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On Mertens’ Theorem for Beurling Primes
Paul Pollack

Abstract. Let 1 < p1 ≤ p2 ≤ p3 ≤ . . . be an infinite sequence P of real numbers for which
pi → ∞, and associate with this sequence the Beurling zeta function ζP(s) :=

∏∞
i=1(1 − p−s

i )−1.
Suppose that for some constant A > 0, we have ζP(s) ∼ A/(s−1), as s ↓ 1. We prove that P satisfies
an analogue of a classical theorem of Mertens:

∏
pi≤x(1 − 1/pi)−1 ∼ Aeγ log x, as x → ∞. Here

e = 2.71828 . . . is the base of the natural logarithm and γ = 0.57721 . . . is the usual Euler–Mascheroni
constant. This strengthens a recent theorem of Olofsson.

1 Introduction

Let M be the free commutative monoid on the symbols p1, p2, p3, . . . , so that the
elements of M correspond precisely to the products

∏∞
i=1 pei

i , where each ei ≥ 0
and all but finitely many of the ei vanish. By a Beurling system, we mean a map
| · | : M → R>0 with the following properties:

(i) |pi | > 1 for all i,
(ii) |ab| = |a||b| for all a, b ∈M ,
(iii) for all x, there are only finitely many m ∈M with |m| ≤ x.

The elements of M are called Beurling integers, and the pi are called Beurling primes.
Throughout this article, we use the letter B to denote a Beurling system (i.e., a choice
of norm | · |).

In the theory of Beurling primes, the key objects of study are the counting func-
tions

πB(x) :=
∑
|p|≤x

1 and NB(x) :=
∑
|n|≤x

1,

where p runs over all Beurling primes of norm ≤ x in the former sum and n runs
over all Beurling integers of norm ≤ x in the latter. One views πB(x) as an analogue
of the classical prime counting function π(x) and NB(x) as an analogue of the integer
counting function bxc. The fundamental goal in Beurling prime number theory is to
show that if one of πB(x) or NB(x) behaves like its classical counterpart, then so
does the other.

Beurling’s initial theorem [1] was the following generalization of the classical
prime number theorem. Suppose that for some fixed A > 0, we have the estimate

(1.1) NB(x) = Ax + O
(

x/(log x)a
)
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with an exponent a > 3/2. Under these conditions, πB(x) ∼ x/ log x (as x → ∞).
In other words, the analogue of the prime number theorem holds for the Beurling
system. It is known ([2]) that Beurling’s result is sharp. The asymptotic relation may
fail if we only assume (1.1) with a = 3/2. Moreover, for any a < 1, there are Beurling
systems for which (1.1) holds and for which lim supx→∞ πB(x)/(x/ log x) =∞ and
lim infx→∞ πB(x)/(x/ log x) = 0 (see [5], and cf. [3]). So the following theorem
of Olofsson [8, Theorem 1.1], which assumes comparatively little about NB(x), is
perhaps a bit surprising.

Theorem A Assume that there is a constant A > 0 with NB(x) ∼ Ax, as x → ∞.
Then one has an analogue of Mertens’ theorem: As x→∞,

(1.2)
∏
|p|≤x

(1− 1/|p|)−1 ∼ Aeγ log x.

In this note, we investigate weakening the hypothesis in Olofsson’s result. Define
the Beurling zeta-function by the Euler-product formula

ζB(s) :=
∏
p

1

1− 1
|p|s

.

Since ζB(s) =
∫∞

1− t−s dNB(t), integration by parts shows that if NB(x) ∼ Ax (with
A > 0), then

(1.3) ζB(s) ∼ A

s− 1
, as s ↓ 1.

Our first theorem shows that one can replace Olofsson’s hypothesis on NB(x) with
(1.3). In fact, (1.2) and (1.3) turn out to be equivalent.

Theorem 1.1 Let A > 0. If (1.3) holds for a Beurling system B, then so does (1.2).
Conversely, the Mertens-type formula (1.2) implies (1.3).

Remark 1.2 Theorem 1.1 could also have been formulated with the hypothesis
(1.3) on ζB(s) replaced by the assumption that

∑
|n|≤x

1
|n| ∼ A log x, as x → ∞.

