αBB1
k+1 =

gT
k gk

gT
k Agk

and αBB2
k+1 =

gT
k Agk

gT
k A2gk

.

By Lemma 3.2,

gk =

n∑
i=1

g(k)
i vi,

where g(k)
i = (1 − αk−1λi)g

(k−1)
i . The orthonormality of {v1, v2, . . . , vn} yields

gT
k gk =

n∑
i=1

(g(k)
i )2, Agk =

n∑
i=1

λig
(k)
i vi.

Consequently,

αBB1
k+1 =

∑n
i=1(g(k)

i )2∑n
i=1(g(k)

i )2λi
and αBB2

k+1 =

∑n
i=1(g(k)

i )2λi∑n
i=1(g(k)

i )2λ2
i

.

Since gk = Axk − b = −Aek, by Lemma 3.2,

gk =

n∑
i=1

g(k)
i vi = −

n∑
i=1

c(k)
i λivi.

Thus, g(k)
i = −c(k)

i λi.
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From the proof of Lemma 3.5, we know that for any integer l, l = 1, 2, . . . , n − 1,
and for a real number ε > 0,

λn ≥ (αCBB
k )−1 ≥ 2

3λl+1

in the case that 
l∑

i=1

(c(k)
i )2λ2

i =

l∑
i=1

(g(k)
i )2 < (1/2)ε < ε,

(c(k)
l+1)2λ2

l+1 = (g(k)
l+1)2 > ε.

Therefore, αCBB
k satisfies Dai’s property [7, Property A] and, similar to the proof of a

theorem there [7, Theorem 4.1], we get the R-linear convergence of Algorithm 1. �

Remark 3.8. As in [21, Lemma 2], under the sufficient condition λn < 2λ1 for A, we
can also prove that the sequence {xk} Q-linearly converges to x∗. The R-linear or Q-
linear convergence is defined by Sun and Yuan [23, Section 1.5.4].

Note that αBB1
k , αBB2

k , αABB
k , αCBB

k and αCABB
k can all be rewritten in a unified form:

αk = µk
gT

k−1Aρ(k)gk−1

gT
k−1Aρ(k)+1gk−1

+ (1 − µk)
gT

k−1Aγ(k)gk−1

gT
k−1Aγ(k)+1gk−1

, (3.16)

where ρ(k), γ(k) ∈ {0, 1}, µk ∈ [0, 1] and ρ(k) , γ(k). At the end of this section, we will
give the global and local convergence analyses for the unified step size (3.16).

Corollary 3.9. Let {xk} be a sequence generated when Algorithm 1 is used to solve
model (2.5), where the step size αk is computed by (3.16). Let x∗ be the unique
minimizer of (2.5). Then either there exists an integer j such that x j = x∗, or the
sequence {xk} converges to x∗.

Proof. Since αBB1
k , αBB2

k , αABB
k , αCBB

k and αCABB
k all have the property of

Proposition 2.3, if αk is defined by (3.16), then

0 < λ−1
n ≤ αk ≤ λ

−1
1 for all k.

For any integer l, l = 1, 2, . . . , n − 1, and any real number ε > 0, if
l∑

i=1

(g(k)
i )2 < 1/2ε,

(g(k)
l+1)2 > ε
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hold, then it follows from (3.16) that

αk = µk

∑n
i=1(g(k)

i )2λ
ρ(k)
i∑n

i=1(g(k)
i )2λ

ρ(k)+1
i

+ (1 − µk)
∑n

i=1(g(k)
i )2λ

γ(k)
i∑n

i=1(g(k)
i )2λ

γ(k)+1
i

≤ µk

∑l
i=1(g(k)

i )2λ
ρ(k)
i +

∑n
i=l+1(g(k)

i )2λ
ρ(k)
i∑n

i=1+1(g(k)
i )2λ

ρ(k)+1
i

+ (1 − µk)
∑l

i=1(g(k)
i )2λ

γ(k)
i +

∑n
i=1+1(g(k)

i )2λ
γ(k)
i∑n

i=l+1(g(k)
i )2λ

γ(k)+1
i

≤ µk
λ
ρ(k)
l+1

∑l
i=1(g(k)

i )2 +
∑n

i=l+1(g(k)
i )2λ

ρ(k)
i

λl+1
∑n

i=l+1(g(k)
i )2λ

ρ(k)
i

+ (1 − µk)
λ
γ(k)
l+1

∑l
i=1(g(k)

i )2 +
∑n

i=l+1(g(k)
i )2λ

γ(k)
i

λl+1
∑n

i=l+1(g(k)
i )2λ

γ(k)
i

≤ µk
(1/2)ελρ(k)

l+1 + ελ
ρ(k)
l+1

ελ
ρ(k)+1
l+1

+ (1 − µk)
(1/2)ελγ(k)

l+1 + ελ
γ(k)
l+1

ελ
γ(k)+1
l+1

= µk
3/2
λl+1

+ (1 − µk)
3/2
λl+1

=
3
2

(λl+1)−1.

