THE TRANSIENT BEHAVIOUR OF THE QUEUEING SYSTEM GI/M/1

P. J. BROCKWELL
(received 7 October 1962)

Summary

We consider a single server queue for which the interarrival times are identically and independently distributed with distribution function $A(x)$ and whose service times are distributed independently of each other and of the interarrival times with distribution function $B(x)=1-e^{-x}, x \geqq 0$. We suppose that the system starts from emptiness and use the results of P. D. Finch [2] to derive an explicit expression for q_{j}^{n}, the probability that the $(n+1)$ th arrival finds more than j customers in the system. The special cases $M / M / 1$ and $D / M / 1$ are considered and it is shown in the general case that q_{j}^{n} is a partial sum of the usual Lagrange series for the limiting probability $q_{j}=\lim _{n \rightarrow \infty} q_{j}^{n}$.

1. Introduction

Consider a queueing system whose service times are distributed independently of each other and of the arrival process with d.f. $B(x)=1-e^{-x}$, $x \geqq 0$. Suppose that the first $m+1$ arrivals occur at times $t_{0}, t_{1}, \cdots, t_{m}$ and define

$$
\tau_{j}=t_{j+1}-t_{j}, \quad j=0,1,2, \cdots, m-1
$$

$\eta(t)=$ the number of customers in the system at time t including the one, if any, being served, $\eta_{j}=\eta\left(t_{j}-0\right)$.
Define also the following probabilities conditional upon $\tau_{0}, \tau_{1}, \cdots, \tau_{m}$:
(1) $Q_{i}^{m+1}\left(\tau_{0}, \tau_{1}, \cdots, \tau_{m}\right)=\operatorname{Pr}\left(\eta_{m+1}>j\right)$,
(2) $U_{j}^{m+1}\left(\tau_{0}, \tau_{1}, \cdots, \tau_{m}\right)=\operatorname{Pr}\left(\eta_{1}>0, \eta_{2}>0, \cdots, \eta_{m}>0, \eta_{m+1}=j\right)$.

If $\tau_{0}, \tau_{1}, \cdots, \tau_{m}$ are random variables with joint distribution function $F_{m}\left(x_{0}, x_{1}, \cdots, x_{m}\right)$ then the corresponding unconditional probabilities can be written

$$
\begin{align*}
& q_{j}^{m+1}=\int Q_{j}^{m+1}\left(x_{0}, x_{1}, \cdots, x_{m}\right) d F_{m}\left(x_{0}, x_{1}, \cdots, x_{m}\right) \tag{3}\\
& u_{j}^{m+1}=\int U_{j}^{m+1}\left(x_{0}, x_{1}, \cdots, x_{m}\right) d F_{m}\left(x_{0}, x_{1}, \cdots, x_{m}\right) \tag{4}
\end{align*}
$$

In his study of the single server queue with Erlang service times and non-recurrent input process P. D. Finch [2] obtained the following expressions for Q_{j}^{m+1}, U_{j}^{m+1} :
(5) $\quad Q_{m-j}^{m+1}=(-)^{s}\left|\begin{array}{ccccc}-\phi_{j}^{m} & \frac{\left(-\phi_{j}^{m}\right)^{2}}{2!} & \cdots & \frac{\left(-\phi_{j}^{m}\right)^{j}}{j!} & e^{-\phi_{j}^{m}} \\ 1 & -\phi_{j-1}^{m} & \cdots & \frac{\left(-\phi_{j-1}^{m}\right)^{j-1}}{(j-1)!} & e^{-\phi_{j-1}^{m}} \\ 0 & 1 & \cdots & & \\ 0 & 0 & \cdots & & \\ \vdots & & & & \\ 0 & 0 & \cdots & 1 & e^{-\phi_{0}^{m}}\end{array}\right|, \quad 0 \leqq j \leqq m$,

where $\phi_{j}^{m}=\tau_{m}+\tau_{m-1}+\cdots+\tau_{j}$.
It is the purpose of this paper to evaluate the integrals (3) and (4) in the particular case when $F_{m}\left(x_{0}, \cdots, x_{m}\right)=\prod_{i=0}^{m} A\left(x_{i}\right)$.