Indeed, these two conditions on a Beurling system turn out to be equivalent. The
forward direction of this equivalence is proved below as Lemma 2.1; the other direc-
tion follows by partial summation, using the fact that ζB(s) =

∑
n

1
|n|s .

If K is a number field, one can put the pi in one-to-one correspondence with the
prime ideals of the ring of integers of K, setting |pi | equal to the norm of the cor-
responding prime ideal. Then there is a norm-preserving isomorphism between the
Beurling system B so obtained and the monoid of integral ideals of K. After Dirichlet
and Dedekind, one knows that NB(x) ∼ Ax, where A depends on certain arithmetic
invariants of K. Thus, Olofsson’s Theorem A gives another proof of Mertens’ theo-
rem for number fields. (For a precise statement, see [12, Theorem 2].) Unfortunately,
Theorem A does not apply in the global function field case, since the number of divi-
sors of norm≤ x is not asymptotic to a constant multiple of x. However, it is still true
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that the associated zeta function has a simple pole at s = 1 with an easily described
residue, and so Theorem 1.1 permits one to to recover the function field analogue of
Mertens’ theorem [12, Theorem 3], although without an explicit error term. Thus,
we achieve a unified proof of Mertens’ theorem for global fields. For further work on
these generalizations; see [7].

Using the known results on the analytic behavior of Ruelle zeta functions, The-
orem 1.1 immediately yields Sharp’s analogue of Mertens’ theorem for hyperbolic
flows [13]; cf. [10]. (The needed properties of these zeta functions are established in
[9, Theorem 5.6, p. 84], the example on pp. 85–86, and the calculation at the top of
p. 96. See also the survey in [11, §6].)

One may try weakening Olofsson’s hypotheses even further. As remarked above,
the hypothesis (1.3) is equivalent to the assumption that

∑
|n|≤x 1/|n| ∼ A log x.

In the next theorem, we consider the situation where one supposes only that∑
|n|≤x 1/|n| � log x.

Theorem 1.3 Suppose B is a Beurling system for which

(1.4)
∑
|n|≤x

1

|n|
� log x

for all x ≥ 2. Then for x ≥ 2,

(1.5)
∏
|p|≤x

(1− 1/|p|)−1 � log x.

This conclusion is best possible, in the sense that (1.4) may hold without the quotient of
the left and right-hand sides of (1.5) tending to a limit (as x→∞).

Notation

We continue to use B to denote a fixed Beurling system. In what follows, the letters
m, n, and d are reserved for Beurling integers, and the letter p for Beurling primes.
We always assume (relabelling the pi if necessary) that |p1| = mini≥1 |pi |. We use Ei

for the exponential integral, so that Ei(x) :=
∫ x
−∞

et

t dt .

We remind the reader that “ f = O(g)”, “ f � g”, and “g � f ” all mean that
for some positive constant C , we have | f | ≤ Cg for all values of the variables under
consideration. The notation f � g means that f � g and g � f . All implied
constants may depend on B.

2 Proof of Theorem 1.1

We begin by quoting two Tauberian theorems from the literature (see [6, Theorems
15.1 and 15.3, p. 30]).
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Theorem B Let s(v) vanish for v < 0, be nondecreasing, continuous from the right,
and suppose that for some fixed α > 0 and some constant L > 0, we have∫ ∞

0−
e−rv ds(v) ∼ L/rα, as r ↓ 0.

Then as u→∞, we have s(u) ∼ L
Γ(α+1) uα.

Theorem C Suppose a(v) is locally Riemann integrable and that the improper integral
F(r) :=

∫∞
0 a(v)e−rv dv exists for all r > 0. Suppose that F(r) → L as r ↓ 0 and that

for all sufficiently large values of v, one has a(v) ≥ −C/v for some constant C > 0.
Then (as an improper Riemann integral)

∫∞
0 a(v) dv = L.

We suppose for the remainder of this section that we have fixed a Beurling system
B satisfying (1.3). The next sequence of lemmas develops the basic analytic number
theory of the corresponding Beurling integers.

Lemma 2.1 As x→∞, we have
∑
|n|≤x

1
|n| ∼ A log x.

Proof We apply Theorem B with s(v) :=
∑
|n|≤ev |n|−1. Then∫ ∞

0−
e−rv ds(v) =

∑
n

|n|−1−r = ζB(1 + r) ∼ A/r, as r ↓ 0.

