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EXISTENCE OF SOLUTIONS OF ABSTRACT 
DIFFERENTIAL EQUATIONS IN A LOCAL SPACE 

BY 

M. A. MALIKO 

1. Let H be a Hilbert space; ( , ) and | | represent the scalar product and the 
norm respectively in H. Let A be a closed linear operator with domain DA dense 
in H and A* be its adjoint with domain DA+. DA and DA+ are also Hilbert spaces 
under their respective graph scalar product. R(X\ A*) denotes the resolvent of 
A*\ À=a+he C, complex plane. We write L=D—A, L* = D—A*; D= 

(llOidldt). 
By J(fs(H), s arbitrary real number, we mean the space of //-valued tempered 

distributions u defined in R, (real line) whose Fourier transform û is a function and 

(1.1) \\u\\2
s = f(l + \a\2y\û(a)\2da<oo. 

JR 

The space u e &8(H) with compact support will be denoted by £?%{H). A sequence 
wn->0 in J^S

0(H) if supp un; n=l, 2 , . . . are contained in a fixed compact set and 
un->0 in the norms (1.1). The space ^0

S
C(H) is defined as the dual of J^S

0(H). 
Taking DA+ (resp. C) instead of H in the above definitions, we define #F\(DA+) 

(resp. Jfo(C)). It can be verified that J^^0
S
C(H) is the space of continuous linear 

/f-valued mappings defined on ^ o ( C ) and if u e Jf^JJl) and (u, ip) e DA for 
all y) e 3fs

0(C), then u G JP^DJ. 

2. In view of imposing conditions on the resolvent we need: 

DEFINITION. Let F be a family of parallel lines 

{Im X = rn; rn -> oo as n -> oo, rn -> — oo as n -> — oo}. 

We shall say that the resolvent i?(A; A*) is of (k, A)-growth on F if the resolvent 
exists outside y intervals of length r on every line of F and for these X 

(2.1) \R(X; A*)\ < const. \X\ V | 7 m A | 

where k and A are nonnegative real numbers. 
Throughout this paper 'const.' need not be the same constant. 
For A=fc=0 in the above definition, Agmon and Nirenberg [1] have defined 
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the resolvent of (0, 0)-growth on F+ (lying in the upper half-plane). Zaidman [5] 
considered the resolvent R(h; A*) of (0, 0)-growth on F to prove: 

THEOREM A. IfR(X\ A*) is 0/(0, 0)-growth on F, then for every fe L2
l0C(H), the 

abstract differential equation Lu—f has a weak solution u e L\0C(H) i.e. 

(2.2) f (ii(t), L*#0) dt = f ( / (0 , # 0 ) dt 
JR JR 

forallcj>eC:(DAt). 

The author [2] proved the existence of weak solution of Lu=f in the distribution 
space; also studied the uniqueness of Cauchy problem in [4]. 

In [2], he has 

THEOREM B. Let R(X, A*) be of(k, 0)-growth on F, then for every fe D\H) the 
equation Lu—f has a weak solution u e D'(H) i.e. 

(2.3) (u, L*<t>) = (f <j>) 

foratt4>eC%{DA.). 

In this paper, we study the existence of solutions of Lu=f in Ji?*0C(H); see 
Theorem 3. In fact, this is an improvement as well as a generalization of author's 
result [3] where he announced the existence of a weak solution in Jt?^0

s
c(H) when 

the resolvent is of (k, 0)-growth; s and k were restricted to be nonnegative integer 
in this case. 

3. The following conditions will be needed. 
Hypothesis I. Let K <= R be a compact set. There exists a constant depending 

on K such that for all <f> e J^S
0(DA^) with supp c/> c K, 

(3.1) U\\, < const. (K) ||L*<£IU, 

s is an arbitrary real number and k nonnegative real number but both are fixed. 
Hypothesis II. Let k c: R be a compact set and supp L*<£ <= K where </> e 

J^'l(L>A*), s arbitrary real number. Then there exists a compact set K± such that 
supp (f> <= Kx. 

First we study the conditions on the resolvent R(X; A*) so that Hypothesis I 
and Hypothesis II are satisfied. 

THEOREM 1. Let R(a; A*) exist on P (the real axis R minus j intervals of length r) 
and for these a eP 

(2.1') \R(a; A*)\ < const. |<r|fc 

where k>0. Then Hypothesis I is satisfied. 
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LEMMA 1. Let the condition of Theorem 1 be satisfied and K c R be a compact 
set. Then for all <£ e J^S

0(H) with supp <j> <= K, 

(3.2) f (l + \a\2)s\$(a)\2da <> const Ul + \a\2)s\$(a)\2 da. 
JR JP 

The const, depends on K, j and r but not on the position of the intervals. 

Proof of Lemma 1. For ^=0 the lemma is known [1]. Let {em} be an orthonormal 
basis in H. For <£ e 3^S

0(H) we write <£=2i° <i>m em where <i>m{i)={^{t), em). By 
the continuity of scalar product, it can be easily verified that $m(a)=(<p(a), em) 
and following Parseval's relation one has $(<r ) | H =2? $m(<x)|2. So <f>m e J^8

0(C) 
and supp </>=supp </>m c: K. 

Suppose (3.2) with <£ replaced by ip e J f S
0(G) is not true. So there exists a 

sequence 

{Wn; supp Vn c X} with f ( l + M 2 ) s | ^ » | 2 J c r = 1 

and a sequence of axes P n (withy intervals Inl,. . . , Inj removed) such that 

(3.3) f (l + \*\V\M°)\*da-+0. 
JPn 

For each n (large enough), on at least one interval labelled as Inl (by appropriate 
displacement we may suppose 7i i=/ 2 i= • • • = ^ w i = ' ' * = ^ ) o n e bas 

(3.4) f (l + H 2 ) s | ^ ( ( T ) | 2 d ( T > ^ . 