2. The expansion of $Q_{m=j}^{m+1}$

Expanding the determinantal expression, (5), about its last column it is found that

$$
Q_{m-i}^{m+1}=\sum_{k=0}^{s} f_{j, k}^{m+1}\left(\phi_{k}^{m}, \phi_{k+1}^{m}, \cdots, \phi_{j}^{m}\right) e^{-\phi_{k}^{m}}, \quad j=0,1, \cdots, m
$$

where the coefficients $f_{j, k}^{m+1}\left(\phi_{k}^{m}, \cdots, \phi_{j}^{m}\right)$ are to be determined. For this purpose we prove the following lemma.

Lemma 1

$$
\begin{equation*}
f_{j, 0}^{m+1}\left(\phi_{0}^{m}, \cdots, \phi_{j}^{m}\right)=\sum_{r=1}^{j} \frac{\left(\phi_{j}^{m}\right)^{r}}{r!} f_{j-r, 0}^{j}\left(\phi_{0}^{j-1}, \cdots, \phi_{j-r}^{j-1}\right), \quad j=1,2, \ldots, m \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
f_{0,0}^{m+1}\left(\phi_{0}^{m}\right)=1 \tag{8}
\end{equation*}
$$

Proof. The validity of (8) can be seen by inspecting the determinant given by (5).

To prove (7) we make the inductive hypothesis (denoted by $H(a)$) that (7) is true for $j=1,2, \cdots, a$, where a is a positive integer such that $a<m$, and furthermore that for $j=0,1, \cdots, a-1$,

$$
f_{j, 0}^{m+1}\left(\phi_{0}^{m}, \cdots, \phi_{j}^{m}\right)=\sum_{r=0}^{1} \frac{\left(\phi_{k}^{m}\right)^{r}}{r!} f_{j-r, 0}^{k}\left(\phi_{0}^{k-1}, \cdots, \phi_{j-r}^{k-1}\right),
$$

where k can take any one of the values $j+1, j+2, \cdots, m$.
We shall prove that $H(a)$ implies $H(a+1)$. The result (7) then follows by induction.

It follows from $H(a)$ that

$$
\begin{aligned}
f_{a, 0}^{m+1}\left(\phi_{0}^{m}, \cdots, \phi_{a}^{m}\right) & =\sum_{r=1}^{a} \frac{\left(\phi_{a}^{m}\right)^{r}}{r!} f_{a-r, 0}^{a}\left(\phi_{0}^{a-1}, \cdots, \phi_{a-r}^{a-1}\right) \\
& =\sum_{r=1}^{a} \sum_{s=0}^{r} \frac{\left(\phi_{k}^{m}\right)^{s}}{s!} \frac{\left(\phi_{a}^{k-1}\right)^{r-s}}{(r-s)!} f_{a-r, 0}^{a}\left(\phi_{0}^{a-1}, \cdots, \phi_{a-r}^{a-1}\right) \\
& =\sum_{u=0}^{a} \frac{\left(\phi_{k}^{m}\right)^{u}}{u!} \sum_{v=\delta_{u, 0}}^{a-u} \frac{\left(\phi_{a}^{k-1}\right)^{v}}{v!} f_{a-u-v, 0}^{a}\left(\phi_{0}^{a-1} \cdots, \phi_{a-u-v}^{a-1}\right)
\end{aligned}
$$

where $\delta_{n, 0}$ denotes Kronecker's delta.
Thus

$$
\begin{equation*}
f_{a, 0}^{m+1}\left(\phi_{0}^{m}, \cdots, \phi_{a}^{m}\right)=\sum_{u=0}^{a} \frac{\left(\phi_{k}^{m}\right)^{u}}{u!} f_{a-u, 0}^{k}\left(\phi_{0}^{k-1}, \cdots, \phi_{a-u}^{k-1}\right), \tag{9a}
\end{equation*}
$$

the last line following from the second part of the hypothesis $H(a)$.
Expanding the appropriate determinant about its first row it is found that

$$
f_{a+1,0}^{m+1}\left(\phi_{0}^{m}, \cdots, \phi_{a+1}^{m}\right)=-\sum_{r=1}^{a+1} \frac{\left(-\phi_{a+1}^{m}\right)^{r}}{r!} f_{a+1-r, 0}^{m+1}\left(\phi_{0}^{m}, \cdots, \phi_{a+1-r}^{m}\right)
$$