So by Theorem B (with L = A and α = 1), we have s(u) ∼ Au as u → ∞. Now put
u = log x to obtain the lemma.

For each Beurling integer n, set Λ(n) = log |p| if n is a power of the Beurling
prime p, and put Λ(n) = 0 otherwise.

Lemma 2.2 As x→∞, we have∑
|d|≤x

Λ(d)

|d|
∑

|m|≤x/|d|

1

|m|
∼ A

2
(log x)2.

Proof Since log |n| =
∑

d|n Λ(d), we have

∑
|n|≤x

log |n|
|n|

=
∑
|n|≤x

1

|n|
∑
d|n

Λ(d) =
∑
|d|≤x

Λ(d)
∑
|n|≤x

d|n

1

|n|
=
∑
|d|≤x

Λ(d)

|d|
∑

|m|≤x/|d|

1

|m|
.

On the other hand,∑
|n|≤x

log |n|
|n|

=

∫ x

1−
log t d

(∑
|n|≤t

1

|n|

)
∼ A

2
(log x)2

by Lemma 2.1 and an easy integration by parts. Comparing these two expressions
gives the lemma.
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Lemma 2.3 As x→∞, we have( 1

2
+ o(1)

)
log x ≤

∑
|d|≤x

Λ(d)

|d|
≤
(

2 + o(1)
)

log x.

Proof First, observe that from Lemma 2.2,∑
|d|≤x

Λ(d)

|d|
∑
|m|≤x

1

|m|
≥
(

1 + o(1)
) A

2
(log x)2;

using that
∑
|m|≤x 1/|m| ≤ (1 + o(1))A log x, we obtain the lower estimate of the

lemma. Next, note that from Lemma 2.2,∑
|d|≤
√

x

Λ(d)

|d|
∑
|m|≤

√
x

1

|m|
≤
∑
|d|≤x

Λ(d)

|d|
∑

|m|≤x/|d|

1

|m|
≤
(

1 + o(1)
) A

2
(log x)2.

Since
∑
|m|≤

√
x

1
|m| ≥ ( 1

2 + o(1))A log x, we find that∑
|d|≤
√

x

Λ(d)

|d|
≤
(

1 + o(1)
)

log x.

Now replace x with x2 to obtain the upper estimate.

Lemma 2.4 As x→∞,

(2.1)
∑
|d|≤x

Λ(d)

|d|
log

x

|d|
∼ 1

2
(log x)2.

Proof Write
∑
|m|≤t |m|−1 = A log t + E(t), so that E(t) = o(log t) as t → ∞. By

Lemma 2.2, it suffices to show that as x→∞,∑
|d|≤x

Λ(d)

|d|
E
(

x/|d|
)

= o
(

(log x)2
)
.

Fix ε > 0. Choose t0 so that |E(t)| < ε log t once t ≥ t0. Then with B denoting an
upper bound on |E(t)| for t ≤ t0, we find that∣∣∣∣ ∑

|d|≤x

Λ(d)

|d|
E
(

x/|d|
) ∣∣∣∣ ≤ ε ∑

|d|≤x/t0

Λ(d)

|d|
log

x

|d|
+

∑
x/t0<|d|≤x

Λ(d)

|d|
∣∣E(x/|d|

) ∣∣
≤ ε log x

∑
|d|≤x

Λ(d)

|d|
+ B

∑
|d|≤x

Λ(d)

|d|
.

Using the upper bound of Lemma 2.3, we see that

lim sup
x→∞

∣∣∣∑|d|≤x
Λ(d)
|d| E(x/|d|)

∣∣∣
(log x)2

≤ 2ε.

Since ε > 0 was arbitrary, the lemma follows.
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We now improve Lemma 2.3 to an asymptotic result.

Lemma 2.5 As x→∞, we have

∑
|d|≤x

Λ(d)

|d|
∼ log x.

Proof Write G(x) for the sum appearing on the left-hand side of (2.1). For each fixed
ε > 0, we have

G(x1+ε)− G(x) ≥
∑
|d|≤x

Λ(d)

|d|
log(xε) = ε log x

∑
|d|≤x

Λ(d)

|d|
.

On the other hand, using the asymptotic formula provided by Lemma 2.4,

G(x1+ε)− G(x) ∼ 1

2

(
(1 + ε)2 − 1

)
(log x)2.

