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Filaments are ubiquitous within the microscopic world, occurring in biological and
industrial environments and displaying a varied dynamics. Their wide range of
applications has spurred the development of a branch of asymptotics focused on the
behaviour of filaments, called slender-body theory (SBT). Slender-body theories are
computationally efficient and focus on the mechanics of an isolated fibre that is slender
and not too curved. However, SBTs that work beyond these limits are needed to explore
complex systems. Recently, we developed tubular-body theory (TBT), an approach like
SBT that allows the hydrodynamic traction on any isolated fibre in a viscous fluid to
be determined exactly. This paper extends TBT to model fibres near plane interfaces by
performing a similar expansion on the single-layer boundary integrals (BIs) for bodies
by a plane interface. This provides a well-behaved SBT inspired approach for fibres
by interfaces with a similar versatility to the BIs but without the singular kernels.
The derivation of the new theory, called tubular-body theory for interfaces (TBTi),
also establishes a criterion for the convergence of the TBTi series representation. The
TBTi equations are solved numerically using a approach similar to boundary element
methods (BEMs), called TBTi-BEM, to investigate the properties of TBTi empirically.
The TBTi-BEM is found to compare favourably with an existing BEM and the lubrication
singularity on a sphere, suggesting TBTi is valid for all separations. Finally, we simulate
the hydrodynamics of helices beneath a free interface and a plane wall to demonstrate the
applicability of the technique.

Key words: slender-body theory, micro-organism dynamics

1. Introduction

Fibres and filaments play crucial roles in the motion and organisation of microscopic
systems. Many bacteria rotate rigid helical filaments, called flagella, to generate motion
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(Lauga 2016), some organisms use microscopic filaments, called cilia, to generate
symmetry breaking flows in early embryo development (Hernández-Pereira et al. 2019)
and actin filaments and microtubules play an active role in the organisation of eukaryotic
cells (Ganguly et al. 2012; Nazockdast et al. 2017). In attempts to mimic their biological
counterparts, many microscopic robots also use filaments to control behaviour (Qiu &
Nelson 2015; Magdanz et al. 2020; Li & Pumera 2021), which may lead to the development
of new keyhole surgery techniques and methods for targeted drug delivery. The large range
of applications of wiry bodies is only possible because of the wide variety of behaviours
that a single elastic filament can display (du Roure et al. 2019).

The sizes and speeds typical of these microscopic cables mean that their movement
is dominated by the frictional forces in the surrounding fluid. These filaments can
therefore be accurately modelled using the equations for slow viscous flows: the Stokes
equations (Kim & Karrila 2005). However, many numerical approaches struggle to resolve
the behaviour of filaments because of their large aspect ratio (defined as length over
thickness). This prompted the creation of slender-body theory (SBT), an asymptotic
method developed to describe the hydrodynamics of fibres with large aspect ratios. The
SBTs can be separated into local drag theories (Cox 1970; Gray & Hancock 1955; Koens
& Montenegro-Johnson 2021) and non-local integral operator theories (Keller & Rubinow
1976; Lighthill 1976; Johnson 1979; Koens & Lauga 2018). Local drag theories, sometimes
called resistive-force theories (RFTs), provide a linear relationship between the velocity
and the force on a filament but require the logarithm of the aspect ratio of the filament
to be much larger than one. Resistive-force theories are, therefore, easy to use but only
qualitatively describe the behaviour of real filaments. The non-local, one-dimensional
integral operator theories, however, offer greater accuracy (Ohm et al. 2019; Mori &
Ohm 2020; Mori, Ohm & Spirn 2020) but need to be solved numerically. This numerical
inversion can be tricky, with the most common SBT integral operator being divergent and
prone to high-frequency instabilities (Andersson et al. 2021).

Slender-body theory is a powerful tool that has been key in understanding the behaviour
of many microscopic systems (Ganguly et al. 2012; Qiu & Nelson 2015; Lauga 2016;
Nazockdast et al. 2017; Hernández-Pereira et al. 2019; du Roure et al. 2019; Magdanz
et al. 2020; Li & Pumera 2021). However, most derivations of SBT assume that the fibre
is isolated from any other body and that the filament thickness is much smaller than any
other length scale within the system. Attempts to overcome these limitations are often very
complex (Katsamba, Michelin & Montenegro-Johnson 2020), limited to specific regions
(De Mestre & Russel 1975; Katz, Blake & Paveri-Fontana 1975; Barta & Liron 1988a,b),
or to specific geometries (Brennen & Winet 1977). Indeed, slender-body approaches that
go beyond these limits have been identified as a key priority for many interdisciplinary
fields (Reis, Brau & Damman 2018; du Roure et al. 2019; Kugler et al. 2020).

The last few years have seen significant developments made in extending SBT beyond
the typical limits. Local drag theories have been extended to model fibres in viscoplastic
fluids (Hewitt & Balmforth 2018) and a RFT model for rods at any distance above a plane
interface was found (Koens & Montenegro-Johnson 2021). The careful treatment of point
torques (Walker, Ishimoto & Gaffney 2023) and regularised point torques (Maxian &
Donev 2022) have identified important higher-order contributions from rotation. These
studies offered new analytical insights into the torques and coupling generated from
rotations around a filament’s centreline.

Among these developments, we created tubular-body theory (TBT) (Koens 2022).
Tubular-body theory determines the traction jump on any isolated cable-like body with
an interior fluid, which can be found exactly by iteratively solving a one-dimensional
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SBT-like operator. Unlike the popular SBT operator of Johnson (1979), the TBT kernel
is compact, symmetric and self-adjoint, thereby formally transforming the problem into
a one-dimensional Fredholm integral equation of the second kind. Fredholm integral
equations of the second kind are well posed and there are many techniques to solve them
exactly and numerically (Dmitrievich & Vladimirovich 2008). Although currently a purely
numerical tool, TBT is valid well beyond the typical SBT limits, including capturing
the hydrodynamics of bodies with arbitrary aspect ratios, thickness variations and body
curvatures.

This paper extends TBT to consider the motion of a cable-like body next to a plane
interface. The geometry of the system is described in § 2 and some background into slow
viscous flows is provided in § 3. In § 4, the single-layer boundary integral representation
for a tubular body by an interface is expanded using the steps of regularisation, binomial
series and reorganisation, similarly to the free-space TBT derivation. Inherited from
free-space TBT, the resultant TBT by interfaces (TBTi) system allows for the traction
jump on the body to be determined exactly by iteratively solving a well-behaved
Fredholm integral equation of the second kind. Hence, the TBTi formulation avoids
the implementation difficulties associated with the singular kernels in SBT and the
standard boundary integrals. The iterative TBTi representation is equivalent to a geometric
series and converges absolutely if certain conditions on the eigenvalues of the operator
are met. Using the Galerkin method described in § 5, the TBTi equations are solved
numerically in § 6 in an approach we call TBTi-BEM (boundary element method) and
its results are compared with BEMs and wall corrected SBT models for a spheroid with
symmetry axis perpendicular to the wall normal. This Galerkin approach was chosen
as it allows many properties of the TBTi operators to be empirically investigated with
ease. These comparisons highlight the accuracy of TBTi-BEM to within numerical
tolerance for all the distances and aspect ratios tested, the power of TBTi over typical
SBT approaches and empirically evidence the satisfaction of the conditions placed on
the TBTi operator. In particular, these examples suggest that TBTi is able to accurately
capture lubrication effects, although additional iterations are required as an object closely
approaches a boundary. Finally, in § 7, we compare the traction jump associated with a
helix approaching a rigid wall with that near a free interface, each of which are found to
be consistent with the scaling of lubrication forces.

2. Geometry of the tubular body

The surface of a tubular body is geometrically identical to that of a slender body but does
not assume that the aspect ratio of the body is large. Beneath a plane interface, such a body
can be parameterised by an arclength parameter s ∈ [−1, 1] and an angular parameter θ as

S(s, θ) = r(s) + ρ(s)êρ − dẑ, (2.1)

where r(s) is the centreline of the filament, ρ(s) is the cross-sectional radius, êρ = cos[θ −
θi(s)]n̂(s) + sin[θ − θi(s)]b̂(s) and d is the offset of the body from the plane interface
located at z = 0 (figure 1). The maximum radius of the filament is denoted by η. In the
above parameterisation, ẑ is the unit vector in the direction of increasing z, n̂(s) is the
normal vector of the centreline, b̂(s) is the binormal vector of the centreline and θi(s) sets
the origin of the θ coordinate. The function θi is defined such that dθi/ds = τ(s) for torsion
τ = db̂/ds · n̂, which removes any dependence of our analysis on the torsion (Koens &
Lauga 2018). We assume that the tubular body lies completely under the z = 0 plane and it
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z = 0

r(s)

2ρ(s)

d – r(s) · ẑ

êρ(s, θ)

t̂ (s)

ẑ x̂

ŷ

Figure 1. Diagram of a tubular body under a plane interface at z = 0. The distance from the place interface is
denoted by d, r(s) represents the centreline of the tubular body, ρ(s) is the thickness of the body at s, t̂(s) is the
tangent vector to the centreline and êρ(s, θ) is the local radial vector around the centreline.

does not intersect itself, so that S(s, θ) · ẑ < 0 and S(s, θ) /= S(s′, θ ′) if (s, θ) /= (s′, θ ′),
respectively.

This fibre parameterisation assumes that the body can be described by a single
centreline, r(s), and a continuous circular cross-sectional radius, ρ(s). A different
approach would be required for modelling non-traditional fibre shapes, such as
a self-intersecting body or one with discontinuities in the cross-sectional radius.
Furthermore, the present derivation requires that ρ(s)∂sρ(s) is finite everywhere to
regularise the integral kernels (Koens 2022). This differs from the standard SBT
assumption that ρ(s) can only vary slowly and requires ellipsoidal ends.

3. Stokes flow and the Green’s function for a plane interface

The slow viscous flow around a tubular body can be accurately modelled by the
incompressible Stokes equations (Kim & Karrila 2005)

μ∇2u − ∇p = 0, (3.1)

∇ · u = 0, (3.2)

where μ is the dynamic viscosity of the fluid, u is the fluid velocity and p is the fluid
pressure. The drag force, F , and torque, L, on the fluid from the tubular body are

F =
∫∫

S
(σ · n̂s) dS, (3.3)

L =
∫∫

S
S × (σ · n̂S) dS, (3.4)

where the integrals are taken over the surface of the body, n̂S is the outward pointing unit
normal to the surface and σ = −pI + μ(∇u + (∇u)T) is the fluid stress tensor.

The incompressible Stokes equations are linear and time independent, with the flow
therefore depending only on the instantaneous geometry of the system and any boundary
conditions. Hence, the drag force and torque on the fluid from rigid body motion can
always be written as (

F
L

)
= R

(
U
Ω

)
, (3.5)

where U is the linear velocity of the body, Ω is the angular velocity and R is the
resistance matrix. The resistance matrix is often decomposed into three 3 × 3 sub-matrices
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of the form

R =
(

RFU RFΩ

(RFΩ)T RLΩ,

)
(3.6)

where RFU , RFΩ and RLΩ describe the drag force generated from translation, the drag
force generated from rotation (or, equivalently, the torque generated from translation) and
the torque generated from rotation, respectively.