Thus, by recalling the proofs of Lemma 3.5 and Theorem 3.6, we complete the proof
of Corollary 3.9. �

Corollary 3.10. Let model (2.5) be solved by Algorithm 1, where the step size αk
is computed by (3.16). Then either gk = 0 for some finite k, or the sequence {‖gk‖}

R-linearly converges to zero.

Proof. From the proof of Corollary 3.9, we have that [7, Property (A)] holds for the
step size defined by (3.16). By [7, Theorem 4.1], the result in this corollary follows. �

4. Numerical experiments

In this section, we will test the numerical efficiency of Algorithm 1 in virtue of the
adaptive and composite BB step size. Especially, we will compare our methods with
the other ones available in the literature.

Specifically, we call Algorithm 1 the CBB method. If the step size in Algorithm 1 is
computed by (1.2), (1.3), (1.4), (1.5) or (2.4), we call the corresponding algorithms the
BB1, BB2, ABB, NBB and CABB methods, respectively. Our first aim is to investigate
whether or not the new step size αCBB

k is helpful to improve the numerical efficiency
of the state-of-the-art algorithms available in the literature.

For further investigation on the effect of αCBB
k , we are also interested in whether

or not the CABB method outperforms the ABB method proposed in [30]. In order to
reveal what are the advantages of the adaptive weight µk, we compare our method with
a modified version of Algorithm 1, where µk is a fixed constant µ.
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All of the computer codes are written in MATLAB R2014a and numerical
experiments are conducted on a PC with a 2.60 GHz CPU and a 4.00 GB memory-
based operation system of Windows 7.

For simplicity of the statement, we introduce the following notation:

CBB(µ): the gradient method with αk = αCBB
k and µk = µ;

ABB: the gradient method with αk = αABB
k and κ = 0.5;

C(0.8): the gradient method with αk = αCABB
k , µk = 0.8 and κ = 0.5;

CABB: the gradient method with αk = αCABB
k and κ = 0.5;

P: the serial number of the test problems of Andrei [1];
n: the size of the problem;

Cd: the condition number of the Hessian matrix of f ;
NI: the number of iterations;

fmin: the minimal value of the objective function;
T : the CPU time (s) being accurate to the third decimal place;
F: the number of iterations exceeds 10 000 or fmin is not the minimal value.

4.1. Test by ill-posed quadratic problems We first investigate the performance
of all the algorithms as they are applied to solve the ill-posed quadratic minimization
problems.

Consider the following test problem, suggested by Yuan [27]:

f (x) = (x − x∗)T diag(λ1, λ2, . . . , λn)(x − x∗), x ∈ Rn, (4.1)

where diag(λ1, λ2, . . . , λn) creates a square diagonal matrix with the elements of the
vector (λ1, λ2, . . . , λn)T on the main diagonal.

We solve problem (4.1) for the cases n = 10, 102, 103, 104. We randomly choose xi
∗

in the interval (−5, 5), i = 1, 2, . . . , n, to randomly generate different test problems. Let
λ1 = 1. Denote by

λn = Cd(= 10, 102, 103, 104, 105)

the so-called condition number of the Hessian matrix of the objective function f .
Let λi be randomly generated in the interval (1, λn) in order to generate different test
problems, i = 2, 3, . . . , n − 1. For all the randomly generated test problems, we start
with

x0 = zeros(n, 1), α0 = αS D
0 =

gT
0 g0

gT
0∇

2 f (x0)g0
.

The termination condition of all the algorithms is

‖gk‖2 ≤ 10−5‖g0‖2.

First, for each case with different values of n and λn, 10 test problems are generated.
Then we evaluate the numerical performance of each algorithm by the average number
of iterations required by the algorithms. In Table 1, we report the average number of
iterations (NI) required by the different algorithms. The underlined result, the smaller
one in each row, indicates that the corresponding algorithm outperforms the others.