Comparing these two expressions, we find that

lim sup
x→∞

∑
|d|≤x

Λ(d)
|d|

log x
≤ 1

2

(1 + ε)2 − 1

ε
.

Letting ε ↓ 0, we get the upper-bound estimate implicit in the statement of
Lemma 2.5. The lower bound can be handled similarly, upon noting that

G(x)− G(x1−ε) =
∑
|d|≤x1−ε

Λ(d)

|d|
log(xε) +

∑
x1−ε<|d|≤x

Λ(d)

|d|
log

x

|d|

≤
∑
|d|≤x

Λ(d)

|d|
log(xε) = ε log x

∑
|d|≤x

Λ(d)

|d|
.

We next prove two crude bounds on NB(x) and πB(x).

Lemma 2.6 For x ≥ 3, we have NB(x)� x log x.

Proof We have only to observe that

NB(x) =
∑
|n|≤x

1 ≤ x
∑
|n|≤x

1

|n|
� x log x,

using Lemma 2.1 in the last step.

To establish the needed estimate on πB(x), we first isolate a simple consequence
of Lemmas 2.5 and 2.6.
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Lemma 2.7 As x→∞, we have

∑
|p|≤x

log |p|
|p|

∼ log x.

Proof After Lemma 2.5, it suffices to observe that the contribution to
∑
|d|≤x

Λ(d)
|d|

from those d which are not prime is

≤
∑
|p|≤x

log |p|
( 1

|p|2
+

1

|p|3
+ · · ·

)
�
∑
|p|≤x

log |p|
|p|2

≤
∫ ∞

1

log t

t2
dNB(t)� 1,

using Lemma 2.6 to estimate the integral.

Lemma 2.8 πB(x)/x→ 0 as x→∞.

Proof As x→∞,

#
{

p : x/(log x)2 < |p| ≤ x
}
· log x

x
≤

∑
x/(log x)2<|p|≤x

log |p|
|p|

= o(log x),

by Lemma 2.7. Hence, the number of primes p with x/(log x)2 < |p| ≤ x is o(x). But
the number of p with |p| ≤ x/(log x)2 is trivially at most NB(x/(log x)2)� x/ log x
(using Lemma 2.6), and so is also o(x).

We can now complete the proof of Theorem 1.1. We begin with the forward di-
rection.

Proof that (1.3)⇒ (1.2) The proof of (1.2) is completed in the same manner as
Olofsson’s Theorem A. To keep the paper self contained, we give the details, closely
following [8]. For real s > 1,

log ζB(s)

= −
∫ ∞
|p1|−

log(1− t−s) dπB(t) = s

∫ ∞
|p1|

πB(t)

t(t s − 1)
dt

= s

∫ ∞
|p1|

(
πB(t)− t

log t

)
t−(s+1) dt + s

∫ ∞
|p1|

πB(t)

t s+1(t s − 1)
dt + s

∫ ∞
|p1|

t−s

log t
dt.

(2.2)

Thus, as s ↓ 1,

log ζB(s) = s

∫ ∞
|p1|

( πB(t)

t2
− 1

t log t

)
t−(s−1) dt +

∫ ∞
|p1|

πB(t)

t2(t − 1)
dt

+ log
1

s− 1
− log log |p1| − γ + o(1).
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(The final integral appearing in (2.2) can be seen to equal −Ei((1 − s) log |p1|), by a
change of variables; the estimate given above then follows from the relation Ei(t) =
log(−t) + γ + o(1), as t ↑ 0. See, e.g., [4, p. 884].) Put

(2.3) I(s− 1) :=

∫ ∞
|p1|

( πB(t)

t2
− 1

t log t

)
t−(s−1) dt.

From the above and our hypothesis (1.3) that (s−1)ζB(s)→ A, we have that as s ↓ 1,

s · I(s− 1) = log
(

(s− 1)ζB(s)
)

+ log log |p1| + γ −
∫ ∞
|p1|

πB(t)

t2(t − 1)
dt + o(1)

= L + o(1),

where

L := log(Aeγ) + log log |p1| −
∫ ∞
|p1|

πB(t)

t2(t − 1)
dt.

(2.4)

If we make the change of variables t := ev, we find that

I(s− 1) =

∫ ∞
log |p1|

( πB(ev)

ev
− 1

v

)
e−v(s−1) dv.

