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Abstract

A construction for Fitting formations given by the author and C. L. Kanes is generalised. The
original examples were based on the use of Fitting families of modules over algebraically closed
fields. An example of Haberl and Heineken in 1984 suggested that the methods should work
with modules over arbitrary fields. We show that this is indeed the case, provided we restrict
the class of groups considered.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 F 17.

1. Introduction

In [1] a general construction for Fitting formations and examples using that
construction were given. The examples given were based on the use of Fit-
ting families of modules, and the particular examples of Fitting families con-
structed relied on the use of modules over an algebraically closed field. It
seemed clear these results could be extended to give examples using modules
over non-algebraically closed fields, and the appearance of the example of
Haberl and Heineken [2] provided the incentive to do so, as it seemed to
be a GF(q) version of the examples of [1]. However it turns out that the
example of Haberl and Heineken can be constructed as a special case of the
examples of [1] (see Section 4). The purpose of this paper is to show that
the results of f 1] can be extended to deal with modules over non-algebraically
closed fields if we restrict the class of groups considered.
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96 John Cossey [2]

2. Preliminaries

For the remainder of this paper, K will denote a perfect field of character-
istic q, q a fixed prime, and E will denote the algebraic closure of AT. We will
denote by !? a partition of P, the set of all primes: so that & = {JT,-|I e /}
for some index set / , with U,G/ re, = P, and n, n n}; = 0 for / ^ j .

If n is a positive integer prime to q and Cn a cyclic group or order n, we
let dx(n) be the dimension of a faithful irreducible module for Cn over A".
We then set

(K,Ui) = {pe nt\p = q,dK{p) = 1, or rfjf(p) is not a ^-number},

and {K,&>) = U,e/(^> n>)- N o t e ^ a t i f ^ i s algebraically closed, then (A, ni)
= Ui, and so (K,^°) = P. In general this will not be true, but for any field
K (except GF(2)) there is a nontrivial partition & of P with (AT, &) = P.
Such a partition can be constructed by using the method given for GF{q) by
Haberl and Heineken in [2]. We indicate how their method can be adapted,
and start with a restatement of their Hypothesis B.

HYPOTHESIS B. 9\K is a set of positive integers satisfying
(a) ab e 9t* if and only if a and b are both elements of SK*; and
(b) if p is a prime, then p € 9t* if and only if d(p) e fHjc-
Now define no = {p € Yl\p ^ q, dK{p) = 1}, and then SDto to be the set

of all /zo-numbers (note that no is non-empty unless K = GF(2)). Then
suppose that /*,, SOT, have been defined, and define ni+x, 9Jt,+i as follows. If
9Jt, satisfies Hypothesis B, set /*,+i = /it, 9H,+i = 9tt,, Otherwise, choose m(

in 9ETC, minimal such that there is a prime p not in /z, with fifc(p) = »»,•; and
then let /*,+( = fij l){p e 111^^) = mi), and let 9Jt,+i be the set of all fii+l-
numbers. Finally, set 9JlK = UOT/> PK = {JUi, and note that q $ HK- It is
now an easy check that 9Jlx satisfies Hypothesis B (as in [2]).

Put & = {HK,H'K)-
 T n en & is a nontrivial partition of P, and we get

as immediate consequences of the fact that 9% satisfies Hypothesis B that
(K,/iK) = HK and {K,n'K) = (i'K.

We will be interested in the structure of AT (/-modules for soluble {K,^)-
groups G: most of our results will be derived from analogous results for
algebraically closed fields by extending AT to a finite extension which is a
splitting field for G and all its subgroups. We will need some facts about
such extensions which we collect here.

Let n be a (AT, .^-number, coprime to q, and let L = K(e) c E, where e
is a primitive nth root of unity. Let A = Gal(L: AT), the Galois group of L
over AT: then A is abelian. If n e &, we can write A = A\ x A2, where A\ is
a 7t-group, and A2 is a n'-group. If L, is the fixed field of At, i = 1,2, then
dirn^L) = \Aj\, and dim*(L,) = \Aj\, j # /.
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We will need the following results.

2.1 LEMMA. Ifp e {K,n), thenp e (Li,n).

PROOF. Up = q, q en, and the result is immediate from the definition. If
K contains a pth root of unity, so does L\, and so we assume that p ^ q and
dx(p) > 1- Thus if M is a faithful irreducible module for Cp over K, dim* M
is not a re'-number. If ML> = Mi®-- -®Mt, with the A/,- irreducible, then the
A/, form an orbit under the action of Gal(Z-i: K). Since | Gal(Li: K)\ = l^ l
is a re'-number, so is t. Since dim* M is not a re'-number, it follows that
dim/., M\ is not a re'-number, and so p e (L\,n).

