AN UPPER BOUND FOR THE NUMBER OF ODD MULTIPERFECT NUMBERS
 PINGZHI YUAN

(Received 21 September 2012; accepted 28 October 2012; first published online 28 January 2013)

Abstract

A natural number n is called k-perfect if $\sigma(n)=k n$. In this paper, we show that for any integers $r \geq 2$ and $k \geq 2$, the number of odd k-perfect numbers n with $\omega(n) \leq r$ is bounded by $\left(\underset{r}{\left\lfloor 4^{\prime} \log _{3} 2\right\rfloor+r} \underset{r}{ }\right) \sum_{i=1}^{r}\binom{\lfloor k r / 2\rfloor}{ i}$, which is less than $4^{r^{2}}$ when r is large enough.

2010 Mathematics subject classification: primary 11A25.
Keywords and phrases: odd perfect numbers, k-perfect numbers.

1. Introduction

Let $k \geq 2$ be a positive integer. A natural number N is said to be k-perfect (or multiperfect of abundancy k) if $\sigma(N)=k N$, where $\sigma(N)$ denotes the sum of all the divisors of N. We say N is perfect when $k=2$. The even perfect numbers were completely classified by Euler. Namely, N is an even perfect number if and only if $N=2^{p-1}\left(2^{p}-1\right)$, where $2^{p}-1$ is prime. However we know less about odd perfect numbers. We do not have a single example, and we do not have a proof that they do not exist.

Let $\omega(N)$ denote the number of distinct prime factors of a natural number N. In 1913, Dickson [4] proved that there are only finitely many odd perfect numbers with k distinct prime factors. In 1977, Pomerance [8] gave an explicit upper bound in terms of k. Heath-Brown [5] improved the bound to $N<4^{4^{k}}$, and Cook [2] reduced this bound to $N<D^{4^{k}}$ with $D=(195)^{1 / 7}$. Nielsen [6] slightly improved and generalised Cook's method; he proved that if N is an odd multiperfect number with k distinct prime factors, then

$$
\begin{equation*}
N<2^{4^{k}} \tag{1.1}
\end{equation*}
$$

In addition to an upper bound on the size of such N, Pollack [7] proved that for each positive integer k the number of odd perfect numbers N with $\omega(N) \leq k$ is bounded

[^0]by $4^{k^{2}}$. This result was generalised by Chen and Luo [1], who showed that, for any integer $r \geq 1$, the number of odd k-perfect numbers n with $\omega(n) \leq r$ is bounded by $(k-1) \cdot 4^{r^{3}}$. More recently, Dai et al. [3] improved the bound of Chen and Luo to $4^{r^{2}}(k-1)^{2 r^{2}+3}$. The purpose of this paper is to improve the above result. We prove the following estimate.

Theorem 1.1. For any integers $r \geq 2$ and $k \geq 2$, the number of odd k-perfect numbers n with $\omega(n) \leq r$ is bounded by $\binom{4^{r}\left\lfloor\log _{3} 2\right\rfloor+r}{r} \sum_{i=1}^{r}\binom{[k r / 2\rfloor}{ i}$, which is less than $4^{r^{2}}$ when r is large enough .

2. The proof

The proof is essentially in the spirit of Pollack's work [7], and is a modification of Wirsing's method [9], but with a different counting argument. Let x be a positive real number. Suppose that $N<x$ is an odd k-perfect number and $\omega(N) \leq r$. Write $N=A B$, where $A:=\prod_{p^{e} \| N, p>k r} p^{e}$ and $B:=\prod_{p^{e} \| N, p \leq k r} p^{e}$. We have

$$
\frac{\sigma(A)}{A}=\prod_{p^{e} \| A}\left(1+\frac{1}{p}+\cdots+\frac{1}{p^{e}}\right)<\prod_{p \mid A}\left(1+\frac{1}{p}+\frac{1}{p^{2}}+\cdots\right),
$$

and so

$$
\begin{equation*}
\frac{A}{\sigma(A)}>\prod_{p \mid A}\left(1-\frac{1}{p}\right) \geq 1-\sum_{p \mid A} \frac{1}{p} \geq 1-\frac{r}{k r+1}>\frac{k-1}{k} \tag{2.1}
\end{equation*}
$$

which implies that $B>1$. Since N is k-perfect, $\sigma(A B)=k A B$, and hence

$$
\begin{equation*}
(k-1) B=\frac{k-1}{k} k B<\frac{A}{\sigma(A)} k B=\sigma(B) \leq k B \tag{2.2}
\end{equation*}
$$

with equality on the right precisely when $A=1$. Suppose $A \neq 1$. By the previous inequality,

$$
\begin{equation*}
\sigma(B)>(k-1) B \quad \text { and } \quad \sigma(B) \mid k A B \tag{2.3}
\end{equation*}
$$

If $\operatorname{gcd}(A, \sigma(B))=1$, then by the second formula of (2.3), $\sigma(B) \mid k B$, and so $\sigma(B) \leq$ $k B / 2 \leq(k-1) B$, which contradicts (2.3). Therefore, there is a prime p dividing $\operatorname{gcd}(A, \sigma(B))$, which means that $\sigma(B)$ has a prime factor p with $p>k r$ and $\operatorname{gcd}(p, B)=$ 1 by the definition of A. Let p_{1} be the least such prime factor of $\sigma(B)$. Suppose $p_{1}^{e_{1}} \| A$, where $e_{1} \geq 1$. Then, if we put

$$
A^{\prime}:=A / p_{1}^{e_{1}} \quad \text { and } \quad B^{\prime}:=B p_{1}^{e_{1}},
$$

it is clear that (2.1)-(2.3) hold with A^{\prime} and B^{\prime} replacing A and B. By the same argument as in [7], continuing the above procedure, we eventually obtain a factorisation

$$
A=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{t}^{e_{t}}
$$

where $t=\omega(A)=\omega(N)-\omega(B) \leq r-1$.