As s ↓ 1, we have seen that I(s − 1) → L; applying Theorem C with a(v) :=
πB(ev)e−v − v−1 shows that

(2.5) I(0) = L.

Applying partial summation once again, we find that

log
∏
|p|≤x

(
1− 1/|p|

)−1
= −

∑
|p|≤x

log
(

1− 1/|p|
)

= −
∫ x

|p1|−
log(1− 1/t) dπB(t)

=

∫ x

|p1|

πB(t)

t2 − t
dt + O

(
πB(x)/x

)
.

The error term is o(1) by Lemma 2.8. Keeping (2.5) in mind, we see that as x→∞,∫ x

|p1|

πB(t)

t2 − t
=

∫ x

|p1|

( πB(t)

t2
− 1

t log t

)
dt +

∫ x

|p1|

dt

t log t
+

∫ x

|p1|

πB(t)

t2(t − 1)
dt

= I(0) + log log x − log log |p1| +
∫ ∞
|p1|

πB(t)

t2(t − 1)
dt + o(1)

= log (Aeγ log x) + o(1).

Collecting our estimates and exponentiating, we arrive at the estimate∏
|p|≤x

(
1− 1/|p|

)−1 ∼ Aeγ log x,

which completes the proof.
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The reverse direction is easier.

Proof that (1.2)⇒ (1.3) We have to show that if B is a Beurling system for which
the Mertens-type theorem (1.2) holds with the constant A > 0, then ζB(s) ∼
A/(s− 1) as s ↓ 1. We first show that the crude estimates of Lemmas 2.6 and 2.8
are valid under the hypothesis (1.2). First, observe that

NB(x) ≤ x
∑
|n|≤x

1

|n|
≤ x

∏
|p|≤x

(
1− 1/|p|

)−1 � x log x.

Also, (1.2) gives that

log
∏

x/(log x)2<|p|≤x

(
1− 1/|p|

)−1 → 0, as x→∞.

But

log
∏

x/(log x)2<|p|≤x

(
1− 1/|p|

)−1 ≥
∑

x/(log x)2<|p|≤x

1

|p|

≥ 1

x
#
{

p : x/(log x)2 < |p| ≤ x
}
.

Hence, there are only o(x) primes p with x/(log x)2 < |p| ≤ x, as x → ∞. As in
the proof of Lemma 2.8, there are� x/ log x primes p with |p| ≤ x/(log x)2. So the
number of p with |p| ≤ x is o(x).

With this preparation out of the way, we can reason as in the proof of the forward
direction to find that

log
∏
|p|≤x

(1− 1/|p|)−1 =

∫ x

|p1|

( πB(t)

t2
− 1

t log t

)
dt + log log x − log log |p1| +

∫ ∞
|p1|

πB(t)

t2(t − 1)
dt + o(1).

We are assuming the Mertens-type formula (1.2) holds, so that

log
∏
|p|≤x

(
1− 1/|p|

)−1
= log(Aeγ) + log log x + o(1);

comparing with the previous expression, we deduce that if we define

L(x) :=

∫ x

|p1|

( πB(t)

t2
− 1

t log t

)
dt,

then L(x)→ L as x →∞, where L is as in (2.4). In other words, defining I(s− 1) as
in (2.3), we have I(0) = L.
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Returning to ζB(s), we have (by the same arguments appearing in the forward
direction) that as s ↓ 1,

log ζB(s) = sI(s− 1) +

∫ ∞
|p1|

πB(t)

t2(t − 1)
dt + log

1

s− 1
− log log |p1| − γ + o(1).

If we show that I(s − 1) → I(0) = L as s ↓ 1, substituting the value (2.4) of L into
this expression will give that as s ↓ 1,

log ζB(s) = log
A

s− 1
+ o(1),

and the desired result (1.3) will follow upon exponentiating. To see that I(s−1)→ L
as s ↓ 0, we note that for s > 1,

I(s− 1) =

∫ ∞
|p1|

t−(s−1) dL(t) = (s− 1)

∫ ∞
|p1|

L(t)t−s dt.

Since L(t) → L as t → ∞, it is straightforward to show (by writing L(t) = L + E(t),
where E(t) = o(1) as t →∞) that as s ↓ 1,

I(s− 1) = (s− 1)

∫ ∞
|p1|

L · t−s dt + o(1) = L + o(1).