Hence, using (9a) with $k=a+1$,

$$
\begin{aligned}
f_{a+1,0}^{m+1}\left(\phi_{0}^{m}, \cdots, \phi_{a+1}^{m}\right) & =-\sum_{r=1}^{a+1} \frac{\left(-\phi_{a+1}^{m}\right)^{r}}{r!} \sum_{s=0}^{a+1-r} \frac{\left(\phi_{a+1}^{m}\right)^{s}}{s!} f_{a+1-r-s, 0}^{a+1}\left(\phi_{0}^{a}, \cdots, \phi_{a+1-r-s}^{a}\right) \\
& =-\sum_{u=1}^{a+1} \sum_{v=1}^{u}(-)^{v}\binom{u}{v} \frac{\left(\phi_{a+1}^{m}\right)^{u}}{u!} f_{a+1-u, 0}^{a+1}\left(\phi_{0}^{a}, \cdots, \phi_{a+1-u}^{a}\right) .
\end{aligned}
$$

Thus

$$
\begin{equation*}
f_{a+1,0}^{m+1}\left(\phi_{0}^{m}, \cdots, \phi_{a+1}^{m}\right)=\sum_{u=1}^{a+1} \frac{\left(\phi_{a+1}^{m}\right)^{u}}{u!} f_{a+1-u, 0}^{a+1}\left(\phi_{0}^{a}, \cdots, \phi_{a+1-u}^{a}\right) . \tag{9b}
\end{equation*}
$$

Inspection of (9a) and (9b) shows that $H(a)$ implies $H(a+1)$ as required. $H(1)$ can be readily verified and the result stated by the lemma then follows by induction.

From Lemma 1 we have a recurrence relation for $f_{j, 0}^{m+1}\left(\phi_{0}^{m}, \cdots, \phi_{j}^{m}\right)$. In order to determine $f_{j, n}^{m+1}\left(\phi_{n}^{m}, \cdots, \phi_{j}^{m}\right), n \neq 0$, we use the relation

$$
\begin{equation*}
f_{j, n}^{m+1}\left(\phi_{n}^{m}, \cdots, \phi_{j}^{m}\right)=f_{j-n, 0}^{m+1}\left(\phi_{n}^{m}, \cdots, \phi_{j}^{m}\right) \tag{10}
\end{equation*}
$$

whose validity can be seen by inspection of the appropriate determinants.
Another property of the coefficients which we shall use is that if we make the transformation

$$
\left(\tau_{n}, \tau_{n+1}, \cdots, \tau_{m}\right) \rightarrow\left(\tau_{0}, \tau_{1}, \cdots, \tau_{m-n}\right)
$$

then

$$
\begin{equation*}
f_{j-n, 0}^{m+1}\left(\phi_{n}^{m}, \phi_{n+1}^{m}, \cdots, \phi_{j}^{m}\right) \rightarrow f_{j-n, 0}^{m+1-n}\left(\phi_{0}^{m-n}, \phi_{1}^{m-n}, \cdots, \phi_{j-n}^{m-n}\right) . \tag{11}
\end{equation*}
$$

3. The integration of Q_{m-j}^{m+1}

Suppose now that the first $m+1$ interarrival times are independently and identically distributed with d.f. $A(x)$. Then from equations (5) and (10) the unconditional probability, $q_{m-j}^{m+1}=\operatorname{Pr}\left(\eta_{m+1}>m-j\right)$ is given by

$$
\begin{align*}
q_{m-j}^{m+1} & =\int \cdots \int \sum_{k=0}^{j} f_{j-k, 0}^{m+1}\left(\phi_{k}^{m}, \cdots, \phi_{j}^{m}\right) e^{-\phi_{k}^{m}} d A\left(\tau_{0}\right) \cdots d A\left(\tau_{m}\right) \tag{12}\\
& =\int \cdots \int \sum_{k=0}^{j} f_{j-k, 0}^{m+1-k}\left(\phi_{0}^{m-k}, \cdots, \phi_{j-k}^{m-k}\right) e^{-\phi_{0}^{m-k}} d A\left(\tau_{0}\right) \cdots d A\left(\tau_{m}\right)
\end{align*}
$$

the last step being a consequence of (11). The problem has thus been reduced to the evaluation of the integral

$$
I_{j}^{m+1}=\int \cdots \int e^{-\phi_{0} m} f_{j, 0}^{m+1}\left(\phi_{0}^{m}, \cdots, \phi_{j}^{m}\right) d A\left(\tau_{0}\right) \cdots d A\left(\tau_{m}\right)
$$