Exact solutions of the incompressible Stokes equations, (3.1) and (3.2), only exist
for simple geometries (Kim & Karrila 2005). As a result, most solutions are found
asymptotically or numerically. Many of these asymptotic and numerical methods rely on
the Green’s function solution for the Stokes equations, called the Stokeslet. The Stokeslet
represents the flow from a point force of strength f on the fluid that is located at y. The
flow from a Stokeslet, uS, satisfies

μ∇2uS − ∇p = f δ(x − y), (3.7)

along with the incompressibility condition of (3.2). In free space, it is given explicitly as

8πμuS(x) = GS(R) · f , GS(R) = I + R̂R̂
|R| , (3.8a,b)

where x is a point in the domain and we define R = x − y as the vector from the point
force to the point of interest in the flow (Kim & Karrila 2005). Here, and throughout,
R̂ = R/

∣∣R∣∣, ·̂ denotes a unit-normalised vector, and |·| denotes the length of the vector.
The Stokeslet for more complicated geometries can be constructed using the

representation by fundamental singularities. This method places Stokeslets and their
derivatives outside the fluid region such that the boundary conditions are satisfied. Such
a representation is always theoretically possible for the flow around any body (Kim &
Karrila 2005), but the location and strengths of the singularities are often not known a
priori. However, the flow due to a point force under a plane interface at z = 0 is known.
In particular, if the fluid beneath the interface has viscosity μ1 and the fluid above the
interface has viscosity μ2, the solution can be found by placing adding a Stokeslet, a
force dipole (the derivative of the Stokeslet with respect to its position) and source dipole
(Laplacian of the Stokeslet) in the fluid region above the interface (Aderogba & Blake
1978). The resultant flow u∗

S in the lower fluid region is therefore given by

8πμ1u∗
S(x) = GS(R) · f + G∗

S(R
′) · f , (3.9)

where λ = μ2/μ1 is the viscosity ratio of the two fluids, yz = y · ẑ < 0

G∗
S(R

′) = I + R̂
′
R̂

′

|R′| · B − 2λ
1 + λyz

[
(R′ · ẑ − yz)

I − 3R̂
′
R̂

′

|R′|3 + R′ẑ − ẑR′

|R′|3
]

· A , (3.10)

B = 1 − λ
1 + λ

(
I − ẑẑ

)− ẑẑ, (3.11)

A = I − 2ẑẑ, (3.12)

R′ = x − A · y, (3.13)

where ẑ is the frame vector parallel to the interface normal. In the above, A is the reflection
matrix across the z = 0 plane. This solution for the flow due to a Stokeslet underneath a
plane interface represents the flow under a free surface when λ = 0 and a rigid wall in the
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limit λ→ ∞. The normal velocity of this Green’s function is always 0 at the interface to
keep the interface flat, while the tangential velocity at the interface is continuous and can
be non-zero. As a result, the Green’s function does not revert to a point force in free space
when λ = 1.

The Stokeslet plays an important role developing numerical and asymptotic solutions
to the incompressible Stokes equations, (3.1) and (3.2). Several asymptotic theories use a
representation-by-fundamental-singularities approach to construct approximate solutions
for the flow around bodies with special symmetries (Keller & Rubinow 1976; Johnson
1979). For example, some SBTs approximate the flow around an isolated slender filament
by placing Stokeslets and source dipoles placed along the centreline of the fibre (Johnson
1979). The strength of the Stokeslets and source dipoles are determined by asymptotically
expanding the no-slip boundary condition in the inverse aspect ratio of the body. This
expansion sets a linear relationship between the strength of the Stokeslets and the source
dipoles and relates the Stokeslet strength to the centreline velocity, Uc(s), through a
one-dimensional integral equation given by

8πμUc(s) =
∫ 1

−1

(
I + R̂0R̂0

|R0| · q(s′) − I + t̂t̂
|s′ − s| · q(s)

)
ds′

+ [
LSBT(I + t̂t̂) + I − 3t̂t̂

] · q(s), (3.14)

where R0(s, s′) = r(s) − r(s′) is a vector between two points on the centreline of
the body, t̂(s) = ∂sr(s) is the tangent to the centreline, q(s) is the Stokeslet strength
and LSBT = ln[4(1 − s2)/(ρ2(s))]. Although structurally similar to a one-dimensional
Fredholm integral equation of the second kind, this equation does not share the same
properties due to the kernel being singular, thereby making it difficult to solve (Tornberg
& Shelley 2004; Tornberg 2020). Even so, this formulation has been used successfully in
varied circumstances (Ganguly et al. 2012; Qiu & Nelson 2015; Lauga 2016; Nazockdast
et al. 2017; Hernández-Pereira et al. 2019; du Roure et al. 2019; Magdanz et al. 2020;
Li & Pumera 2021) and derived in many different ways (Keller & Rubinow 1976; Koens
& Lauga 2018). Extensions of SBT to include boundaries tend to only apply in limited
regimes (Brenner 1962; De Mestre & Russel 1975; Jeffrey & Onishi 1981; Barta & Liron
1988b; Lisicki, Cichocki & Wajnryb 2016) or for a limited set of geometries (Man, Koens
& Lauga 2016; Koens & Montenegro-Johnson 2021).

Most numerical approaches to solve the incompressible Stokes equations use the
Green’s function nature of the Stokeslet to transform the equations into the boundary
integrals (Pozrikidis 1992; Kim & Karrila 2005)

4πμUS(x) =
∫∫

S
dS(x0)

[
G(x − x0) · f (x0)

]

+ μ

∫∫ PV

S
dS(x0)

[
US(x0) · T (x − x0) · n̂S(x0)

]
, (3.15)

where all the integrals are carried out over the boundaries of the system, US(x) is the
velocity at the surface point x, n̂S(x0) is the surface normal pointing into the fluid,
f (x0) = σ (x0) · n̂S(x0) is the surface traction, T (R) is the stress generated from the
Stokeslet and the superscript PV denotes a principal value integral. We note that the
influence of background flows can be included in the boundary integral equations by
replacing US(x) with US(x) − u∞(x), where u∞(x) is the background velocity at the
surface if the body was not present. The boundary integrals are exact and apply for any
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geometry in which the Green’s function, G, is known (Pozrikidis 1992). If the volume
of the tubular body is constant, this equation can be transformed into the single-layer
boundary integral

8πμUS(x) =
∫∫

S
dS(x0)G(x − x0) · f̃ (x0), (3.16)

where f̃ (x0) represents the jump in surface traction between the exterior fluid and a fluid
interior to the surface. Notably, the force and torque over any closed surface can be found
identically to (3.3) and (3.4) but with f̃ (x0) replacing the traction (Pozrikidis 1992).

Since the single-layer boundary integral represents the flow exactly in these
circumstances (Kim & Karrila 2005), we can use it to develop a TBTi. Unlike other
expansions of the boundary integrals (Koens & Lauga 2018), the TBT approach promises
to create a similar one-dimensional SBT integral operator, but with a compact, symmetric
and self-adjoint kernel. Furthermore the iterative solving of this operator can be used
to reconstruct the jump in surface traction exactly. This overcomes several of the
numerical issues encountered in SBTs and removes many of their limitations, most notably
slenderness and their approximate nature. In the absence of slenderness, BEMs like that
described by Pozrikidis (2002) are often preferred, which numerically solve the exact
boundary integral equations. However, these exact methods still require the evaluation
of weakly singular integrals, often via non-standard quadrature routines, and are often
prohibitively expensive to apply to objects with high curvatures due to the fine surface
meshes required for accuracy.

4. Tubular-body theory for interfaces

Tubular-body theory builds off key ideas from both boundary integral methods and SBTs
to generate an exact theory with desirable properties. The structure of the TBT formulation
is inspired by the classical SBT formalism, but overcomes several of the typical SBT
restrictions to recover the exactness, flexibility and broad applicability similar to standard
boundary integral approaches. To achieve this, TBT transforms the single-layer boundary
integral representation into a series of well-behaved one-dimensional Fredholm integral
equations of the second kind, which can be sequentially inverted to determine higher-order
corrections. Fredholm integral equations of the second kind have been studied extensively
and several well-established methods exist to numerically and analytically solve them
(Dmitrievich & Vladimirovich 2008). In particular, all the integral kernels within the
TBT formalism are non-singular, which removes much of the complexity associated with
implementing boundary integral formulations like the BEM. Though the focus of this
work is on tubular bodies by plane interfaces, the development of this approach is easily
generalised to other scenarios where Green’s functions are available. We have presented
our formulation in a manner that highlights this.

4.1. Regularisation of the boundary integrals
The single-layer boundary integral representation for a tubular body by an interface can
always be expressed as

8πμ1US(S(s, θ)) =
∫ 1

−1
ds′
∫ π

−π

dθ ′ G(s, θ, s′, θ ′) · f̄ (s′, θ ′), (4.1)

where US(S(s, θ)) is the known velocity at S(s, θ) on the surface of the
body, G(s, θ, s′, θ ′) = GS(S(s, θ) − S(s′, θ ′)) + G∗

S(S(s, θ) − A · S(s′, θ ′)) is the Green’s
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function for the flow at S(s, θ) from a point force located at S(s′, θ ′) and f̄ (s′, θ ′) is the
unknown surface traction jump, f̃ , multiplied by the corresponding surface element at
(s′, θ ′). The integrand of the boundary integrals diverges as (s′, θ ′) → (s, θ) because the
free-space component of the Green’s function, GS(S(s, θ) − S(s′, θ ′)), blows up at this
location. The interface corrections G∗

S(S(s, θ) − A · S(s′, θ ′)) are non-singular if d > 0.
The divergence of the free-space Green’s function does not pose an analytical issue as the
singularity is integrable over a (sufficiently smooth) surface, but it does present challenges
for asymptotic and numerical approximations.

There are numerous ways to regularise boundary integral representations to overcome
the singularity of the free-space kernel (Cortez, Fauci & Medovikov 2005; Batchelor
1970; Klaseboer, Sun & Chan 2012). One of the simplest is by adding and subtracting an
existing solution to the boundary integral representation chosen such that the integrands
cancel when (s′, θ ′) → (s, θ). A simple solution is available for a translating spheroid
in free space (Brenner 1963; Martin 2019), whose translational mobility matrix MA and
surface parameterisation Se(s, θ) we give in Appendix A. Choosing the unique spheroid
that matches both the position and the tangent plane of the tubular body at (s, θ), we can
add and subtract the boundary integral representation of the mobility given in (A2) from
the boundary integral equations for the tubular body (4.1) to give

8πμ1US(S(s, θ)) =
∫ 1

−1
ds′
∫ π

−π

dθ ′ GS(S(s, θ) − S(s′, θ ′)) · f̄ (s′, θ ′)

+
∫ 1

−1
ds′
∫ π

−π

dθ ′ G∗
S(S(s, θ) − A · S(s′, θ ′)) · f̄ (s′, θ ′)

−
∫ 1

−1
ds′
∫ π

−π

dθ ′ GS(Se(se, θ) − Se(s′, θ ′)) · f̄ (s, θ)

+ MA · f̄ (s, θ), (4.2)

where each of Se, se and MA depend on s and θ . Here, and throughout, se is the arclength
on the regularising spheroid at which it intersects with the tubular body, defined in
Appendix A. Notably, the matching of the tubular body and the spheroid means that
the singularity in the first integrand as (s′, θ ′) → (s, θ) now precisely cancels with the
singularity in the third integrand as (s′, θ ′) → (se, θ).