2.2 LEMMA. Suppose that a e Ll is an nth root of unity, with n a (K, n)-
number and coprime to q. Then a e K.

PROOF. Clearly it is enough to prove the lemma for n a prime power, n =
pr say, p € (K, re). In this case, any irreducible A^(a)-module has dimension
1 or dimension divisible by die(p).

Put M = k(a): then M is an irreducible ^(a)-module. Since dim^ M
divides dim^Li, a Tr'-number, dim^A/ is not divisible by dK(p), and so
dim* M = 1. Thus a e K, as required.

3. Factorable modules

In [1], an irreducible #<J-module U was called ^-factorable if U =
U\ ® • • • ® Un, where Uj is w,y-special, •n.ij e ^ , 7tl; / 7r,t for (, ^ «V, 1 < j ,
k <n. The definition of re-special given in [1] does not require K to be alge-
braically closed, but most of the results proved there do require the algebraic
closure of K: most of the results can be proved for an arbitrary perfect field K
provided we restrict ourselves to soluble (#, .^-groups. For the applications
of ^-factorable modules needed for this paper it turns out to be more effi-
cient to go in a different direction. Our aim in this section is to establish that,
for soluble (AT, .^-groups, a KG-modvAt M is re-special (^"-factorable) if and
only if the irreducible constituents of ME are re-special (.^-factorable). The
same techniques can be used to establish analogues of the results of Section
2of[lJ.

For the remainder of this section, if G is a soluble group, Gq< will denote a
Hall ^'-subgroup of G, n = |Gy|, e will denote a primitive nth root of unity
in E, and L = K(e) (note that L is a splitting field for every subgroup of G).
Further, we set A = Gal(L: K), and if re e ^ , we put A = A\ x A2, where A{
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is a re-group and Ai is a re'-group. We let F be the fixed field of Ai, so that
dim*F = \Ai\ is a re-number.

3.1 THEOREM. Let G be a soluble (K,&>)-group and U e lrrK(G). Then U
is n-special if and only if the irreducible constituents ofUE are n-special.

PROOF. Suppose first that U is not re-special, but that the irreducible con-
stituents of UE are re-special; and that G has been chosen minimal with an
irreducible ^TG-module with this property. Then by the minimality of G, if
S < <G, the irreducible constituents of Us are 7t-special for S ^ G. Moreover
for 5 e G with s a n' element, det(.s on U) = det(s on UE) = 1, since UE is
a direct sum of re-special modules. Thus we must have that dim* U is not a
re-number.

Let N be a maximal normal subgroup of G: then UN is a direct sum of re-
special modules (and so in particular UN cannot be irreducible). If UN is not
homogeneous, we must have UN = V\ © • • • © V(, where the Vt are irreducible,
and t is a prime and the re' part of dim* U. Moreover U = F,c. Now suppose
VE = W{@- • •&!¥,: then UE = {Wx@- • -@W,)G = Wf®- • -®W,G. Since Vx is
not G-invariant, Wt is not G-invariant and so Wf is irreducible, / = 1, . . . , / .
But then the irreducible constituents of UE are not re-special since dim^ Wt

G

is divisible by t and is not a re-number.
Thus we suppose that UN is homogeneous. We let dim* U = st, where s

is a re-number, and t is a re'-number. Then UE = U\ © • • • © £// (so that t
divides /) and UN = V\ © • • • © Vm, with the Vt irreducible, re-special, and all
isomorphic (so that t divides m). Now suppose that VE — V^i © • • • © V\T,
where the V\, are irreducible and distinct, and that {U\)N = Un © • • • © £/,„,
where the Uy are irreducible and all isomorphic. We observe that UE is
isomorphic to the direct sum of m copies of Vf, and that UE is isomorphic
to the direct sum of u copies of U\t\ © C/2,1 © • • • © t//i- It follows that r = I,
u = m, and so Im divides dim* U. But t divides both / and m and so t1

divides dim* U, a contradiction.
Thus U is re-special if the irreducible constituents of UE are re-special.
In the other direction, we begin by showing that the irreducible constituents