This problem is dealt with in Lemma 2.
Lemma 2

$$
I_{j}^{m+1}=\frac{m-j+1}{m+1} \sum_{\Sigma i \alpha_{i}-j}\binom{m+1}{\sum \alpha_{i}} \frac{\left(\sum \alpha_{i}\right)!}{\prod\left(\alpha_{i}!\right)} \psi_{0}^{m+1-\Sigma \alpha_{i}} \psi_{1}^{\alpha_{1}} \psi_{2}^{\alpha_{2}} \cdots \psi_{j}^{\alpha_{j}}
$$

summation being over all j-tuples $\left(\alpha_{1}, \cdots, \alpha_{j}\right)$ of non-negative integers such that $\sum i \alpha_{i}=j$, and ψ_{k} being defined by

$$
\psi_{k}=\int_{x=0}^{\infty} \frac{x^{k}}{k!} e^{-x} d A(x)
$$

Proof. Suppose that the lemma is true for $j=0,1,2, \cdots, a-1$, ($a \leqq m$). Then from Lemma. 1

$$
\begin{aligned}
I_{a}^{m+1} & =\sum_{r=0}^{a-1}\left\{\int \cdots \int \frac{e^{-\phi_{a}^{m}}\left(\phi_{a}^{m}\right)^{a-r}}{(a-r)!} d A\left(\tau_{a}\right) \cdots d A\left(\tau_{m}\right)\right) I_{r}^{a} \\
& =\sum_{r=0}^{a}(1-r / a)\left\{\sum_{\Sigma i \beta_{i}=a-r}\binom{m-a+1}{\sum \beta_{i}} \frac{\left(\sum \beta_{i}\right)!}{\Pi\left(\beta_{i}!\right)} \psi_{0}^{m-a+1-\Sigma \beta_{i}} \psi_{1}^{\beta_{1}} \cdots \psi_{a-r}^{\beta_{a}-r}\right\} \\
& \times\left\{\sum_{\Sigma \gamma_{n}=r}\binom{a}{\sum \gamma_{h}} \frac{\left(\sum \gamma_{h}\right)!}{\prod\left(\gamma_{n}!\right)} \psi_{a}^{\left.a-\Sigma \gamma_{h} \psi_{1}^{\gamma_{1}} \cdots \psi_{r}^{\gamma}\right\} .}\right.
\end{aligned}
$$

The latter expression is the coefficient of z^{a} in the expansion of

$$
\left\{\left(\sum_{k=0}^{\infty} \psi_{k} z^{k}\right)^{m+1}-\left(\sum_{k=0}^{\infty} k \psi_{k} z^{k}\right)\left(\sum_{k=0}^{\infty} \psi_{k} z^{k}\right)^{m}\right\}
$$

and can therefore also be written as

$$
\frac{m-a+1}{m+1} \sum_{\Sigma i \alpha_{i}=a}\binom{m+1}{\sum \alpha_{i}} \frac{\left(\sum \alpha_{i}\right)!}{\prod\left(\alpha_{i}!\right)} \psi_{0}^{m+1-\Sigma \alpha_{i}} \psi_{1}^{\alpha_{1}} \cdots \psi_{a}^{\alpha_{a}} .
$$

The lemma is certainly true for $j=0,1$ and hence by induction it is true for $j=0,1, \cdots, m$.

Applying Lemma 2 to equation (12) it is found that

$$
\begin{equation*}
q_{j}^{m+1}=(j+1) \sum_{n=j+1}^{m+1} \frac{1}{n} \sum_{\sum i \alpha_{i}=n-j-1}\binom{n}{\sum \alpha_{i}} \frac{\left(\sum \alpha_{i}\right)!}{\prod\left(\alpha_{i}!\right)} \psi_{0}^{n-\sum \alpha_{i}} \psi_{1}^{\alpha_{1}} \cdots \psi_{n-j-1}^{\alpha_{n-j}} . \tag{13}
\end{equation*}
$$

Equation (13) defines the transient queue size distribution at an arrival.