4.2. Identifying exactly integrable terms
The next step is to manipulate the regularised boundary integrals in (4.2) to find terms
in the kernel that can be directly integrated. These terms and their integrals will act
as the SBT-like operator in the TBT expansion, which one can think of as a first
approximation to the solution. In keeping with the SBT approach, these terms should be
structurally equivalent to a Fredholm integral equation of the second kind, as these are
well-posed problems and have been studied extensively (Dmitrievich & Vladimirovich
2008). This requires the expansion process to somehow allow the evaluation of the
θ ′ integration within (4.2) while keeping the expanded Green’s function (the kernel)
compact. Additionally, it will be useful if the kernel is symmetric and self-adjoint, as
the operator will have real eigenvalues and additional desirable properties (Dmitrievich &
Vladimirovich 2008).

Notably, the integration over θ ′ can be evaluated if all the θ ′ terms within the
denominator of the Green’s function are moved to the numerator in the expansion process
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Viscous tubular-body theory for plane interfaces

(Koens & Lauga 2018). If done through a Taylor series of expansion in the inverse aspect
ratio η, which here we do not assume is small, this recovers the classical SBT equations.
The kernel of these equations is, however, not compact. Recently, there have been many
attempts have been made to fix this (Walker et al. 2020, 2023; Andersson et al. 2021;
Tüatulea-Codrean & Lauga 2021; Shi, Moradi & Nazockdast 2022; Maxian & Donev
2022).

In contrast to SBT, the TBT derivation creates a compact, symmetric and self-adjoint
kernel by expanding each denominator in the Green’s function using the binomial series.
This expansion converges absolutely whenever (s, θ) /= (s′, θ ′), irrespective of the body
geometry or position. In the previous TBT derivation, this was done using a single
binomial expansion, motivated by an erroneous claim about the triangle inequality. Here,
we correct this by applying the binomial series twice. The final structure, however, remains
the same. For the full details of this manipulation, we refer the interested reader to
Appendix B.

The application of sequential binomial series allows the free-space Green’s function to
be rewritten as

GS(S(s, θ) − S(s′, θ ′)) = KS(s, s′) + O(R(i)
Δ (s, θ, s′, θ ′)), (4.3)

for i = 1, 2, where KS(s, s′) is the first-approximation kernel and equals

KS(s, s′) = I∣∣R̃∣∣ + R0R0∣∣R̃∣∣3 . (4.4)

Here, R0(s, s′) = r(s) − r(s′), |R̃| is a function only of s and s′, and R(i)
Δ (s, θ, s′, θ ′) are

remainder terms defined in Appendix B. The first approximation for the integration of the
free-space Green’s function therefore becomes∫ 1

−1
ds′
∫ π

−π

dθ ′ GS(S(s, θ) − S(s′, θ ′)) · f̄ (s′, θ ′) ≈
∫ 1

−1
ds′
∫ π

−π

dθ ′ KS(s, s′) · f̄ (s′, θ ′)

= 2π

∫ 1

−1
ds′ KS(s, s′) · 〈 f̄ (s′, θ ′)〉θ ′,

(4.5)

where 〈·〉θ ′ = ∫ π

−π
dθ ′/(2π). Hence, the binomial expansion has effectively treated the

θ ′ integration and left a well-behaved integrand. This is the same kernel as found via an
erroneous method in the free-space TBT formalism (Koens 2022).

The expansion of the free-space Green’s function naturally includes the regularising
spheroid geometry. The result of the regularising spheroid integral can, therefore, be
found by recognising that, for the spheroid, r(s) ≡ asx̂ and ρ(s) ≡ c

√
1 − s2. Hence, the

binomial series give

GS(Se(se, θ) − Se(s′, θ ′)) = KS,e(se, s′) + O(R(i)
Δ (se, θ, s′, θ ′)), (4.6)

where

KS,e(se, s′) = I∣∣R̃e
∣∣ + a2(s, θ)(se(s) − s′)2 t̂(s)t̂(s)∣∣R̃e

∣∣3 (4.7)

∣∣R̃e(se, θ, s′)
∣∣2 = a2(s, θ)(se(s) − s′)2 + c2(s)(2 − s2

e(s) − s′2). (4.8)

The above explicitly includes the additional (s, θ) dependence in se(s), a(s, θ) and c(s)
as dictated by (A7) to (A12). The first approximation for the integration of the spheroid’s
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L. Koens and B.J. Walker

Green’s function therefore becomes∫ 1

−1
ds′
∫ π

−π

dθ ′ GS(Se(se, θ) − Se(s′, θ ′)) · f̄ (s, θ)

≈
∫ 1

−1
ds′
∫ π

−π

dθ ′ KS,e(se(s), s′) · f̄ (s, θ)

= 2π

∫ 1

−1
ds′ KS,e(se(s), s′) · f̄ (s, θ). (4.9)

The remaining integral over s′ can be evaluated exactly (Gradshteyn et al. 2000) to give

2π

∫ 1

−1
ds′ KS,e(se(s), s′) · f̄ (s, θ) = Ma(s, θ) · f̄ (s, θ), (4.10)

where

Ma(s, θ) = {
χ‖(se(s), θ)t̂(s)t̂(s) + χ⊥(se(s), θ)

[
I − t̂(s)t̂(s)

]}
, (4.11)

a
2π

χ‖(se, θ) = 1 − β

(−β)3/2 L(se, θ) + g(se, θ, 1) − g(se, θ, −1), (4.12)

a
2π

χ⊥(se, θ) = 1√−β
L(se, θ), (4.13)

L(se, θ) = ln

(
a(se − β) + √−β

∣∣R̃e(se, θ, −1)
∣∣

a(se + β) + √−β
∣∣R̃e(se, θ, 1)

∣∣
)

, (4.14)

g(se, θ, s′) = 2(se − s′)
β
∣∣R̃e(se, θ, s′)

∣∣
(

s′seα
2 − (1 − s2

e)β

2β − s2
e(1 − β)

)
, (4.15)

and a, α, β and se are all also functions of (s, θ) according to (A7) to (A12). The last
integrand to expand contains the mirror singularities that account for the plane interface,
G∗

S(S(s, θ) − A · S(s′, θ ′)). The binomial series approach can also be used to achieve this
(details provided in Appendix C). The derivation shows that, for the mirror singularities,
it is always possible to express the Green’s function as

G∗
S(S(s, θ) − A · S(s′, θ ′)) = K∗

S(s, s′) + O(R∗(i)
Δ (s, θ, s′, θ ′)), (4.16)

for i = 1, 2, where

K∗
S(s, s′) =

(
I∣∣R̃∗∣∣ + R∗

0R∗
0∣∣R̃∗∣∣3
)

· B

− 2λ
1 + λ(ẑ · r(s′) − d)(ẑ · r(s) − d)

(
I∣∣R̃∗∣∣3 − 3

R∗
0R∗

0∣∣R̃∗∣∣5
)

· A

− 2λ
1 + λ(ẑ · r(s′) − d)

(
R∗

0 ẑ − ẑR∗
0∣∣R̃∗∣∣3
)

· A, (4.17)

where R∗
0(s, s′) = r(s) − A · r(s) − 2dẑ is a vector between a point on the body centreline

and the mirror centreline, and R∗(i)
Δ (s, θ, s′, θ ′) are the remainder terms defined in
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Viscous tubular-body theory for plane interfaces

Appendix C. The first approximation for the integral of the mirror singularities is therefore∫ 1

−1
ds′
∫ π

−π

dθ ′ G∗
S(S(s, θ) − A · S(s′, θ ′)) · f̄ (s′, θ ′)

≈
∫ 1

−1
ds′
∫ π

−π

dθ ′ K∗
S(s, s′) · f̄ (s′, θ ′)

= 2π

∫ 1

−1
ds′ K∗

S(s, s′) · 〈 f̄ (s′, θ ′)〉θ ′ . (4.18)

The expansions of the free space (4.5), mirror (4.18) and regularising spheroid (4.10) can
be combined together to create a first approximation of the regularised boundary integrals,
(4.2). This approximation has the form

Lf̄ = MA(s, θ) · f̄ (s, θ) + 2π

∫ 1

−1
ds′ (KS(s, s′) + K∗

S(s, s′)
) · 〈 f̄ (s′, θ ′)〉θ ′, (4.19)

where MA(s, θ) = MA(s, θ) − Ma(s, θ) is the mobility for the translating spheroid,
(A2), minus the first-approximation representation for this term, (4.11). Here, MA(s, θ)

is positive definite (see Appendix D) when ρ(s) /= 0. When ρ(s) = 0, MA(s, θ) has
a 0 eigenvalue in the tt direction and so care needs to be taken to not sample the
ρ(s) = 0 points directly when numerically inverting L. The above integral equation is the
first-approximation operator that needs to be inverted for the TBT by interfaces expansion.
Technically speaking, this integral equation has a compact, symmetric and self-adjoint
kernel that renders the integral equation amenable to analysis and solution.