From the numerical results in Table 1, we observe the following results.
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Table 1. Average NI of different algorithms.

n Cd BB1 BB2 NBB CBB ABB CABB C(0.8)

10 10 18.4 18.8 19 19 18.3 19.2 19.4
10 102 50.4 55.2 65 48.1 40.6 40.1 39.6
10 103 87 96.8 142.2 82.3 77.5 79.3 92.1
10 104 141.9 180.7 380.5 139.9 151.4 134.9 155.6
10 105 26.8 27 46.1 26.8 24.7 24.7 26.3
102 10 19.6 19.9 19.3 19.5 19.6 19.1 19.4
102 102 53.9 54.8 63.2 53.9 46.9 46.7 48.1
102 103 103 114.1 158.9 103.3 117 106.5 100.7
102 104 159.7 180.5 262.5 130.5 147.1 130.8 137.5
102 105 59.9 70.7 89.6 59.9 59.3 59.1 53.9
103 10 19 19.9 18.9 18.9 19 18.9 19
103 102 50.7 56.2 57.1 51.5 49 48.4 54
103 103 114.3 114.6 150.3 115.7 115 104.7 108
103 104 112.9 115.2 158.8 115.4 100.2 102.4 104.5
103 105 119.4 122.7 163.3 100.4 118.1 116.5 117.2
104 10 19 20 19.1 19 19 19.1 19
104 102 50.7 59 62.3 52.8 53.4 52.8 49.2
104 103 109.4 119.9 131.1 113.5 98.8 106.1 104.5
104 104 114.8 123.8 153.7 114.8 113.6 112.8 117.9
104 105 117.1 129.6 138.5 118.8 106.2 113.1 113.4

(1) The CBB, ABB, C(0.8) and CABB methods are better than the BB1, BB2 and
NBB methods, and the BB1 method is better than the BB2 and NBB methods.
Out of 20 cases, there are 12, 16, 15 and 16 cases where the CBB, ABB, C(0.8)
and CABB methods perform better than the BB1 method, respectively.

(2) The ABB, C(0.8) and CABB methods perform better than the CBB method. In
addition, the CBB, C(0.8) and CABB methods outperform the ABB method in
eight, 10 and 14 out of 20 cases, respectively.

In Table 2, we further report the average number of iterations required by the
CBB(µ) methods with different fixed values of µ, in order to investigate the influence
of the parameter µ on the performance of the CBB method. We select the value of µ
from {0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

The underlined numerical results in Table 2 indicate that the optimal value of µ is
different for the test problems with different dimensions or condition numbers. The
best choice of µ seems to be chosen in the interval [0.7, 0.9].

To further evaluate the numerical performance of these algorithms, we observe the
performance profiles of iteration and CPU time, which are measured by the function
ρs(τ) proposed by Dolan and Moré [13]. In Figures 1 and 2, we show the numerical
performance of the CBB, CBB(0.8), BB1, CABB, C(0.8) and ABB methods with
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Table 2. Average NI of CBB(µ) with different µ.

CBB(µ)

n Cd 0.1 0.2 0.4 0.5 0.6 0.7 0.8 0.9

10 10 19 19 19.4 19.7 19.4 19.2 19.2 18.5
10 102 59 62.5 63.4 59.3 55.4 53.6 52.5 49.7
10 103 209.4 161.6 129 117.9 113.9 110.4 102.4 89.5
10 104 373.7 257.5 248.2 190 173.2 140.5 144.9 157.6
10 105 43.8 42.6 35.4 36.9 35.1 28.6 30.3 25.5
102 10 19.7 19.8 19.4 19.4 19.3 19.3 19.2 19.5
102 102 57.8 62.5 68.2 59.2 59.2 60 52.9 53.4
102 103 161 167.4 140.9 123.6 122.1 116 97 114.1
102 104 235.9 216.8 186.5 203.3 191.6 174.7 163.7 152.5
102 105 80.4 83.5 78.2 70.3 71.2 68.4 67.8 68.1
103 10 19.2 19.5 19.2 19.1 19 18.9 19.1 19
103 102 61.7 63.5 60.7 57.8 58.7 57.9 54.6 55.3
103 103 165.8 149.3 137.6 125.6 123.9 127.3 117.1 110.8
103 104 167.4 144.1 129.2 130.7 131.8 116.7 114.3 110.6
103 105 167 156.2 140.5 125.3 122.8 122.9 103.4 110.6
104 10 19.1 19.3 19.1 19 19 18.7 18.9 19
104 102 67.1 61.3 59.1 60.6 60.1 58.7 53.7 52.5
104 103 142.1 134.3 130.4 127.8 132.1 113.5 107.8 116
104 104 160.2 157.4 139.1 142.3 133.1 115.7 119.5 113.6
104 105 173.2 170.1 142.2 146.3 140.2 124.3 118.8 131.9