This completes the proof.

3 Proof of Theorem 1.3

We now suppose that B is a fixed Beurling system for which
∑
|n|≤x

1
|n| � log x for

x ≥ 2. In this situation, it is easy to establish the lower estimate implicit in (1.5). We
have ∏

|p|≤x

(
1− 1/|p|

)−1
=

∑
n: p|n⇒|p|≤x

1

|n|
≥
∑
|n|≤x

1

|n|
� log x.

So we may focus our attention on the upper estimate. Now

∑
|p|≤x

(
log

1

1− 1/p
− 1

p

)
=
∑
|p|≤x

( 1

2|p|2
+

1

3|p|3
+ · · ·

)

�
∑

p

1

|p|2
≤
∑

n

1

|n|2
=

∫ ∞
1−

1

t
d

(∑
|n|≤t

1

|n|

)
� 1.

(3.1)

Thus, it is enough to show that for x ≥ 3,

(3.2)
∑
|p|≤x

1

|p|
≤ log log x + O(1).
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To establish (3.2), we need the following crude upper bound for the sum consid-
ered in Lemmas 2.3 and 2.5:

(3.3)
∑
|d|≤x

Λ(d)

|d|
� log x.

This is simple to prove. On one hand,
∑
|n|≤x

log |n|
|n| =

∫ x
1− log t d

(∑
|n|≤t

1
|n|
)
�

(log x)2. On the other hand,

∑
|n|≤x

log |n|
|n|

=
∑
|n|≤x

1

|n|
∑
d|n

Λ(d) =
∑
|d|≤x

Λ(d)

|d|
∑

|m|≤x/|d|

1

|m|
� log x

∑
|d|≤
√

x

Λ(d)

|d|
.

Comparing these two estimates shows that
∑
|d|≤
√

x
Λ(d)
|d| � log x. Replacing x by x2

gives (3.3).
Next, observe that for s > 1, we have

log ζB(s) = log
∏
p

(1− |p|−s)−1 ≥
∑

p

|p|−s.

Our hypothesis (1.4) on the partial sums of 1
|n| shows that

ζB(s) =

∫ ∞
1−

t−(s−1) d

(∑
|n|≤t

1

|n|

)
= (s− 1)

∫ ∞
1

(∑
|n|≤t

1

|n|

)
t−s dt

� 1 + (s− 1)

∫ ∞
1

(log t) · t−s dt = 1 + (s− 1) · 1

(s− 1)2
=

s

s− 1
.

Thus, for 1 < s < 2 (say), ∑
p

|p|−s ≤ log
1

s− 1
+ O(1).

Taking s = 1 + 1
log x shows that for x ≥ 3,∑
|p|≤x

|p|−1−1/ log x ≤
∑

p

|p|−1−1/ log x ≤ log log x + O(1).

But ∑
|p|≤x

|p|−1 −
∑
|p|≤x

|p|−1−1/ log x =
∑
|p|≤x

|p|1/ log x − 1

|p|1+1/ log x

� 1

log x

∑
|p|≤x

log |p|
|p|

� 1,
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by (3.3). This proves (3.2) and completes the proof of (1.5).
It remains to show that condition (1.4) does not imply that the ratio of the left

and right-hand sides of (1.5) tends to a limit. By (3.1), this is equivalent to showing
that there is a Beurling system satisfying (1.4) for which the differences

(3.4)
∑
|p|≤x

1

|p|
− log log x

do not tend to a limit as x →∞. We will show more than this; we demonstrate how
to construct a Beurling system where (3.4) fails to tend to a limit, but which has the
property (stronger than (1.4)) that

NB(x) � x (for x ≥ 1).

The existence of such a system will be deduced from the following theorem of
Zhang (see [14, Theorem 4.1]):.

Theorem D Let B be a Beurling system, and suppose that with

(3.5) ΠB(x) := πB(x) +
1

2
πB(x1/2) +

1

3
πB(x1/3) + · · · ,

we have both ΠB(x) � x/ log x for large x and, as s ↓ 1,

(3.6)

∫ ∞
1

t−s dΠB(t)− log
1

s− 1
� 1.

Then NB(x) � x.

Our strategy is to first choose the norms |pi | to guarantee that (3.4) is bounded
but not convergent and then to use Theorem D to show that the Beurling system
determined by our choice satisfies NB(x) � x.