Although it involves (s, θ), the approximate integral equation is actually a
one-dimensional Fredholm integral equation of the second kind plus a sequence of
linear operations (Koens 2022). The equivalence to a one-dimensional Fredholm integral
equation and a sequence of linear operations can be shown by considering the problem
Q(s, θ) = L f̄ . If we multiply this equation by M−1

A (s, θ) and then average over θ , it
becomes

〈M−1
A (s, θ) · Q〉θ = 〈 f̄ (s, θ)〉θ

+ 2π〈M−1
A (s, θ)〉θ ·

∫ 1

−1
ds′ (KS(s, s′) + K∗

S(s, s′)
) · 〈 f̄ (s′, θ)〉θ ,

(4.20)

where we have used that 〈 f̄ (s′, θ ′)〉θ ′ = 〈 f̄ (s′, θ)〉θ . The above is a one-dimensional
Fredholm integral equation of the second kind for 〈 f̄ (s, θ)〉θ . If this Fredholm integral
equation is substituted into Q(s, θ) = L f̄ , somewhat cumbersome but elementary
manipulation yields

〈M−1
A (s, θ)〉θ · MA(s, θ) · f̄ (s, θ) = Q(s, θ) − 〈M−1

A (s, θ) · Q〉θ + 〈 f̄ (s, θ)〉θ .
(4.21)

This is a linear equation for f̄ (s, θ) in terms of Q(s, θ) and 〈 f̄ (s, θ)〉θ . Hence, the
first-approximation operator of (4.19) is equivalent to a one-dimensional Fredholm
integral of the second kind with a compact, symmetric and self-adjoint kernel (4.20),
plus a sequence of linear operations (4.21). Since Fredholm integral equations of the
second kind and linear operations are in some sense well behaved, the inversion of the
first-approximation operator, (4.19), is also expected to behave similarly.
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L. Koens and B.J. Walker

4.3. Construct the series
The final step in the TBT derivation is to represent the full traction jump in the exact
regularised boundary integrals, f̄ (s, θ), as an iterative series, found through repeatedly
solving the first-approximation operator, (4.19). The simplest approach to achieve this is to
add and subtract L f̄ from the regularised boundary integrals and rearrange the equation
into

8πUS(S(s, θ)) = Lf̄ + Lf̄ , (4.22)

where L f̄ is the difference between the first-approximation operator and right hand side
of the regularised boundary integrals and is given by

Lf̄ =
∫ 1

−1
ds′
∫ π

−π

dθ ′ [GS(S(s, θ) − S(s′, θ ′)) − KS(s, s′)
] · f̄ (s′, θ ′)

−
∫ 1

−1
ds′
∫ π

−π

dθ ′ [GS(Se(se, θ) − Se(s′, θ ′)) − KS,e(se(s), s′)
] · f̄ (s, θ)

+
∫ 1

−1
ds′
∫ π

−π

dθ ′ [G∗
S(S(s, θ) − A · S(s′, θ ′)) − K∗

S(s, s′)
] · f̄ (s′, θ ′). (4.23)

The above expresses the difference terms as integrals to emphasise the relationship
between the boundary integral and the first-approximation terms and captures all the
higher-order terms from the binomial expansions.

Since the operator L should be well behaved, it is reasonable to assume that its inverse
exists. Assuming that an inverse L−1 exists, (4.22) can be written as

8πL−1US(S(s, θ)) =
(

1 + L−1L
)

f̄ , (4.24)

where 1 f̄ = f̄ . The solution to the regularised boundary integrals can therefore be written
as

f̄ (s, θ) = 8π
(

1 + L−1L
)−1 L−1US(S(s, θ)). (4.25)

Provided the eigenvalues of L−1L are within (−1, 1), which we assume and evidence
empirically later, (1 + L−1L)−1 can be expressed as a Neumann series, the operator
analogue of a geometric series, allowing the solution to be written as

f̄ (s, θ) = 8π

∞∑
n=0

(
−L−1L

)n L−1US(S(s, θ)), (4.26)

or, equivalently,

f̄ (s, θ) =
∞∑

n=0

f̄ n(s, θ), (4.27)

where

Lf̄ 0(s, θ) = 8πU(S(s, θ)), (4.28)

Lf̄ n(s, θ) = −Lf̄ n−1(s, θ) n ≥ 1. (4.29)

Equations (4.27) to (4.29) are the TBTi equations for a body by a plane interface
and are the main result of the paper. They are structurally equivalent to TBT for free
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Viscous tubular-body theory for plane interfaces

space (Koens 2022). Identically to the free-space version, solutions are constructed
by iteratively solving a well-behaved one-dimensional Fredholm integral equation of
the second kind. One-dimensional Fredholm integral equations of the second kind are
well-posed structures with many established methods to solve them both numerically
and analytically (Dmitrievich & Vladimirovich 2008). In practice, the iterative approach
may become efficient, depending on the difficulty of inverting the first-approximation
terms and the number of terms in the series needed to achieve the desired accuracy. In
the numerical implementation of TBTi described below, denoted TBT-BEM, the cost of
computing additional terms in the series is exceptionally low, essentially negligible when
compared with constructing discrete analogues of the linear operators (also required in the
TBT-BEM approach). We note that, in the previous TBT study, no condition was identified
for the convergence of the series in (4.27). The Neumann series approach used here reveals
that the series converges if the eigenvalues of L−1L are within (−1, 1), and applies to
general operators, not simply those employed in this study.

5. Numerical implementation

One-dimensional Fredholm integral equations of the second kind can be solved in
many ways (Dmitrievich & Vladimirovich 2008). The previous TBT study inverted the
first-approximation operator, L f̄ n(s, θ) in (4.28) and (4.29), and evaluated the difference
integrals, L f̄ n−1, through a collocation approach (Koens 2022). This approach was
simple to implement, as the kernels are all non-singular, and was effective as only a few
terms in the series, (4.27), were needed. However, it would not be suitable for TBTi if
significantly more terms are needed, as we will see is often the case. In light of the new
conditions on L−1L, we also want our method to allow us to explore the properties of
our operator empirically, including estimating its spectrum. We therefore adopt a Galerkin
approach (Pozrikidis 1992; Kim & Karrila 2005), similar to that often applied to the
boundary integral equations (Pozrikidis 1992). We call this numerical implementation
of the TBTi equations TBTi-BEM due to its similarity with traditional BEM schemes.
In summary, the Galerkin method allows us to estimate the eigenvalues of the operator,
quickly compute iterations and capture the full solution. As such, we have opted for
versatility rather than speed in this numerical approach.

In TBTi-BEM, the surface of the tubular body is discretised by dividing s ∈ [−1, 1]
and θ ∈ [−π, π) into N and M equal subintervals, respectively. The traction jump is
then assumed to be constant over a region of s ∈ [sk − s/2, sk + s/2] and θ ∈ [θl −
θ/2, θl + θ/2), where (si, θj) is the centre of the (i, j)th cell on the tubular body and
s = 2/N and θ = 2π/M are the distances between points in s and θ , respectively.
Akin to typical boundary element methods, this discretisation approximates each surface
integral as

∫ 1

−1
ds′
∫ π

−π

dθ ′ Q(S(si, θj) − S(s′, θ ′)) · f̄ (s′, θ ′) ≈
N∑

k=0

M∑
l=0

Qi,j,k,l · f̄ (sk, θl), (5.1)

where Q(R) represents the integral kernel of (4.19) or (4.23) and

Qi,j,k,l =
∫ sk+s/2

sk−s/2
ds′
∫ θl+θ/2

θl−θ/2
dθ ′ Q(S(si, θj) − S(s′, θ ′)). (5.2)

The integrands in (4.19) and (4.23) are non-singular, by construction, and are
straightforward to evaluate numerically, in contrast to those usually associated with BEMs
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(Pozrikidis 2002). With the above discretisation, (4.28) and (4.29) are transformed into a
system of linear equations, which can be represented as the matrix equations

𝔏�̄�0 = 8π𝔘, (5.3)

𝔏�̄�n = −�𝔏�̄�n−1, n ≥ 1, (5.4)

where 𝔘 = {U(S(s0, θ0)), U(S(s1, θ0)), . . . , U(S(sN, θM))} contains the discrete surface
velocities and �̄�n = { f̄ n(S(s0, θ0)), f̄ n(S(s1, θ0)), . . . , f̄ n(S(sN, θM))} is the unknown
traction jumps weighted by their respective surface elements. We define the discrete
operators 𝔏 and �𝔏 as

𝔏 =

⎛
⎜⎜⎝

𝔏0,0,0,0 𝔏0,0,1,0 . . . 𝔏0,0,N,M
𝔏1,0,0,0 𝔏1,0,1,0 . . . 𝔏1,0,N,M

...
...

...

𝔏N,M,0,0 𝔏N,M,1,0 . . . 𝔏N,M,N,M

⎞
⎟⎟⎠, (5.5)

�𝔏 =

⎛
⎜⎜⎝

𝔏0,0,0,0 𝔏0,0,1,0 . . . 𝔏0,0,N,M
𝔏1,0,0,0 𝔏1,0,1,0 . . . 𝔏1,0,N,M

...
...

...

𝔏N,M,0,0 𝔏N,M,1,0 . . . 𝔏N,M,N,M

⎞
⎟⎟⎠, (5.6)

as approximations to the full operators L and L, with scalar components

𝔏i,j,k,l =
∫ sk+s/2

sk−s/2
ds′
∫ θl+θ/2

θl−θ/2
dθ ′ (KS(si, s′) + K∗

S(si, s′)
)+ MA(si, θj)δi,kδj,l,

(5.7)

𝔏i,j,k,l =
∫ sk+s/2

sk−s/2
ds′
∫ θl+θ/2

θl−θ/2
dθ ′ [GS(S(si, θj) − S(s′, θ ′)) − KS(si, s′)

]

+
∫ sk+s/2

sk−s/2
ds′
∫ θl+θ/2

θl−θ/2
dθ ′ [G∗

S(S(si, θj) − A · S(s′, θ ′)) − K∗
S(si, s′)

]

− δi,kδj,l

∫ 1

−1
ds′
∫ π

−π

dθ ′ [GS(Se(se(si), θj) − Se(s′, θ ′)) − KS,e(se(si), s′)
]
.

(5.8)

Here, δi,j is the Kronecker delta, defined to be δi,j = 1 when i = j and zero otherwise.
The discretised TBTi equations, (5.3) and (5.4), can be solved by inverting 𝔏 to find

�̄�0 = 8π𝔏−1𝔘, (5.9)

�̄�n =
(
−𝔏−1�𝔏

)
�̄�n−1, n ≥ 1. (5.10)

It is useful to retain the full −𝔏−1�𝔏 matrix as it reduces the task of finding higher
iterations of �̄�n to matrix multiplication. We note that this matrix multiplication is
exceptionally fast, relative to constructing discrete analogues of the linear operators, 𝔏
and �𝔏.

This matrix representation also allows us to compute the infinite summation using the
aforementioned Neumann series for matrices, which generalises the well-known geometric
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Viscous tubular-body theory for plane interfaces

series to operators. Specifically,

�̄� =
∞∑

n=0

�̄�n = 8π

∞∑
n=0

(
−𝔏−1�𝔏

)n
𝔏−1𝔘 = 8π(1 + 𝔏−1�𝔏)−1𝔏−1𝔘, (5.11)

if the eigenvalues of 𝔏−1�𝔏 lie in (−1, 1). These eigenvalues are an approximation to
the eigenvalues of L−1L. Hence, the Galerkin approach can be used to determine the
tubular-body theory by interfaces solution exactly using (5.11), estimate the eigenvalues of
L−1L and test the convergence of the series representation for the traction jump, (4.27),
with relative ease.

We implemented TBTi-BEM in MATLAB® in order to validate the theory, using an
optimised BEM written in Fortran 90 (Walker et al. 2019) for comparison. The time
complexity of constructing the largest matrix in TBTi-BEM is O(N2M2), equivalent
to that of a traditional BEM scheme with NM elements. As expected, the optimised
BEM implementation is associated with lower computational runtimes than our high-level
TBTi-BEM implementation, approximately by a factor of 2–3 in typical examples. Hence,
TBTi-BEM is not expected to provide any significant computational advantages over
traditional BEMs, although we remark that TBTi-BEM does not require specialised
quadrature schemes, whilst boundary element schemes do in general. Notably, both
TBTi-BEM and BEM, which can be seen as differing formulations of the boundary
integral equations, are outperformed in terms of simplicity and computational efficiency
by SBTs, which are typically O(N2), although the speed of SBTs is accompanied by
significantly restricted applicability and validity.