of UF are re-special if U is re-special. Thus suppose that V is an irreducible
constituent of UF. Since UF is a direct sum of Galois conjugates of V,
dinif V is a re-number. For S < <G, let W be an irreducible constituent of
^5. We then have that W is isomorphic to an irreducible constituent of XF,
for some irreducible constituent X of Us- Suppose that XF = X\ ffi • • • © Xh

with X\ = W. Since dim* X is a re-number, so are dinif A", and /. If s is a
re'-element of S, we have (X\ )(s) = Xiti © • • • © X\m, where X\j is irreducible,
j = \,...,m. We suppose the X\j have been chosen so that X\\,...,X\n
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have dimension one, and X\>n+\,--- ,X\m have dimension greater than one.
For j > n, we have det(s on X\j) = 1. For j < n, s acts on X\j as a root
of unity a, G F of order a (K, re')-number. It then follows from Lemma 2.2
that otj e K. Thus, letting a run over a tranversal for the stabilizer of X\ in
Gal{F:K), we have

1 = det(s on X) = JJdet(s on Xt) = JJdet(,s on Xxa)

Since / is a re-number and hence coprime to the order of s, we get
det(s on X\) = Y\aj = 1. Thus we have that W = X\ is 7r-special.

To complete the proof, it will be enough to show that W is absolutely
irreducible for H a subgroup of G, and W e IrrF(H) with dimf W a re-
number. For then, if V is an irreducible constituent of UF, VE is irreducible,
as is the extension to E of each irreducible constituent of V$, S < <G. It is
then an easy check to see that VE is re-special. To see that W is absolutely
irreducible, it is enough to show that WL is irreducible. Suppose that WL =
W\ © • • • © Wk: the Wt form an orbit under the action of Ai. We then have
that A: is a re-number (it is a divisor of dim/- W) and a re'-number (it is a
divisor of \Ai\). Thus k = 1, and the proof is complete.

3.2 THEOREM. Let Gbea soluble {K,&>)-group, and 7ie&>. IfU, U', V, V
€ IrrK{G) with U, U' n-special and V, V n'-special, then

(i) U <8> V is irreducible
and

(ii) U®V¥U'®V' if and only ifU^U' and V = V.

PROOF. Let UL = U\ © • • • © U,, with £/, irreducible, / = 1 , . . . , / . Since /
is a re-number, Aj is contained in the stabilizer of each £/, and £/, = C/JT, for
some Tj G Ai. Similarly, if VL = V\ © • • • © Vr, with the Vt irreducible, r is a
re'-number. Thus each Vt is stabilized by A\ and vt = Fi<r, for some <r; G AI.
We then have

(U 9 V)L = Q(U, ® Vj) =
'J iJ U

Since £/i, Fi are absolutely irreducible UE, VE are re-special and re'-special
respectively by Theorem 3.1. The irreducibility of U\ <g> Vx follows immedi-
ately from [1, Theorem 2.4]. Thus (U <8> V)L is the sum of distinct Galois
conjugates of an irreducible LG-module, and so U ® V is irreducible.

If U <8> V s U' 9 V, then (U ® V)E s {V ® V')E and so for irre-
ducible constituents W, X, W',X' of UE, VE, U'E, V'E respectively, we have
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W <8> X = W (8> X'. From [1, Theorem 2.4] again we deduce that W ss W,
X s X', and hence U^U',V = V, as required.

An easy induction gives us the following corollary.

3.3 COROLLARY. Let £/,-, F, be n^-special modules, n^ e &, 7t;, / nik for
i^k, I <i, k < n. Then U\ ® • • • ® Un is irreducible, and if U\ <g> • • • ® Un =
Vi ® • • • <8> VH, then Ut = Vit\<i< n.

If U is ^"-factorable, we will mean by a ^"-factorization of U a factoriza-
tion U = u\®-•-<8>Un, with Uj being TC -̂,.-special and not the trivial irreducible,
Hji e &>, iiji £ 7ijk, for i £k, I < i,k < n.

3.4 THEOREM. Le/ G be a soluble {K,3°)-group, and U e ITTK(G). Then
U is ^-factorable if and only if the irreducible constituents of UE are &-
factorable.

PROOF. Suppose first that U is ^"-factorable, with U = U\ <S> • • • ® Un a
^"-factorization of U. If Uf = Uit\ © • • • e Uimj we get that UE is a direct
sum of modules of the form C/iy, <g> • • • <g> Unjll. It follows from Theorem 3.1
and Corollary 3.3 that the C/iyi ® • • • ® Unjn are the irreducible constituents of
UE, and so the irreducible constituents of UE are ^"-factorable.