respect to the number of iterations by using the average number of iterations reported
in Tables 1 and 2. In Figures 3 and 4, we show the numerical performance of the CBB,
CBB(0.8), BB1, CABB, C(0.8) and ABB methods with respect to the CPU time. For
Figures 3 and 4, we test problem (4.1) in the cases n = 1000, 10 000 and Cd = 10, 102,
103, 104 and 105. And, for each case, we randomly generated 10 test problems.

In Figures 1–4, the vertical axis gives the probability P of problems for that any
given method is within a factor τ of the best possible ratio. The left-hand axis of the
plot gives the percentage of the test problems for which a method needs the fewest
iterations or least CPU time. The right-hand side of the plot gives the percentage
of the test problems that are successfully solved by each of the methods. Dolan and
Moré [13] pointed out that if the set of test problems is suitably large and representative
of problems that are likely to occur in applications, the methods with large probability
P(τ) are to be preferred.

From Figures 1 and 3, it is clear that the CBB method outperforms the BB1 and
CBB(µ) methods. Therefore, we conclude that the new step size αCBB

k did improve the
numerical efficiency of the BB methods.
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Figure 1. Performance profiles of iteration number for CBB, CBB(0.8) and BB1.

Figure 2. Performance profiles of iteration number for CABB, C(0.8), ABB and CBB.

From Figures 2 and 4, it is easy to see that the numerical performances of the
CABB, C(0.8) and ABB methods are much better than the CBB method. In general,
compared with the ABB and C(0.8) methods, the CABB method performs better.

4.2. Test by generic nonlinear problems At the end of this section, we test
numerical performance of the BB1, CBB, CBB(0.8), ABB, CABB and C(0.8) methods
as they are used to solve the generic nonlinear benchmark test problems (nonquadratic
minimization problems) of Andrei [1]. For each problem, the initial point has been
fixed as in [1]. The initial step size is generated by the Armijo linear search [17, 18]
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Figure 3. Performance profiles of CPU time for CBB, CBB(0.8) and BB1.

Figure 4. Performance profiles of CPU time for CABB, C(0.8), ABB and CBB.

and the termination condition for all the algorithms is ‖gk‖2 ≤ 10−6. All of the 14
generic nonlinear benchmark test problems of Andrei [1] are solved by the BB1, CBB,
CBB(0.8), ABB, CABB and C(0.8) methods. In Table 3, we report the number of
iterations, the minimal value of the objective function and the CPU time, respectively.

The numerical results in Table 3 demonstrate that all the six BB methods can
successfully solve generic large-scale nonlinear (nonquadratic) optimization problems.
Since these algorithms are used to solve problems 5, 6, 18, 29, 41, 49 and 53, it follows
from the numerical performance that each method has its respective advantages. The
underlined numerical results in Table 3 indicate that the CBB(0.8) and CBB (or C(0.8)
and CABB) methods outperform the BB1 (or ABB) method.
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Table 3. Numerical results for the test problems in [1].