4. The busy period probabilities for $G I / M / 1$

In the terminology of § 3 we have from equation (6) that

$$
U_{m+1-j}^{m+1}=f_{j, 0}^{m+1}\left(\phi_{0}^{m}, \phi_{1}^{m}, \cdots, \phi_{j}^{m}\right) e^{-\phi_{0}{ }^{m}} .
$$

Applying Lemma 2 in order to determine the corresponding probabilities u_{m+1-j}^{m+1} we find that

$$
\begin{equation*}
u_{m+1-j}^{m+1}=\frac{m+1-j}{m+1} \sum_{\Sigma \alpha_{i}=j}\binom{m+1}{\sum \alpha_{i}} \frac{\left(\sum \alpha_{i}\right)!}{\prod\left(\alpha_{i}!\right)} \psi_{0}^{m+1-\sum \alpha_{i}} \psi_{1}^{\alpha_{1}} \cdots \psi_{j}^{\alpha_{j}}, \quad 0 \leqq j \leqq m . \tag{14}
\end{equation*}
$$

The probability that $(m+1)$ customers are served in a busy period is given by

$$
\begin{align*}
u_{0}^{m+1} & =\sum_{j=1}^{m} u_{j}^{m}-\sum_{j=1}^{m+1} u_{j}^{m+1}, \quad m \geqq 1 \tag{15}\\
u_{0}^{1} & =1-u_{1}^{1}
\end{align*}
$$

5. The special cases $M / M / 1, D / M / 1$

(a) $M / M / 1$. We have in this case $A(x)=1-e^{-\rho x}, x \geqq 0$, and hence $\psi_{k}=\rho /(1+\rho)^{k+1}$. Substituting in equation (13) and using the identity,

$$
\binom{m+j}{j}=\sum_{\sum i \alpha_{i}=^{j}}\binom{m+1}{\sum \alpha_{i}} \frac{\left(\sum \alpha_{i}\right)!}{\prod\left(\alpha_{i}!\right)}
$$

which can be proved by considering the power series expansion of $(1-x)^{-m-1}$ about $x=0$, we find that

$$
\begin{equation*}
q_{j}^{m+1}=\frac{\rho^{j+1}}{(1+\rho)^{j+1}} \sum_{i=0}^{m-j}(j+1) \frac{(j+2 i)!}{(j+i+1)!i!} \frac{\rho^{i}}{(1+\rho)^{2 i}}, \quad 0 \leqq j \leqq m \tag{16}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
\lim _{m \rightarrow \infty} q_{j}^{m+1} & =\frac{\rho^{j+1}}{(1+\rho)^{j+1}}\left[\frac{1-\sqrt{1-\frac{4 \rho}{(1+\rho)^{2}}}}{\frac{2 \rho}{(1+\rho)^{2}}}\right]^{j+1} \\
& = \begin{cases}\rho^{3+1} & \text { if } \rho<1 \\
1 & \text { if } \rho \geqq 1\end{cases}
\end{aligned}
$$

and this is a well known result for the system $M / M / 1$.
Substituting for ψ_{k} in equation (14) we obtain the following expression for the busy period probabilities,

$$
\begin{equation*}
u_{j}^{m+1}=\frac{j}{m+1}\binom{2 m+1-j}{m} \frac{\rho^{m+1}}{(1+\rho)^{2 m+2-j}}, \quad 1 \leqq j \leqq m+1 \tag{17}
\end{equation*}
$$

(b) $D / M / 1$. For this system $A(x)=1, x \geqq c$, and hence $\psi_{k}=c^{k} / k!e^{-c}$. Substituting in equation (13) and using the identity,

$$
m^{j}=\sum_{\sum i \alpha_{i}=j}\binom{m}{\sum a_{i}} \frac{\left(\sum \alpha_{i}\right)!j!}{\prod\left[\alpha_{i}!(i!)^{\alpha_{i}}\right]}
$$

which can be proved by expanding $\left(\phi_{1}^{m}\right)^{j}$ and putting each τ equal to 1 , we find that

$$
\begin{equation*}
q_{j}^{m+1}=(j+1) \sum_{r=0}^{m-j} \frac{(r+j+1)^{r-1}}{r!} c^{r} e^{-c(r+j+1)}, \quad 0 \leqq j \leqq m \tag{18}
\end{equation*}
$$