Now suppose that V is an irreducible constituent of UE, with V being
^"-factorable and V = V\ ® • • • ® Fn a ^"-factorization of F. Let Ŵ  be an irre-
ducible A^G-module such that WE has an irreducible constituent isomorphic
to Vj. Since Galois conjugates of 7ij.-special modules are clearly n^-special,
we have by Theorem 3.1 that Wt is ft,-,-special. If we set W = W\ ® • • • <g> Wn,
W is irreducible by Corollary 3.3, and then U = W, since UE and WE have
a common composition factor. Thus U is ^"-factorable, as required.

The results above rely on the fact that we have restricted our attention to
soluble (#,.^-groups: they do not hold if (K,£°) is replaced by a larger set
of primes.

4. Fitting formations

We retain the notation of Section 2. For each i e I, we let £, be a Fitting
formation, and set «5* = {jt,|j e / } .

As in [1] we define for each soluble (iT,^")-group G a class of modules as
follows:

MK(G) = {Ms lnK(G)\M is ^"-factorable, with ^-factorization

M = Mi <g> • • • ® Mn, a n d G/CG(Mj) e Xjn l<i,k< « } .
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We then define a class of groups by

m(K,&>,2r) = {Ge e^irvcG) c MK{G)}.

Note that m(E,&>,%") = Tiiq,^,^) in the notation of [1]. This seems to
be the natural way to generalize the examples of [1, Section 4]: there is an
alternative characterization of these classes which is easier to work with.

4.1 THEOREM.

PROOF. Since M(K, &>,2?) C 6 ( A ^ ) , it will be enough to show that for
G € &(K^>) and U € lrrK(G), U e MK(G) if and only if all the irreducible
constituents of UE are in ME(G).

By Theorem 3.4 U has a ^"-factorization U = U\ ® • • • <g> Un if and only
if W has a ^"-factorization W = W\ ® • • • igi Wn, where W is an irreducible
constituent of UE and Wt is isomorphic to an irreducible constituent of UE.
Since all the irreducible constituents of Uf are Galois conjugates we have
CG{Ui) = CG{Wi), and so C7/CG(t/,) e Xh if and only if GICG{Wt) e XJr

This completes the proof.

4.2 COROLLARY. WliK^,^) is a Fitting formation.

We are interested in knowing which of these Fitting formations are satu-
rated. Theorem 4.2 of [1] and its proof can be modified to give a complete
answer: we leave it to the reader to make the appropriate changes.

The main result of the paper of Haberl and Heineken [2] is the following.
Let € be a class of finite soluble groups satisfying the following conditions:

(i) all finite nilpotent groups are in C;
(ii) there is a set fH, of natural numbers such that € is the class of groups

with the rank of every 0-chief factor in 9tg;
and

(iii) C is a Fitting class.
Haberl and Heineken show that there is for each odd prime q exactly one
non-trivial set (denoted by ^f in [2]) for which such a class € exists; and this
class is just the class 9JtCf ((?) defined in Section 2.

4.3 THEOREM. Let € be the class determined by 3JIGF(«). f1 = ^GF(?)
 tne

set of primes defined in Section 2, & = {fi,fi'}, and 8? = {&,€}. Then

PROOF. We have observed in Section 2 that (GF(q),^3) = P, and so
yfl{GF{q),&°,8?) is just the class of all soluble groups in which every q chief
factor is ^-special. Clearly then Wi{GF(q),&>,8?) c £ On the other hand,
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suppose that G e <£ and U = H/K is a q chief factor of G. Then the rank
of U is a /^-number. Moreover if S < <G, V is an irreducible constituent
of Us, and s e S is a ft'-element, we have det(.s on V) e GF{q). Thus if
dct(s on V) is an nth root of unity, n is a ^-number and a //'-number, giving
det(s on V) = 1. Hence C/ is ^-special, and G € SWt((jF(^),^')J

s'), complet-
ing the proof.

It is worth noting that this example of Haberl and Heineken provided the
incentive for extending the results of [1], as it seemed that the example should
be obtainable from a GF(q) version of the results in [1]: however it turns
out that it can be realised as a special case of the examples of [1], for by
Theorem 4.1(£ = m(E,^°,^) (with 3P,3r as in Theorem 4.3).
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