We start by constructing a set R of natural numbers with counting function
R(x) � x/ log x and with the property that∑

r∈R∩[1,x]

1

r
− log log x

is bounded for x ≥ 3 but does not converge as x→∞. Using the letter q to denote a
generic rational prime, choose the natural number x1 minimally, so that if R1 consists
of all the numbers of the form q or q + 1 not exceeding x1, then

(3.7)
∑

r∈R1

1

r
−
∑
q≤x1

1

q
> 1.

Next, choose x2 > x1 minimally, so that if R2 consists of the primes≡ 1 (mod 4) in
(x1, x2], then

(3.8)
∑

r∈R1∪R2

1

r
−
∑
q≤x2

1

q
< −1.
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Then choose x3 > x2 minimally, so that if R3 consists of all the numbers of the form
q or q + 1 in (x2, x3], then ∑

r∈R1∪R2∪R3

1

r
−
∑
q≤x3

1

q
> 1,

and continue defining R4, R5, . . . , alternating as above. Finally, set R := ∪∞i=1Ri .
Let us check that R has the desired properties. Clearly R(x) ≤ 2π(x) � x/ log x

(for large x), where π(x) is the usual (rational) prime counting function. It is slightly
more involved to obtain the corresponding lower estimate R(x) � x/ log x. We first
show that for large i, we have R(xi) � π(xi). For this, it is enough to show that
for every large j, a proportion� 1 of the rational primes belonging to (x j , x j+1] are
included in R. If j is even, then R includes every rational prime from that interval,
so suppose that j is odd. In that case, subtracting the analogue of (3.8) for x j+1 from
the analogue of (3.7) for x j , we find that

∑
x j<q≤x j+1

q≡3 (mod 4)

1

q
> 2,

which implies that x j+1 > x2
j (say) for large values of j. So by the prime number theo-

rem for progressions, the number of primes≡ 1 (mod 4) in (x j , x j+1] is> 1
3π(x j+1).

This completes the proof that R(xi)� π(xi).
Now we prove that R(x) � x/ log x for large x. From our work in the last para-

graph, we can assume that xi < x < xi+1 for some index i. We know that

R(x)� π(xi) + #{r ∈ R : xi < r ≤ x}.

If i is even, then every prime from (xi , x] is counted in the second summand, and
so R(x) � π(x) � x/ log x in this case. Suppose that i is odd. Then if x ≥ 2xi

(and large, as we are assuming), the number of primes included in R from (xi , x]
is at least 1

3 of the total number of such primes, and again we may conclude that
R(x)� π(x)� x/ log x. But if x ≤ 2xi , then

R(x)� π(xi)� xi/ log xi � x/ log x,

and so the desired lower bound still holds. Finally, since
∑

q≤x
1
q − log log x tends to

a limit, it is clear from our construction that∑
r∈R∩[1,x]

1

r
− log log x

is O(1) but does not converge as x→∞.
Now we define a Beurling system B by setting |pi | to be the ith smallest element

of R. As shown above, πB(t) � t/ log t for large t . (In fact, 2 ∈ R, so that this
estimate holds for t ≥ 2.) So with ΠB(t) defined by (3.5), we have ΠB(t) = πB(t) +
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O(t1/2). Consequently, ΠB(t) � t/ log t , and to verify (3.6), it is enough to verify
the corresponding condition with ΠB(t) replaced by πB(t). But this variant follows
from the estimate

∑
|p|≤x

1
|p| − log log x� 1. Indeed, for s > 1, that estimate shows

∫ ∞
1

t−s dπB(t) =

∫ ∞
1

t−(s−1) d

(∑
|p|≤t

|p|−1
)

= (s− 1)

∫ ∞
|p1|

t−s

(∑
|p|≤t

|p|−1

)
dt

= (s− 1)

∫ ∞
|p1|

t−s log log t dt + O(1),

while as s ↓ 1,

(s− 1)

∫ ∞
|p1|

t−s log log t dt = log log |p1| + o(1) +

∫ ∞
|p1|

t−s

log t
dt

= log
1

s− 1
− γ + o(1).

(In the first of the two lines above, we have integrated by parts, and in the second
line we have again used the asymptotic expansion of the exponential integral.) By
Theorem D, our Beurling system has NB(x) � x, as desired.
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