P Algorithm n NI fmin T

5

BB1 100 000 F F F
CBB 100 000 F F F

CBB(0.8) 100 000 F F F
ABB 100 000 109 8.461e-19 3.301

CABB 100 000 101 7.233e-14 3.219
C(0.8) 100 000 81 5.694e-18 2.640

6

BB1 100 000 55 1.855e-15 3.693
CBB 100 000 65 7.722e-16 3.351

CBB(0.8) 100 000 70 7.026e-17 2.846
ABB 100 000 41 1.288e-11 1.802

CABB 100 000 47 2.851e-16 2.024
C(0.8) 100 000 52 2.796e-13 2.214

18

BB1 100 78 2.357e-15 0.017
CBB 100 60 8.879e-16 0.009

CBB(0.8) 100 F F F
ABB 100 F F F

CABB 100 F F F
C(0.8) 100 F F F

19

BB1 100 000 7 2.174e-20 0.671
CBB 100 000 7 1.238e-13 0.495

CBB(0.8) 100 000 7 2.815e-16 0.594
ABB 100 000 7 2.174e-20 0.542

CABB 100 000 7 2.815e-16 0.498
C(0.8) 100 000 7 1.385e-13 0.428

21

BB1 100 000 14 1.429e-17 0.710
CBB 100 000 14 8.728e-18 0.572

CBB(0.8) 100 000 14 1.258e-21 0.696
ABB 100 000 14 1.429e-17 0.641

CABB 100 000 14 1.258e-21 0.578
C(0.8) 100 000 14 8.728e-18 0.530
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25

BB1 100 000 310 1.821e-8 6.317
CBB 100 000 811 3.951e-8 13.138

CBB(0.8) 100 000 191 1.391e-8 3.072
ABB 100 000 278 3.588e-8 4.338

CABB 100 000 250 3.810e-8 4.254
C(0.8) 100 000 239 2.458e-8 3.734

29

BB1 1000 210 482.5 0.067
CBB 1000 113 482.5 0.041

CBB(0.8) 1000 140 482.5 0.052
ABB 1000 213 −123.9 0.070

CABB 1000 205 −123.9 0.066
C(0.8) 1000 220 −123.9 0.070

31

BB1 10 000 927 3.610e-08 1.027
CBB 10 000 870 4.727e-08 0.9875

CBB(0.8) 10 000 700 3.506e-08 0.730
ABB 10 000 1145 2.931e-08 1.192

CABB 10 000 1277 4.012e-08 1.315
C(0.8) 10 000 1271 3.502e-08 1.682

37

BB1 10 000 1431 −1 1.335
CBB 10 000 1305 −1 0.969

CBB(0.8) 10 000 1413 −1 1.043
ABB 10 000 940 −1 0.658

CABB 10 000 1146 −1 0.772
C(0.8) 10 000 991 −1 0.681

41

BB1 100 F F F
CBB 100 2684 1.740e-12 0.197

CBB(0.8) 100 1213 6.330e-14 0.109
ABB 100 F F F

CABB 100 F F F
C(0.8) 100 F F F

https://doi.org/10.1017/S1446181118000263 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181118000263


96 T. Li and Z. Wan [21]

43

BB1 1000 2108 1.931e-13 0.360
CBB 1000 1729 3.355e-15 0.349

CBB(0.8) 1000 1546 2.914e-14 0.251
ABB 1000 1140 8.831e-18 0.199

CABB 1000 1130 3.008e-13 0.221
C(0.8) 1000 1058 2.544e-15 0.185

49

BB1 1000 F F F
CBB 1000 1551 −781.9 0.428

CBB(0.8) 1000 F F F
ABB 1000 F F F

CABB 1000 F F F
C(0.8) 1000 F F F

53

BB1 1000 61 1.070e-14 0.026
CBB 1000 62 4.818e-15 0.025

CBB(0.8) 1000 46 4.611e-15 0.021
ABB 1000 F F F

CABB 1000 F F F
C(0.8) 1000 47 2.729e-14 0.019

55

BB1 1000 447 1121e-13 0.111
CBB 1000 382 1.629e-13 0.099

CBB(0.8) 1000 519 2.033e-13 0.141
ABB 1000 327 1.013e-13 0.087

CABB 1000 321 1.381e-13 0.087
C(0.8) 1000 365 1.001e-13 0.090

5. Conclusions

In this paper, we have proposed a new adaptive and composite BB step size,
which is an optimal weighted mean of the classical BB step sizes. Combining the
steepest descent direction and this new step size, the so-called CBB algorithm has
been developed.

We have established the global convergence of the CBB and CABB methods,
as they are applied to solve the quadratic minimization problems. The R-linear
convergence theorem has been established for the CBB and CABB methods.

Numerical experiments demonstrate that the developed algorithm in this paper
outperforms the similar ones available in the literature, since it is used to solve
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ill-posed large-scale quadratic minimization problems or generic nonlinear test
problems. In summary, the new step size is useful to improve the numerical efficiency
of algorithms, especially for solving ill-posed or large-scale optimization problems.
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[12] J. E. Dennis and J. J. Moré, “Quasi-Newton methods, motivation and theory”, Siam Rev. 19 (1977)
46–89; doi:10.1137/1019005.
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