Treating the busy period probabilities in the same way we find that

$$
\begin{equation*}
u_{j}^{m+1}=\frac{j c^{m+1-j}}{(m+1-j)!}(m+1)^{m-j} e^{-m c-c}, \quad 1 \leqq j \leqq m+1 \tag{19}
\end{equation*}
$$

6. The limiting distribution for $G I / M / 1$

We define

$$
\begin{aligned}
\psi(z) & =\int_{\tau=0}^{\infty} e^{-\tau(1-z)} d A(\tau) \\
& =\sum_{k=0}^{\infty} \psi_{k} z^{k}
\end{aligned}
$$

for real z and $|z| \leqq 1$.
It is well known that if $\psi^{\prime}(1)>1$ a limiting distribution of queue size at an arrival exists and is given by

$$
q_{j}=\theta^{j+1}
$$

where θ is the only root of $z=\psi(z)$ inside the circle $|z|=1$.
The Lagrange expansion of q_{j} is given by

$$
\begin{aligned}
q_{j} & =\sum_{n=1}^{\infty} \frac{1}{n!}\left(D^{n-1}\left[(j+1) z^{j}\{\psi(z)\}^{n}\right]\right)_{z=0} \\
& \left.=\sum_{n=j+1}^{\infty} \frac{j+1}{n} \text { (coefficient of } z^{n-1-j} \text { in the expansion of }\{\psi(z)\}^{n}\right) \\
& =\sum_{n=j+1}^{\infty} \frac{j+1}{n} \sum_{\sum i \alpha_{i}=n-j-1}\binom{n}{\sum \alpha_{i}} \frac{\left(\sum \alpha_{i}\right)!}{\prod \alpha_{i}!} \psi_{0}^{n-\sum \alpha_{i}} \psi_{1}^{\alpha_{1}} \cdots \psi_{n-j-1}^{\alpha_{n-j}}
\end{aligned}
$$

Comparing this expression with equation (13) we see that q_{j}^{m+1} is a partial sum of the series for q_{j} as conjectured by Finch [2]. This interesting result provides us with a means of examining the rate at which the system approaches statistical equilibrium.

7. Relationships with previously obtained results

The transient behaviour of $M / G / 1$ has been studied by Pollaczek [7] and Finch [3]. Finch determines the transient distribution of queue size at a departure and for the case $\eta_{0}=0$ relates this to the transient distribution of queue size at an arrival. He also deals with the special case $M / M / L$ and from his equations (34) and (21) the result (16) can be deduced. Takács [6] uses a different method to determine the transient queue size distribution of $G I / M / 1$ obtaining his results in the form of a generating function from which the explicit probabilities q_{j}^{m+1} found in this paper can be deduced. Takács, however, does not determine the probabilities u_{j}^{m+1}.

The distribution of the number of customers served in a busy period has been determined for $G I / M / 1$ by Conolly [1], for $M / G / 1$ by Prabhu [5], and for $G I / G / 1$ by Finch [4]. It can be verified that the results obtained in this
paper for the special cases $M / M / 1$ and $D / M / 1$ agree with those obtained in the papers mentioned.

The author wishes to thank Mr. P. D. Finch for his helpful suggestions and also the referee who pointed out, in particular, a deficiency in the proof of Lemma 1.

References

[1] Conolly, B. W., The busy period in relation to the queueing system GI/M/1, Biomelvika 46, 246-251 (1959).
[2] Finch, P. D., The single server queueing system with non-recurrent input process and Erlang service time, to appear in this Journal.
[3] Finch, P. D., On the transient behaviour of a simple queue, J.R.S.S. (B) 22 277-284 (1960).
[4] Finch, P. D., On the busy period in the queueing system GI/G/l, this Journal 2 217-228 (1961).
[5] Prabhu, N. U., Some results for the queue with Poisson arrivals, J.R.S.S. (B) 22 104-107 (1960).
[6] Takács, L., Transient behaviour of single server queueing processes with recurrent input and exponentially distributed service times, Opns. Res. 8 231-245 (1960).
[7] Pollaczek, F., Problèmes stochastiques poses par le phénomène de formation d'une queue d'attente à un guichet et par des phénomènes apparenies, Mémorial des Sciences Mathématiques (Gauthier-Villars, Paris, 1957).

University of Melbourne.