6. A spheroid by a plane wall

In order to numerically evaluate TBTi, we used TBTi-BEM to begin with perhaps
the simplest class of tubular bodies: spheroids. Despite their geometrical simplicity,
spheroids and the flows around them still pose challenging numerical problems in extreme
circumstances, such as when very close to boundaries or when they have large aspect
ratios. In this section, we explore and evidence how TBTi-BEM is capable of capturing
the dynamics of such spheroids, presented with direct comparison with a numerical
implementation of SBT and a BEM. We consider motion in the presence of a rigid wall,
noting that motion near such a boundary generates large stresses that can be difficult to
resolve numerically (Kim & Karrila 2005). We note that the validity of TBT has been
established for non-slender and highly curved objects by Koens (2022), which we will
see is inherited by TBTi. Hence, we will focus on evidencing validity in the presence of
boundaries effects, although we will explore a more complex geometry in § 7.

Initially, we consider spheroids whose symmetry axis is taken to be parallel to the plane
boundary. In such a configuration, the spheroid can be parameterised as

S(s, θ) = sx̂ + η
√

1 − s2êρ − dẑ, (6.1)

where we have set r(s) = sx̂ and ρ(s) = η
√

1 − s2.

6.1. Establishing accuracy with boundary element simulations
In order to verify the accuracy of TBTi-BEM (and therefore infer the versatility of
the TBTi equations), we compute resistance matrices for spheroids of various aspect
ratios and boundary separations. As no general analytical solutions are available for the
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η = 1 η = 0.2 η = 0.1

d = 2

⎡
⎢⎢⎣

RFU
11 → 1.4 %(0.34)

RFU
22 → 1.3 %(0.33)

RFU
33 → 1.2 %(0.48)

⎤
⎥⎥⎦

⎡
⎣1.3 %(0.10)

1.5 %(0.15)

1.5 %(0.18)

⎤
⎦

⎡
⎣1.5 %(0.08)

1.6 %(0.12)

1.6 %(0.14)

⎤
⎦

d = 2η

⎡
⎣1.4 %(0.34)

1.3 %(0.33)

1.2 %(0.48)

⎤
⎦

⎡
⎣1.3 %(0.14)

1.4 %(0.23)

1.2 %(0.44)

⎤
⎦

⎡
⎣1.3 %(0.12)

1.4 %(0.22)

1.1 %(0.44)

⎤
⎦

d = 1.1η

⎡
⎣1.2 %(0.50)

1.1 %(0.47)

0.2 %(0.46)

⎤
⎦

⎡
⎣0.9 %(0.19)

0.9 %(0.31)

0.4 %(1.55)

⎤
⎦

⎡
⎣1.0 %(0.18)

0.9 %(0.32)

1.3 %(4.62)

⎤
⎦

Table 1. The relative error in the non-zero force-translation resistance coefficients {RFU
11 , RFU

22 , RFU
33 } for

spheroids of varying aspect ratio and boundary separation, as computed with TBTi-BEM and compared against
the BEM. The absolute errors between the coefficients is given in parentheses. Here, spheroids were aligned
parallel to the boundary.

η = 1 η = 0.2 η = 0.1

d = 2

⎡
⎢⎢⎣

RLΩ
11 → 2.2 %(0.56)

RLΩ
22 → 2.2 %(0.56)

RLΩ
33 → 2.2 %(0.55)

⎤
⎥⎥⎦

⎡
⎣2.3 %(0.02)

2.4 %(0.11)

2.4 %(0.11)

⎤
⎦

⎡
⎣2.4 %(0.004)

2.5 %(0.08)

2.5 %(0.08)

⎤
⎦

d = 2η

⎡
⎣2.2 %(0.56)

2.2 %(0.56)

2.2 %(0.55)

⎤
⎦

⎡
⎣2.3 %(0.02)

2.1 %(0.19)

2.3 %(0.13)

⎤
⎦

⎡
⎣2.3 %(0.004)

1.9 %(0.17)

2.3 %(0.11)

⎤
⎦

d = 1.1η

⎡
⎣2.1 %(0.77)

2.1 %(0.76)

2.2 %(0.60)

⎤
⎦

⎡
⎣2.1 %(0.027)

0.1 %(0.027)

1.9 %(0.16)

⎤
⎦

⎡
⎣2.2 %(0.007)

0.9 %(0.33)

1.8 %(0.14)

⎤
⎦

Table 2. The relative error in the non-zero torque-rotation resistance coefficients {RLΩ
11 , RLΩ

22 , RLΩ
33 } for

spheroids of varying aspect ratio and boundary separation, as computed with TBTi-BEM and compared against
the BEM. The absolute errors between the coefficients is given in parentheses. Here, spheroids were aligned
parallel to the boundary.

hydrodynamic resistance of spheroids near boundaries, we compare the numerical results
with those obtained with a high-accuracy BEM, as described by Walker et al. (2019) and
Pozrikidis (2002). Of note, as TBTi regularises the boundary integral equations by the
subtraction of a free-space solution for the motion of a spheroid, not one near a boundary,
accurately resolving boundary interactions remains non-trivial.

In more detail, we consider spheroids of inverse aspect ratios given by η ∈ {1, 0.2, 0.1}
at distances d ∈ {2, 2η, 1.1η}, encompassing both slender and non-slender objects at
moderate and extreme boundary proximities. The TBTi-BEM calculations used λ = 104,
N = 15 and M = 300, while the boundary element calculations discretised the body
into 2 × 104 flat triangles. All numerical results were verified to have converged to
within approximately 1 % of the values obtained using significantly higher resolution
computational meshes.
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η = 1 η = 0.2 η = 0.1

d = 2

[
RFΩ

12 → 6.0 %(0.0073)

RFΩ
21 → 3.2 %(0.0040)

] [
1.7 %(0.0017)

2.5 %(10−6)

] [
1.7 %(9 × 10−4)

6.8 %(2 × 10−7)

]

d = 2η

[
6.0 %(0.0073)

3.2 %(0.0040)

] [
0.7 %(0.0056)

16.5 %(9 × 10−4)

] [
0.5 %(3 × 10−4)

91.6 %(5 × 10−4)

]

d = 1.1η

[
5.8 %(0.12)

4.2 %(0.09)

] [
6.6 %(0.20)

64.3 %(0.02)

] [
15.1 %(0.2765)

402.9 %(0.0082)

]

Table 3. The relative error in the non-zero force-rotation resistance coefficients {RFΩ
12 , RFΩ

21 } for spheroids of
varying aspect ratio and boundary separation, as computed with TBTi-BEM and compared against the BEM.
The absolute errors between the coefficients is given in parentheses. Here, spheroids were aligned parallel to
the boundary.

In tables 1 to 3, we tabulate the absolute and relative errors in the eight non-zero
resistance coefficients of the spheroids in this configuration, noting that symmetry of
this particular set up removes many degrees of freedom from the resistance matrix. Here,
values obtained from the boundary element simulations are considered the true values,
with absolute and relative errors defined relative to these quantities. These tables, reporting
the force-translation, torque-rotation and force-rotation coefficients, respectively, highlight
the marked accuracy of TBTi-BEM across the range of separations and geometries
considered here, particularly given the uniform, non-specific meshing employed. As might
be expected, spuriously large relative errors occur for the force-rotation coefficients of
table 3, which are typically 100× smaller in value than the largest coefficients, so that the
observed absolute errors are in line with approximately 1 % error in computing the force
density �̄�.

Notably, these results suggest that TBTi is accurate even for slender objects that are very
close to a boundary. In the next section, we will assess this accuracy more systematically
as a function of boundary separation.

6.2. Beyond the limits of slender-body theory
While slender objects are often simulated using wall-corrected SBTs, these theories are
not expected to be accurate when boundary separation is on the same scale as the radius of
the object. In figure 2, we compare the effectiveness of such a numerical implementation
of SBT (utilising the boundary corrections of Barta & Liron 1988a) against TBTi-BEM
by plotting computed resistance coefficients as a function of boundary separation. The
TBTi equations, in principle, impose no theoretical limits on the boundary separation.
Fixing η = 0.1, figure 2 evidences the agreement between the SBT and TBTi-BEM when
the boundary separation is large, here quantified by d/η − 1. However, as boundary
separation decreases to approximately η in size, the resistance coefficients computed
by TBTi-BEM and SBT diverge. We also include computations using the BEM for
comparison, from which we can immediately conclude that TBTi-BEM remains valid
even at small separations, while the SBT is rendered inaccurate by the comparable
scales of boundary separation and body radius. Hence, the validity of TBTi appears to
extend significantly beyond that of this wall-corrected SBT. This reflects the fact that
no slenderness assumptions are invoked in the formulation of TBTi, with the boundary
integral equations being reformulated exactly.
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(a) (b) (c)

Figure 2. The resistance coefficients for a prolate spheroid perpendicular to a wall normal as a function of
gap size. (a) Force from translation along the symmetry axis of the prolate spheroid, RFU

11 . (b) Force from
translation along perpendicular to symmetry axis and wall normal of the prolate spheroid, RFU

22 . (c) Force from
translation along in the direction of the wall normal, RFU

33 . In each plot, the TBTi-BEM result is in blue, the
BEM simulations are shown are red dashed lines and the wall corrected SBT results are shown in yellow.
Results are shown for η = 0.1.

6.3. Replication of lubrication limits
The comparisons with the boundary element simulations and the wall corrected SBT
suggests that the TBTi equations are correctly accounting for the wall at large to close
distances. However, when the body gets very close to the wall, the forces on the body begin
to diverge due to the lubrication stresses (Kim & Karrila 2005). These stresses come from
the large gradients in the velocity present near the wall and are notoriously hard to resolve
numerically (Ishikawa 2022). For a sphere approaching a wall the force on the fluid is
known to grow as 6π/(d − 1), while for transverse motion the force grows proportionally
to ln(d − 1).

The iterative structure means the TBTi equations cannot be effectively expanded in the
lubrication limit to investigate if the lubrication behaviour is preserved. It is, however,
expected that the lubrication behaviour should be captured as the TBTi equations are
fundamentally equivalent to the boundary integrals, which are an exact representations of
the flow. We tested this by performing high resolution TBTi-BEM simulations (N = M =
65) for a sphere approaching a wall and compared it with the leading-order lubrication
behaviour (6π/(d − 1)) when d − 1 ∈ (0.01, 1] (figure 3). We kept the mesh uniform for
all simulations. The transverse singularity requires a higher resolution and proximity to the
wall than available as the gap between the sphere and wall must be minute for ln(d − 1)

to be large. TBTi-BEM simulations is seen to agree well with the BEM simulations
for d − 1 ∈ (0.1, 1] and smoothly connects to the leading-order lubrication results as
d − 1 < 0.1. The slight deviation between TBTi-BEM and the singularity result around
d − 1 = 0.01 is due to numerical resolution issues. The TBTi-BEM is therefore able
to capture the strongest lubrication singularity for a sphere, the approaching the wall
singularity, suggesting that TBTi will be able to resolve the lubrication on non-spherical
bodies (since TBTi is exact representation in theory).

