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1. The position of a point in a plane may be determined by its
distances (r, p) from two fixed points which may be termed foci.
These distances are termed vectorial coordinates. The determination
is unique if attention is confined to the half-plane bounded by the
line of foci. In certain cases where the properties of a curve are
defined with respect to two points, representation of the curve by
an equation between its vectorial coordinates possesses certain
advantages. For example, the equation of the ellipse takes the
extremely simple form r + p = 2a.

2. We may pass from cartesian to vectorial coordinates and vice
versa by the transformations

y" = (r + p + a)(r + p-a)(-r + p + a)(r -p + a)/4a2

where a is the distance between the foci, and

We may pass from polar to vectorial coordinates and vice versa, by
the transformations

r = r, cos0 = (r2 + a2-/o
2)/(2ra)

and r = r, p2 = r2 + a2 - 2racos0.

3. The particular purpose of this paper is to investigate the
condition for orthogonality of two curves whose equations are given
in vectorial coordinates, and to illustrate by a few examples.
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i. If (Fig. 1) A and B are the foci and P a point on the curve,

a.

A fisi
whose tangent is TPT", then, denoting the angles TPA, APB, BPT'
by f, \ and \j/' respectively, we have

Also dr=- dscos<f*, dp= + ducosf.
dr cosi/-

Hence -r-= 7-, (2).
dp cosf

5. If tPt' is the tangent of a curve orthogonal to the original
curve, then (from Fig. 2) we have

p' = p and r' = r

dr' cos(f> sin^
and —r= 7-= + . ' (3)

dp cos<p siny1

where p and r' are the vectorial coordinates of the second curve.

6. The orthogonal condition.
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Hence on multiplication throughout by 2sin(^ - \f>'), we have
- \p')cos(xf/ + \p)

On division throughout by 2sin^'cos^', we get
s^/cos^') = 1 - s
a.'i , dr dr'(dr dr'\

or \TP
+TP>) 2rP -1 + TP-TP' <4)

This is the condition of orthogonality, and it must be remembered
that r, P are to be put for r\ P respectively, after differentiation.

7. If the equation to one of the curves is given, (4) becomes the
differential equation to the orthogonal trajectories, under suitable
arrangements concerning the constants of the first curve. Thus if
the equation to a curve is given in the form F(r', P, b) = 0, where
by variation of b we pass from one member of the family to another,

we must eliminate 6 between the equations F = 0, — — H =0
or dp dP

before substituting for -^-j in (4).
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If the equation of the curve is F(r', p', 6j, 62)...6B) = 0, the
genesis of the family of curves may arise in two ways, which may
be looked on as fundamentally the same, but conveniently separated
in practice. Thus n - 1 of the constants may be absolute constants,
while the n01 by its variability gives rise to the different members
of the family, or we may be given m^-(n - 1) equations between the
constants. By elimination of TO of the constants we arrive at an
equation #(r', p, blt ...bn_^n) = 0, which is a case of the former.

8. Equation (4) may be transformed and simplified as follows :—
From it we deduce

dr 2rp - (r2 + p2 - a2)© , dr'
T = —^-—i ., ., where /> = -yr-
dp r- + pr-a~- Irpp dp

Put now r + p = k, r- p = p., and we obtain
d\ + dp _ X2 - p.- - (X2 + p? - 2a-)p
dk-dp.~ X? + p?- 2a1 - (A2-

_ d\ (\2-a')(p-l)
Hence : r = 7-i ,/, , . • (5)-

dp. (p?-a2)(p + l) v '
This suggests the further substitutions X = acothit, p. = acothv, but for
the present we leave the equation as it is above. The curves
X = constant and p. = constant are confocal ellipses and hyperbolas
respectively.

9. We pass now to some particular cases,
(i) The Ca8sinian oval, r'p' = 62. Here p = - r'/p.

dk Xs - a2 r + p _A.(A2-a2)
dp. pp-a? r- p p.(p? - a 8 ) '

By integration we find the equation to the orthogonal trajectories
(A2 - o2)/X2 = c{p? - a?)lp?, or in vectorial coordinates

[(r + pf - c?]{r - pf = h[(r - pf - a2](r + pf

which may be reduced to the cartesian equation
(z2 + 2/2)[(a; - a)2 + y>] = c"^ -f- axf.

(ii) Coaxal circles having the foci for limiting points.
Here r' = mp\ p = m.

d\ (OT-l)(X2-a! i )_r-p X2 - o2 p.(X> - a")
Tp.~ ( m + l ) ( r - a 2 ) ~ r + p > s - o « ~ \(p?-a*)'
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Hence A2 - a2 + e2(/i2 - a-) = 0 where c is the constant of integra-
tion. This may be written (r + pf - a? = c\a? - (r - /a2], and it is
easy to reduce it to the polar equation r = acosd±ksinO, where
k-a(l -c?)/2c and to the cartesian equation 3? + y- — ax±ky.
This represents a family of coaxal circles passing through the foci,
as is well known.

(iii) Concentric circles. Take the foci collinear with, and at
distances +ia from, the centre, and let 26 be the radius of a circle.
The equation of the family of circles is

r" + />'a = $(a3 + J2), p = dr'/dp' = -p'/r'.

Hence the differential equation to the trajectories is

^ = _ A(Al" ~ a~). The primitive is (A2 - O
2)(a2 - /*2) = c2A>2.

dp. /x(^ - a-)

I t is not difficult to simplify this into the equation y = c(2x - a),
a family of straight lines through the middle of the focal line.

(iv) Cartesian oval. Here r + mp = b, and we have three cases,
when m is the parameter and b is constant, when b is the parameter,
and when there is a relation between m and b.

In the first case —— = - m =
dp

= m =
dp p

dX
Hence - j - =

ddfi pr-a? K-b

The integral of this is found without much difficulty to be

olog[(A2 - «2)/(a2 - p?)} - 61og[(A - a)(a - /x)(A + a)-\a + /*)-'] = const.

Clearly not much will be gained by substituting for A and /t in
terms of r and p.

In the next case r' + mp' — b and b is the parameter. Here

dr' , dk A 2 - a s l+m
— = - »n, and — = — ^.
dp dp. ar - p,' 1 - m

and the integral is

= const.
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[The two tri-confocal cartesians that pass through the point
(r, p) are given by the equations

mr + lp = nc3

where ct and c3 are the distances between the extreme and inter-
mediate foci. (Williamson, Diff. Calc, London, 1887, p. 378.)

If pl and p2 refer to these confocals, p1 and p» are the roots of
the equation in p, obtained by eliminating the ratios I :m:n
between these three equations and mp + 1 = 0, i.e. of the equation

p V + c,c3) - 2prp + (r2 - c2c3) = 0.

Hence pi+p2 = 2rp/(pi + c1c3), and ptp, = (r2 - c,cs)/(p° + ctc3), and
on substituting these values in (4), this equation is identically
satisfied. It follows that the two confocal cartesians that pass
through a point are orthotomic. (Williamson, op. cit., p. 381.)]*

(v) Equipotential curves in a plane. The equation when there

are two charged points is —7-1—7 = c where c varies from surface
r p

to surface.
_. dr' e, e- e2 r2

Hence —-; —=- + —^~0 or p= - — —.
dp r* p 8 «, p>

_ dA. X s - a
Hence •—

d = 5 5

dp. a2-/*2

X2-a2

It is not difficult to show that the primitive of this differential
equation is

where c is the constant of integration, and the equation is easily
reducible to the well-known form for the equation to the lines of
force—

e,cos0, - e2cos#2 = const.

* Added March 4, 1910.
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