We note that the prime p_{1} depends only on B, while for $i>1$, the prime p_{i} depends only on B and the exponents e_{1}, \ldots, e_{i-1}. It follows that for a given B, the cofactor A (if $A>1$) is entirely determined by e_{1}, \ldots, e_{t}, and we have $e_{i} \leq \log _{5} x, i=1, \ldots, t$.

Let $B=q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{s}^{f_{s}}$. Then $f_{j} \leq \log _{3} x, j=1, \ldots, s, s+t=r$. Let m be the number of odd primes not exceeding $k r$, so $m<k r / 2$. To estimate the number of possibilities for B and e_{1}, \ldots, e_{t}, we first choose $s, 1 \leq s \leq r$, odd primes from the first m odd primes, then choose positive integers $f_{j} \leq \log _{3} x, j=1, \ldots, s$, and nonnegative integers $e_{i} \leq \log _{5} x, i=1, \ldots, t$, with $s+t=r$ and obviously $e_{1}+\cdots+e_{t}+f_{1}+\cdots+$ $f_{s} \leq \log _{3} x$. The number of possibilities for $e_{1}+\cdots+e_{t}+f_{1}+\cdots+f_{s} \leq \log _{3} x$ is not larger than the number of nonnegative integer solutions of the equation

$$
e_{1}+\cdots+e_{t}+f_{1}+\cdots+f_{s}+y=\left\lfloor\log _{3} x\right\rfloor,
$$

which is $\left.\left(\log _{3} x\right\rfloor+r\right)$. It follows that the number of possibilities for B and e_{1}, \ldots, e_{t} is bounded by

$$
\binom{\left\lfloor\log _{3} x\right\rfloor+r}{r} \sum_{i=1}^{r}\binom{m}{i} \leq\binom{\left\lfloor\log _{3} x\right\rfloor+r}{r} \sum_{i=1}^{r}\binom{\lfloor k r / 2\rfloor}{ i} .
$$

Recall Mertens' formula: for $x \geq 2$

$$
\prod_{p \leq x}\left(1-\frac{1}{p}\right)^{-1}=e^{\gamma} \log x+O(1)
$$

where $\gamma=0.577 \ldots$ is Euler's constant. Recall also the prime number theorem: if p_{n} denotes the nth prime number, then $p_{n} \sim n \log n$. We have

$$
\begin{align*}
k & =\frac{\sigma(N)}{N}<\prod_{p \mid N}\left(1+\frac{1}{p}+\frac{1}{p^{2}}+\cdots\right)=\prod_{p \mid N}\left(1-\frac{1}{p}\right)^{-1} \\
& \leq \frac{1}{2} \prod_{p \leq p_{r}}\left(1-\frac{1}{p}\right)^{-1} \sim \frac{e^{\gamma}}{2} \log r . \tag{2.4}
\end{align*}
$$

By (1.1), we take $x=2^{4^{r}}$ so that the number of odd k-perfect numbers n with $\omega(n) \leq r$ is bounded by

$$
\binom{\left\lfloor 4^{r} \log _{3} 2\right\rfloor+r}{r} \sum_{i=1}^{r}\binom{\lfloor k r / 2\rfloor}{ i} \leq \frac{2^{k r / 2}}{r!}\left\lfloor 4^{r} \log _{3} 2+r\right\rfloor^{r} \leq \frac{2^{k r / 2}}{r!} 4^{r^{2}}
$$

By (2.4) and the fact that the Taylor series for $\exp \left(2^{k / 2}\right)=\sum_{i=0}^{\infty} 2^{k i / 2} / i$! converges, $2^{k r / 2} / r!$ must go to 0 as $r \rightarrow \infty$. This proves the theorem.

Acknowledgement

The author is pleased to thank the referee for valuable suggestions. He also thanks the referee for pointing out the reference [3] to him.

References

[1] S. C. Chen and H. Luo, 'Bounds for odd k-perfect numbers', Bull. Aust. Math. Soc. 84(3) (2011), 475-480.
[2] R. J. Cook, 'Bounds for odd perfect numbers', in: Number Theory (Ottawa, ON, 1996), CRM Proceedings \& Lecture Notes, 19 (American Mathematical Society, Providence, RI, 1999), 67-71.
[3] L. X. Dai, H. Pan and C. Tang, 'Note on odd multiperfect numbers', Bull. Aust. Math. Soc., to appear.
[4] L. E. Dickson, 'Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors', Amer. J. Math. 35 (1913), 413-422.
[5] D. R. Heath-Brown, 'Odd perfect numbers', Math. Proc. Cambridge Philos. Soc. 115 (1994), 191-196.
[6] P. Nielsen, 'An upper bound for odd perfect numbers', Integers: Electronic J. Comb. Number Theory 3 (2003), A14, 9 pp. (electronic).
[7] P. Pollack, 'On Dickson's theorem concerning odd perfect numbers', Amer. Math. Monthly 118 (2011), 161-164.
[8] C. Pomerance, 'Multiply perfect numbers, Mersenne primes and effective computability', Math. Ann. 226 (1977), 195-206.
[9] E. Wirsing, 'Bemerkung zu der Arbeit über vollkommene Zahlen', Math. Ann. 137 (1959), 316-318.

PINGZHI YUAN, School of Mathematics, South China Normal University, Guangzhou 510631, PR China
e-mail: yuanpz@scnu.edu.cn

[^0]: Supported by NSF of China (No. 11271142) and the Guangdong Provincial Natural Science Foundation (No. S2012010009942).
 (C) 2013 Australian Mathematical Publishing Association Inc. 0004-9727/2013 \$16.00