6.4. Eigenvalue analysis
In order for the series defined in (4.27) to converge, and for the inverse representation
of (5.11) to be valid, the eigenvalues of L−1L are required to lie within (−1, 1). To
establish this in practice, we consider the eigenvalues of the matrix approximation 𝔏−1�𝔏
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Figure 3. The drag on a sphere as it approaches a plane wall as predicted by TBTi-BEM (blue), and the
leading-order lubrication result (6π/(d − 1)). The BEM results for larger d − 1 are included for reference.
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Figure 4. The eigenvalues of the matrix approximation to the TBTi-BEM operator, 𝔏−1 · �𝔏, for eight of the
configurations considered in § 6.1. (a) All 135 000 eigenvalues. (b) The 6000 eigenvalues closest to −1.

to this operator found using TBTi-BEM. For eight of the configurations considered in
§ 6.1, we compute and plot the eigenvalues of this discrete operator in figure 4 in order.
In each case, many of these eigenvalues can be seen to cluster above −1, although all
remain in the required interval for convergence. Decreasing η appears to result in the most
extreme eigenvalues more closely approaching −1, while varying the boundary separation
appears to have no noticeable effect at the scale of these plots. Hence, this suggests that the
series underlying the TBTi formalism converges absolutely, an observation that appears
independent of geometry, at least for the objects considered here. In a cursory evaluation
of a wider range of geometries than we can succinctly report in this work, we have not
encountered any objects that invalidate this observation of convergence.

6.5. Convergence rates
The convergence of the TBTi summation, (5.11), as a function of the number of terms
retained, was also explored for the eight different configurations in § 6.1 (figure 5) using
TBTi-BEM. For brevity, only the force towards the wall from motion in the same direction,
RFU

33 , force in the minor axis perpendicular to the wall due to rotation around the major axis,
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Figure 5. The convergence of the non-zero resistance coefficients predicted by the TBTi series, (4.27)
(calculated using TBTi-BEM), as a function of the truncation point in the series. The slowest coefficient
to converge, in each sub-matrix, is shown for brevity. The absolute relative error is defined as the absolute
value of the difference between the converged value and the iterated value all divided by the converged value.
(a) The coefficient relating force towards the wall from motion towards the wall, RFU

33 . (b) The coefficient
relating force along the minor axis perpendicular to the wall normal from rotation around the major axis, RFΩ

21 .
(c) The coefficient relating torque in the minor axis perpendicular to the wall normal from rotation in the same
direction, RLΩ

22 . All coefficients are scaled by their converged value.

RFΩ
21 , and the torque in the minor axis perpendicular to the wall normal from rotation in the

same direction, RLΩ
22 , are shown because they converge the slowest. The force-translation

and torque-rotation coefficients both correspond to motions with large lubricating stresses,
while the force-rotation term is a small secondary effect of the wall.

Except when the body is close to the wall, the coefficients are seen to converge in
approximately 10 terms. A similar number of terms was needed to realise convergence
in the free-space TBT equations (Koens 2022). The number of terms needed to converge
increases rapidly when the body is very close to the wall (d = 1.1η) and as the thickness
of the spheroid η increases. The improved convergence with slender shapes is due to
the first-approximation kernel capturing the local logarithmic dependence on the drag
when very slender, by construction and shown in Koens (2022). The presence of the
interface, however, introduces significant asymmetry in the traction experienced by the
body and so a higher number of iterations are needed to fully resolve this variation. For
the weaker lubrication singularity, present in RLΩ

22 (figure 5c), convergence occurs around
100 terms, while for the strongest lubrication singularity, present in RFU

33 (figure 5a), it
takes approximately 1000 terms to converge. The small coupling term, RFΩ

21 , converges in
roughly 102.5 ≈ 316 terms. The singular nature of lubrication effects often makes these
singularities hard to resolve numerically, so the increase in the number of terms needed
for convergence is expected.

6.6. Force distribution on tilted wall-approaching spheroids
In a final example of TBTi applied to simple spheroids, we compute the force density
on tilted spheroids approaching a plane wall with unit normal velocity using TBTi-BEM.
In particular, we consider spheroidal geometry that is somewhat slender (η = 0.1) and
at various separations, one of which lies on the edge of the regime of validity of SBT
identified in § 6.2. Due to the regular integral kernel, our implementation of TBTi-BEM
also does not rely on specialised quadrature routines, unlike the boundary element method
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Figure 6. The computed magnitude of the force density on a range of spheroids as they approach an infinite
rigid wall at unit velocity normal the boundary. Here, we have fixed η = 0.1 and considered separations of
d ∈ {0.3, 0.95, 1.1} at angles of {0, π/4, π/2} to the wall in (a), (b) and (c), respectively.

used in the previous sections, so that solution via TBTi-BEM is relatively straightforward.
The computed magnitude of the force on such a spheroid in three scenarios is illustrated in
figure 6, from which a significant dependence on the details of the approach of the spheroid
to the boundary can be seen. Here, we have made use of a fine mesh with N = 32, M = 64,
and have considered d ∈ {0.3, 0.95, 1.1} at angles of {0, π/4, π/2} to the wall respectively.
We note that he largest traction jump on the spheroid is located at the point on the surface
closest to the wall, whether this is in the middle or near the ends. This is in contrast to
what would be found with the wall corrected slender-body approach in which the largest
stress would be found at the point on the centreline closest to the wall.

7. Traction jump on helices above an interface

Tubular-body theory by interfaces applies to general cable-like bodies by any plane
interface. For example, it can be used to determine the traction jump on a helix moving
close to a free interface and a plane wall. We parameterise a helix by ρ(s) = √

1 − s20 and
r = rxx̂ + ryŷ + rzẑ, where

rx(s) = αhs, (7.1a)

ry(s) = Rh cos(ks + π/2), (7.1b)

ry(s) = Rh sin(ks + π/2), (7.1c)

where αh = Λ/

√
π2R2

h + Λ2 is the axial length of the helix, k = π/

√
π2R2

h + Λ2 is the
wavenumber, Rh is the helix radius and Λ is the helix pitch. The helix-by-an-interface
simulations here used η = 0.05, Rh = 0.05109375 and λ = 0.25. This parameterisation
was used to simulate the motion of tightly wound helices with the free-space TBT
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Figure 7. The traction jump on a helical body as it approaches an infinite plane boundary. The colour shows
the magnitude of the traction computed using TBTi-BEM for two identical helical bodies moving towards a
rigid boundary (a,b) with λ→ ∞ and a free interface (c,d) with λ = 0. In (b,d), we show the same traction
distributions in the computational domain, from which we observe significant differences between different
parts of each body and between the two cases. The approach towards the rigid boundary is associated with
significantly larger traction, as expected.

(Koens 2022). The specific geometry corresponds to the helix with the largest pitch and
smallest helix radius tested by Koens (2022). When the distance from the interface was
large, d = 1000, the results found using TBTi-BEM and the free-space TBT were the
same, up to numerical error.

The surface traction on this helix was determined in presence of a rigid boundary (λ→
∞) and a free interface (λ = 0), using TBTi-BEM. The distance to the wall was d = 0.15.
Each configuration is illustrated in figure 7, with figures 7(a) and 7(c) corresponding to
the rigid boundary and the free interface held flat by surface tension, respectively. In both
cases, we prescribe a unit velocity towards the boundary on the surface of the helix, and
colour the surface by the pointwise magnitude of the resulting traction jump (multiplied
by the surface element), with the boundaries shown semi-transparent for visual clarity.

The traction distribution on the computational domain, parameterised by arclength s
and angle φ, is shown in figures 7(b) and 7(d). The largest-magnitude traction jumps
(multiplied by the surface element) are found on the three near-boundary regions of the
helix in both cases. The decay of these peaks are skewed along the helix arms, giving the
curving shape on the computational domain.

The rigid boundary is seen to generate tractions jumps (multiplied by the surface
element) approximately twice as large than the free interface in these regions. Since the
traction jump multiplied by the surface element scales with the total force on the body,
this is consistent with the known behaviour of the lubrication force. When approaching
another body, the lubrication force diverges proportionally with the inverse of the gap size,
d (Kim & Karrila 2005). The force on the nearest points of the helix by the wall therefore
scales with 1/d. However, a helix approaching a free interface is mathematically
equivalent to the helix approaching a mirrored helix across the interface. Hence, the
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Figure 8. The traction field on a thick tubular body approaching a rigid boundary. (a) The geometry and
magnitude of the computed surface traction jump on a helical body whose surface approaches self-intersection,
where the body approaches the surface in the normal direction at unit speed. As might be expected, the largest
magnitude traction jump is localised to the near-boundary side. (b) The traction jump distributions shown in
the computational domain, highlighting the heterogeneous surface distribution.

effective gap size for the helix approaching the plane interface is doubled. The traction
jump on a helix by a free interface therefore scales with 1/(2d). This difference explains
the apparent factor of 2 observed in the traction strengths and implies that TBTi can
handle complex shapes by different types of interfaces. An investigation of the eigenvalues
of the discrete TBTi-BEM operator, the convergence of the series expansion, and mesh
independence can be found in Appendix E.

We further highlight the flexibility of TBTi by considering a helix that violates common
assumptions of SBT, one that approaches self-intersection due to its thickness. Taking
η = 0.15 and using an increased separation d = 0.5, we illustrate such a helix in figure 8
above a rigid boundary along with a representative computational mesh and the computed
traction jump. Appendix E examines this example in more detail, including an exploration
of convergence of the associated resistance matrix as a function of truncation number and
mesh refinement. This non-slender, non-spheroidal example highlights the flexibility and
broad utility of TBTi, even when an object is approaching self-intersection.

8. Conclusion

This paper extends the TBT formalism to handle cable-like bodies by plane interfaces.
Similarly to in the free-space case, the employed expansion allows for the traction jump
on the body to be reconstructed exactly by iteratively solving a better-behaved SBT-like
operator, (4.19). The iterations are shown to be equivalent to an appropriate analogue of
the geometric series, indicating that the iterations will converge to the exact value if certain
conditions on the eigenvalues of the operator are met. Empirically, these conditions were
found to be satisfied for all geometries considered.

The TBTi equations (4.27) to (4.29) were solved numerically using a Galerkin approach
(Pozrikidis 1992) in an approach called TBTi-BEM. The Galerkin approach was taken as
it provides an efficient method to conduct iterations, determine the exact solution and find
approximate eigenvalues for the system, thereby empirically investigating the properties of
the TBTi equations. The TBTi-BEM simulations were compared with boundary element
simulations for spheroids by a plane wall. All rigid body motions near a wall generate
lubrication stresses that can be hard to determine numerically. The TBTi-BEM results
agreed well with both boundary element simulations for all aspect ratios and distances
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from the wall and the asymptotic solution to the lubrication for an approaching sphere
when very close to the wall, suggesting that the TBTi equations can capture the lubrication
effect. This is to be expected as TBTi is an exact representation of the flow. The
largest deviations between the results were found in the weak force-rotation resistance
coefficients and was likely due to the numerical errors in both the TBTi-BEM and BEM
implementations.

The TBTi equations were found to converge in around 10 iterations when the body was
well separated from the boundary, based on the results of TBTi-BEM. However, when
very close to the wall, the rate of convergence decreased. When a body approaches the
plane wall it was found to converge in around 1000 terms, while for other motions it took
around 100 terms. The increase in the number of terms reflects the general difficulty with
resolving lubrication effects numerically.

Finally, the TBTi simulations (TBTi-BEM) were used to look at the motion of helices
towards a rigid wall and a free interface. As would be anticipated, the traction (multiplied
by the surface element) found in both cases was largest on the parts of the helix closest to
the interface and decayed as the distance increased. The maximum traction on the helix
near a plane wall was also found to be around twice the size of the maximum traction
on the helix by a free interface. Since the hydrodynamics of a body by a free interface is
equivalent to two bodies approaching each other at double the separation, the factor of two
is consistent with the scaling of the lubrication singularity.

The TBTi formalism opens up many new possibilities for exploration. It allows a
SBT-like method to explore geometries that lie well beyond the limits of SBT in the
presence of interfaces. Further, it presents a viable alternative to general boundary integral
methods, removing the need to evaluate weakly singular integrals during numerical
solution. Looking forward, we expect that the convergence rate of the representation
can be improved should a better regularising body be found, which is a topic of active
development for TBT and TBTi. The derivation could also generalise to other systems
that can be represented by integral equations, and other viscous flow configurations.
Furthermore, the well-behaved nature of the TBTi operator opens up new avenues for
solving for the hydrodynamics of wires near interfaces asymptotically.
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and data that support the findings of this study are openly available on GitHub at https://github.com/LKoens/
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Appendix A. Spheroid solution and matching

We make use of the exact solution for the mobility of a translating spheroid in order
to regularise the boundary integral equations of our tubular body. We parameterise the
surface of a spheroid as

Se(s, θ) = asx̂′ + c
√

1 − s2ρ̂(θ) + q, (A1)

where a and c are the semi-axes of the spheroid, x̂′ is a unit vector along the symmetry
axis, ρ̂(θ) is the radial director perpendicular to the symmetry axis and q is the centre of
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Viscous tubular-body theory for plane interfaces

the spheroid. The solution of Brenner (1963) gives

MA · f̄ (s, θ) =
∫ 1

−1
ds′
∫ π

−π

dθ ′ GS(Se(s, θ) − Se(s′, θ ′)) · f̄ (s, θ), (A2)

where α = c/a is the inverse aspect ratio of the spheroid. The matrix MA is proportional
to the translational mobility matrix of the spheroid and equals

MA = ζ‖x̂′x̂′ + ζ⊥(I − x̂′x̂′
), (A3)

aβ3/2

4πμ1
ζ‖ = (β − 1) arccos(α−1) +

√
β, (A4)

aβ3/2

2πμ1
ζ⊥ = (3β + 1) arccos(α−1) −

√
β, (A5)

β = α2 − 1. (A6)

In regularising the boundary integral equations for the tubular body (4.1), we fit a
spheroid to the surface of the tubular body at a point (s, θ) by matching the positions
and the tangent planes of the two objects. Since the spheroid parameterisation has four
independent parameters (a, x̂′

, c, q), it is possible to enforce these conditions uniquely,
with the point of agreement on the regularising spheroid parameterised as (se, θ), where
se is the arclength of the spheroid at which the surface and tangent plane matches.
Explicitly, we require Se(se, θ) = S(s, θ), ∂seSe(se, θ) = ∂sS(s, θ) and ∂θSe(se, θ) =
∂θS(s, θ). These conditions give the following relationships between the surface of the
body and the parameterisation of the spheroid:

x̂′ = t̂(s), (A7)

ρ̂(θ) = êρ(s, θ), (A8)

q + asex̂′ = r(s), (A9)

2c2 = ρ2(s) + ρ(s)
√

ρ2(s) + 4(∂sρ(s))2, (A10)

a = 1 − t̂(s) · ∂sêρ(s, θ), (A11)

c2se = ρ(s)∂sρ(s), (A12)

where t̂(s) = ∂sr(s) is the tangent to the centreline of the body.

Appendix B. Expanding the free-space boundary integral kernel

In order to cast the boundary integrals in the TBT form, first, one writes the argument of
the free-space Green’s function as

S(s, θ) − S(s′, θ ′) = R0(s, s′) + êρ(s, θ, s′, θ ′), (B1)

where R0(s, s′) = r(s) − r(s′) is a vector between two points on the centreline of the
body and êρ(s, θ, s′, θ ′) = ρ(s)êρ(s, θ) − ρ(s′)êρ(s′, θ ′) is the difference between the
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cross-section vectors at (s, θ) and (s′, θ ′). The length squared of the argument is therefore

∣∣S(s, θ) − S(s′, θ ′)
∣∣2 = ∣∣R0(s, s′)

∣∣2 + ∣∣êρ(s, θ, s′, θ ′)
∣∣2 + 2R0(s, s′) · êρ(s, θ, s′, θ ′),

(B2)

where the first two terms are the squared lengths of each of the vectors in (B1) while the
last term is the cross-term. This equation can be rewritten as

∣∣S(s, θ) − S(s′, θ ′)
∣∣2 =

[∣∣R0(s, s′)
∣∣2 + ∣∣êρ(s, θ, s′, θ ′)

∣∣2] [1 + R(1)
Δ (s, θ, s′, θ ′)

]
,

(B3)

where[∣∣R0(s, s′)
∣∣2 + ∣∣êρ(s, θ, s′, θ ′)

∣∣2]R(1)
Δ (s, θ, s′, θ ′) = 2R0(s, s′) · êρ(s, θ, s′, θ ′).

(B4)

The size of R(1)
Δ (s, θ, s′, θ ′) can be bound with the triangle inequality. The triangle

inequality implies that for any two vectors a and b, |a|2 + |b|2 ≥ 2|a · b|, with equality
holding if and only if a = ±b. If a = R0(s, s′) and b = êρ(s, θ, s′, θ ′), a = ±b can
only occur if the tubular body intersects itself. Hence, provided that the body does not
self-intersect, the triangle inequality shows that |R(1)

Δ (s, θ, s′, θ ′)| < 1 for all (s′, θ ′). This
same bound does not hold when considering the cross-terms that result from a sum of
three vectors, rather than two. This was the erroneous assumption that led to the error in
the original TBT derivation, although this does not impact on the derived formalism.

The bound on R(1)
Δ (s, θ, s′, θ ′) prompts the denominator of each of the terms within the

free-space Green’s function to be written as

∣∣S(s, θ) − S(s′, θ ′)
∣∣−2n

=
[∣∣R0(s, s′)

∣∣2 + ∣∣êρ(s, θ, s′, θ ′)
∣∣2]−n [

1 + R(1)
Δ (s, θ, s′, θ ′)

]−n
, (B5)

which is structurally equivalent to a binomial series. Generally, a binomial series can be
written as

(1 + x)ς =
∞∑

k=0

(
ς

k

)
xk, (B6)

where the generalised binomial coefficient is given by

(
ς

k

)
= 1

k!

k+1∏
n=0

(ς − n). (B7)

The binomial series converges absolutely if |x| < 1 and ς ∈ C. Therefore, taking ς =
−n and x = R(1)

Δ (s, θ, s′, θ ′), the denominators in the free-space Green’s function can be
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expressed as

|S(s, θ) − S(s′, θ ′)|−2n

=
[∣∣R0(s, s′)

∣∣2 + ∣∣êρ(s, θ, s′, θ ′)
∣∣2]−n ∞∑

k1=0

(−n
k1

)
R(1)

Δ (s, θ, s′, θ ′)k1 . (B8)

This first binomial series moves the θ ′ that is related to the dot product of R0(s, s′) and
êρ(s, θ, s′, θ ′) from the denominator to the numerator of the Green’s function. However,
θ ′ dependence remains within the |êρ(s, θ, s′, θ ′)|2 term of the denominator.

The θ ′ dependence that remains within the denominator can be addressed with a second
binomial series. Similarly to the first expansion, the length squared of êρ(s, θ, s′, θ ′) can
be written as∣∣êρ(s, θ, s′, θ ′)

∣∣2 = ρ2(s) + ρ2(s′) − 2ρ(s)ρ(s′)êρ(s, θ) · êρ(s′, θ ′), (B9)

allowing the remaining terms in the denominator to be expressed as∣∣R0(s, s′)
∣∣2 + ∣∣êρ(s, θ, s′, θ ′)

∣∣2 = ∣∣R̃(s, s′)
∣∣2 [1 + R(2)

Δ (s, θ, s′, θ ′)
]
, (B10)

where ∣∣R̃(s, s′)
∣∣2 = ∣∣R0(s, s′)

∣∣2 + ρ2(s) + ρ2(s′), (B11)∣∣R̃(s, s′)
∣∣2R(2)

Δ (s, θ, s′, θ ′) = −2ρ(s)ρ(s′)êρ(s, θ) · êρ(s′, θ ′). (B12)

Similarly to the first expansion, the triangle inequality tells us that ρ2(s) + ρ2(s′) ≥
2ρ(s)ρ(s′)|êρ(s, θ) · êρ(s′, θ ′)|. This means that |R(2)

Δ (s, θ, s′, θ ′)| < 1 for s /= s′ because
the distance between any two points on the centreline is greater than zero, |R0(s, s′)| > 0,
when s /= s′. If s = s′, the distance between points on the centreline goes to zero, so
that |R0(s, s′)| = 0 and the triangle inequality becomes 1 ≥ |êρ(s, θ) · êρ(s, θ ′)|. Hence,
|R(2)

Δ (s, θ, s, θ ′)| = 1 if the local radial vector at (s, θ), êρ(s, θ), is parallel to the vector
at (s, θ ′), êρ(s, θ ′). These local radial vectors are parallel if θ = θ ′ + mπ, where m is an
integer, meaning that |R(2)

Δ (s, θ, s′, θ ′)| < 1 if (s, θ) /= (s′, θ ′ + mπ). A binomial series in
R(2)

Δ (s, θ, s′, θ ′), therefore, allows us to express the denominators as

|S(s, θ) − S(s′, θ ′)|−2n

= |R̃(s, s′)|−2n
∞∑

k1=0

(−n
k1

)
R(1)

Δ (s, θ, s′, θ ′)k1

∞∑
k2=0

(−n
k2

)
R(2)

Δ (s, θ, s′, θ ′)k2, (B13)

if (s, θ) /= (s′, θ ′ + mπ). Geometrically, |R̃(s, s′)|2 is the total squared lengths of R0(s, s′),
ρ(s)êρ(s, θ) and ρ(s′)êρ(s′, θ ′), while the R(i)

Δ (s, θ, s′, θ ′) contain the interactions between
the vectors, where i = 1, 2.

The summation over k2 does not converge when (s, θ) = (s′, θ ′ + mπ). However, these
points are treated with the regularisation of the boundary integrals. The spheroid used
in the regularised boundary integrals, (4.2), was chosen to mimic the dimensions and
tangent plane of the tubular body at (s, θ). This means that the radius and radial directors
êρ of the spheroid match with the body at this location. Hence, when s = s′, the terms
|R̃|, R(1)

Δ (s, θ, s, θ ′) and R(2)
Δ (s, θ, s, θ ′) are the same form for the tubular body and
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the regularising spheroid. The subtraction of the spheroid geometry in the regularised
boundary integrals, (4.2), causes each term of the binomial expanded free-space kernel for
the tubular body to cancel with its counterpart from the regularising spheroid, removing
the convergence issue when (s, θ) = (s′, θ ′ + mπ). This is by construction.

Appendix C. Expanding the mirror boundary integral kernel

Similarly to the free-space Green’s function expansion, the expansion of the image kernels
starts by expressing the argument as

S(s, θ) − A · S(s′, θ ′) = R∗
0(s, s′) + ê∗

ρ(s, θ, s′, θ ′), (C1)

where R∗
0(s, s′) = r(s) − A · r(s) − 2dẑ is a vector between a point on the body centreline

and the mirror centreline, ê∗
ρ(s, θ, s′, θ ′) = ρ(s)êρ(s, θ) − ρ(s′)A · êρ(s′, θ ′) is the

difference between the cross-section vectors at (s, θ) and the mirror cross-section vector at
(s′, θ ′) and A is the reflection matrix in ẑ. The length squared of the argument can therefore
be expressed as

∣∣S(s, θ) − A · S(s′, θ ′)
∣∣2 = ∣∣R̃∗(s, s′)

∣∣2 [1 + R∗(2)
Δ (s, θ, s′, θ ′)

] [
1 + R∗(1)

Δ (s, θ, s′, θ ′)
]
,

(C2)

where ∣∣R̃∗(s, s′)
∣∣2 = R∗2

0 (s, s′) + ρ2(s) + ρ2(s′), (C3)∣∣R̃∗(s, s′)
∣∣2R∗(2)

Δ (s, θ, s′, θ ′) = −2ρ(s)ρ(s′)êρ(s, θ) · A · êρ(s′, θ ′), (C4)∣∣R̃∗(s, s′)
∣∣2 [1 + R∗(2)

Δ (s, θ, s′, θ ′)
]

R∗(1)
Δ (s, θ, s′, θ ′) = 2R∗

0(s, s′) · ê∗
ρ(s, θ, s′, θ ′).

(C5)

Geometrically, |R̃∗(s, s′)|2 is again the total squared lengths of each component vector
in (C1), while the R∗(i)

Δ (s, θ, s′, θ ′) contains the interactions between them. Unlike the
free-space case, R∗(2)

Δ (s, θ, s′, θ ′) < 1 for all (s′, θ ′) because |R∗
0(s, s′)| /= 0 if the body

does not cross the interface. The binomial series, which follow, are therefore always valid.
Hence, the denominators in our mirror Green’s functions can always be expanded as∣∣S(s, θ) − A · S(s′, θ ′)

∣∣−2n

= ∣∣R̃∗(s, s′)
∣∣−2n

∞∑
k1=0

(−n
k1

)
R∗(1)

Δ (s, θ, s′, θ ′)k1

∞∑
k2=0

(−n
k2

)
R∗(2)

Δ (s, θ, s′, θ ′)k2 . (C6)

Appendix D. Properties of �MA(s, θ)

The matrix MA(s, θ) = MA − Ma represents the difference between the exact solution for
the effective ellipsoid and the first-approximation term and is important to for invertibility
properties of the L operator. For example, (4.21) shows that f̄ (s, θ) is linearly related to the
driving flow θ dependence through MA(s, θ)−1. We therefore require MA(s, θ) to be
invertible for all s and θ . This can be shown by considering the integrals of the remaining
terms.
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Viscous tubular-body theory for plane interfaces

By definition, MA(s, θ) is a diagonal matrix with at most two distinct eigenvalues,
corresponding to eigenvectors that are parallel and perpendicular to tt, which follows
directly from the structures of MA and Ma. Explicitly, we can write

MA = λ1tt + λ2(I − tt), (D1)

where λ1 = ζ‖ − χ‖ and λ2 = ζ‖ − χ‖. The inverse of MA(s, θ) can therefore be found
by taking the reciprocal of these eigenvalues provided they are not 0.

From the boundary integral representation, these eigenvalues can be written as

λ1 =
∫ 1

−1
ds′
∫ π

−π

dθ ′ t · [GS(Se(se, θ) − Se(s′, θ ′)) − KS,e(se(s), s′)
] · t

= I1 + I2 (D2)

λ2 =
∫ 1

−1
ds′
∫ π

−π

dθ ′ b · [GS(Se(se, θ) − Se(s′, θ ′)) − KS,e(se(s), s′)
] · b

= I1 + I3, (D3)

where b · t = 0 and we define

I1 =
∫ 1

−1
ds′
∫ π

−π

dθ ′
[

1
|Re| − 1

|R̃e|

]
, (D4)

I2 =
∫ 1

−1
ds′
∫ π

−π

dθ ′
[

a2(s)(s − s′)2

|Re|3 − a2(s)(s − s′)2

|R̃e|3
]
, (D5)

I3 =
∫ 1

−1
ds′
∫ π

−π

dθ ′ (b · êρ)2

|Re|3 . (D6)

Inspection reveals that the integrand of I3 is non-negative, so that positivity of λ2 relies
only on the positivity of I1. The behaviours of I1 and I2 are less clear. However, progress
can be made by recognising that the negative terms in the integrands of I1 and I2 are
simply the first terms in the binomial expansions of the remaining integrands, found in
Appendix B. Hence, I1 and I2 can be written in terms of the tails of the binomial series

I1 =
∫ 1

−1
ds′ 1

|R̃e|

∫ π

−π

dθ ′
∞∑

k2=1

(−1/2
k2

) [−� cos(θ − θ ′)
]k2 , (D7)

I2 =
∫ 1

−1
ds′ a2(s)(s − s′)2

|R̃e|3
∫ π

−π

dθ ′
∞∑

k2=1

(−3/2
k2

) [−� cos(θ − θ ′)
]k2 , (D8)

where � = 2ρ(s)ρ(s′)/|R̃e|2 and we have used that R(1)
Δ = 0 for the spheroid geometry.

Interchanging the summation and integration and evaluating the θ ′ integral gives

I1 =
∫ 1

−1
ds′ 1

|R̃e|
∞∑

k2=1

(−1/2
2k2

)
�2k2

2
√

πΓ (k2 + 1/2)

k2!
, (D9)

I2 =
∫ 1

−1
ds′ a2(s)(s − s′)2

|R̃e|3
∞∑

k2=1

(−3/2
2k2

)
�2k2

2
√

πΓ (k2 + 1/2)

k2!
. (D10)
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Figure 9. Convergence as a function of truncation number and an eigenvalue analysis. (a) For the thicker
helix of § 7, illustrated in figure 8, we assess the convergence of the resistance matrix as a function of the
number of terms taken in the series of (4.27). Error is measured in the Frobenius norm relative to the result
corresponding to 1001 terms. Rates of convergence are in line with those associated with spheroids at similar
boundary separations (see § 6). (b) For the same helix, we plot the eigenvalues of the discrete operator, which
are all seen to lie strictly within (−1, 1). Here, the tubular body is discretised with N = M = 60 and we have
taken d = 0.5.

These summations can be evaluated exactly to give

I1 =
∫ 1

−1
ds′ 1

|R̃e|

[
4K (2�/(1 + �))√

1 + �
− 2π

]
, (D11)

I2 = 2π

∫ 1

−1
ds′ a2(s)(s − s′)2

|R̃e|3
[

2F1

(
3
4
,

5
4
; 1; �2

)
− 1

]
, (D12)

where K(x) is the complete elliptic integral of the first kind and 2F1(a, b; c; x) is Gauss’s
hypergeometric function. The above integrands are strictly greater than zero unless � = 0
for all s′. Since � = 0 for all s′ can only occur if ρ(s) = 0, this implies that I1 > 0 and
I2 > 0 unless ρ(s) = 0, at which point I1 = I2 = 0. Therefore, we have that

λ1 = I1 + I2 > 0 (D13)

λ2 = I1 + I3 > 0 (D14)

unless ρ(s) = 0. Hence, MA(s, θ) is invertible provided ρ(s) /= 0, which typically holds
at all points except the endpoints of a tubular body.

Appendix E. Eigenvalues and convergence for a thick helix

In order to further explore the example of § 7 in which a tubular body approaches
self-intersection, we investigate the convergence of the resistance matrix as a function of
the number of terms taken in (4.27) and the level of mesh refinement, report in figures 9(a)
and 10, respectively. From these explorations, we see that TBTi-BEM converges rapidly
with mesh refinement and with truncation number, with the latter expectedly being the
slower of the two. In particular, the relatively small change (<1 %) in accuracy observed
for meshes with N = M � 30 justifies the use of what otherwise might be thought of as
coarse meshes when using TBTi-BEM.

Additionally, figure 9(b) reports the distribution of eigenvalues of the discrete operator
𝔏−1𝔏, from which it is evident that the eigenvalues of the discrete operator lie in
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Figure 10. The convergence of resistance matrices as a function of mesh resolution. For the slender helix of
§ 7, we compute the relative error in the TBTi-BEM resistance matrices as a function of mesh refinement,
varying N = M for a fixed configuration. The error is computed as the Frobenius norm of the difference
between the result at a given mesh resolution and that obtained with N = M = 160, and appears to decrease
approximately with N3 = M3. The relative error falls below 1 % by N = M = 20 in this case.

(−1, 1). Hence, the discretised series representation of the TBTi formalism (TBTi-BEM)
is convergent, as supported by the direct assessment of convergence in figure 9(a). By
comparison with § 6 and the convergence analysis presented there for spheroids, this
example suggests that the convergence of TBTi is not materially impaired by the complex
geometry considered here.

Separately, in order to verify the approximate mesh independence of the TBTi-BEM
calculations, we investigate the convergence of the resistance matrix as a function of mesh
resolution. Taking N = M and considering the slender helix of § 7, the relative error in
the resistance matrix is plotted in figure 10. Here, we are evaluating the error via the
Frobenius norm relative to the result of taking a very fine mesh with N = M = 160. The
computed resistance matrix can be seen to converge rapidly as the mesh is refined, with
the error displaying an approximately cubic dependence on the mesh resolution. Here, we
have taken 1001 terms in the series of (4.27).
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