As || v „ L = 1, the set {y)n} is bounded and closed in D', so there exists a subsequence 
{ n̂ } converging weakly in D'9 so strongly in D'. Since the supp ipnk are contained 
in a fixed compact set T̂, ipnk converges strongly in f'. But this immediately implies 
that their Fourier transforms which are analytic functions of exponential type 
converges uniformly to an analytic function | on every compact set of C . So we 
conclude from (3.4) that 

(3.5) f (l + \a\2y\Ç(a)\2da>±. 
Ji 2/ 

However, it follows from (3.3)—that ipnk converges to zero on some interval on 
the real axis. Hence 1=0—contradiction. Consequently, we have 

(3.6) f (1 + M2)S |£w(er)|8 da <Ç const. (K) f (l + |<r|2)s \$m(a)\2 da. 
JR JP 

From the sequence of inequalities (3.6) and Parseval's relation, Lemma 1 is proved. 
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Proof of Theorem 1. Let <£ G 2?1{DA*). Set 

(3.7) - - ^ - 4 * 0 ss I f f 
i dt 

Taking the Fourier transform of (3.7), we obtain 

(3.8) (oI-A+$(o) = L*^(or). 

For a eP from (3.8), one gets 

(3.9) \$(a)\ < const. \a\k \L*cf>(o)\ 

and so combined with Lemma 1, 

U\\8 < const. \\L^\\s+k. 

The const, depends on the support of (/>, as the constant in Lemma 1 is not inde
pendent of supp </>. 

THEOREM 2. Suppose the resolvent R(X; A*) is of (k, &)-growth on F. Then 
Hypothesis II is satisfied. 

LEMMA 2. IfR{X; A*) is of(k, A)-growth on F+ and u e C°°(i)^#) is a solution of 
L*u(t)=0 on 0<t<Twith u(T)=0. Then u(t)=Ofor *>2A. 

Proof of Lemma 2. Fix a positive oc < T and let f (f) be a nonnegative C00 function 
of t which vanishes for *<oc/2 and is equal to 1 for f >oc. Set v(t)=eTnt^(t)u(t); 
note r n > 0 . Setting (L*+irn)v(t)=h(t)9 we see that on taking Fourier transform 

(3.10) (a+irn-A*)e(o) = Ha). 

As R{X\ A*) is of (k, A)-growth, for all real a except on y intervals of length s 

\v(a)\2 < const. \a+irn\
2ke2ATn \h(a)\2 

( 3 - U ) < const. | r J 2 V A r " i \a\2k \h(o)\2. 
o 

There is no loss of generality in assuming here that k is a nonnegative integer. 
Integrating (3.11) on P and using Lemma 1 with s=0 and Parseval's theorem, 
we have 

(3.12) f °° KOI2 dt < const. r2ke2ATn f°° \h{k\t)\2 dt. 
J— oo J— oo 

which leads to 

(3.13) f kr"VOIa <** < const. r2ke{2A+a)Tn. 
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A choice of /?<a in (3.13) implies that 

(3.14) f KOI2 dt < const. rfe{2A+a-^T\ 

As rw->oo, we observe that u(t)=0 for f>2A+a. Making oc-*0, u(t)=0 for 
/>2A. Lemma 1 is proved. 

In Lemma 2, the interval [0, T] may be replaced by any other interval [a, b]. 

LEMMA 3. If R(k; A*) is of (k, A)-growth on F and supp L*u <=• [a, b] where 
u e CQ(DA*). Then supp u c [a-2A, 6+2A]. 

The proof of Lemma 3 is immediate after Lemma 2. 

Proof of Theorem 2. Let K= [a, b]. Consider a delta convergent sequence an, 
supp vin <= [—l/n, \\n] and take w*ocw. It is obvious that w*ocw G C£(DA*) and 
supp L*(w*ocw) c [a—(l/«), ô+(l/«)]. FromLemma3 supp «*aw c: [a—2A—(l/«), 
6+2A+(l/«)] . Making n-+co, we have Theorem 2. 

REMARK 1. In Hypothesis II, the existence of the resolvent R(À; A*) on Im A=0 
is not assumed. It may also be pointed out that the purpose of this paper is to 
determine what one can say when one requires of the family Fthat T W = 0 for some n. 

THEOREM 3. Suppose Hypothesis I and Hypothesis II are satisfied. Then for 
fe Jt?i0C(H) the abstract differential equation 

(3.15) ±^-Au=f 
i dt 

has at least one solution u e ^>\^''1{PJ)\ k>0 and s is an arbitrary real number. 

REMARK 2. Let F be a family of parallel lines {Im A=rn ; T 0 = 0 , rn->oo as 
/z->oo, TW—•— oo as/z->— oo}. If i?(A; A*) is of (k9 A)-growth on F, then Hypotheses 
I and II are satisfied. 

Proof of Theorem 3. Let f e Jfs
loc(H) be given. On the subspace Z={L*<£; 

cf> e <^OS(DA*)}
 Œ ^ ô s + f c we define a functional F by the relation 

(3.16) (F, L*$) = (f ft. 

The linearity of F is obvious. To verify its continuity, suppose jn=L*</>n->0 in 
Jt?^s+k(H). From Hypothesis II, supp <f>n are contained in a fixed compact set and 
Hypothesis I implies that ||</>J|_s->0. Consequently, F is a continuous linear 
functional on X and therefore by Hahn-Banach theorem, can be extended to u 
defined on the whole space Jt?~s+k(H). It is clear u e ^s~k{H) and satisfies 

(3.17) (u,Dcf>-A*<l>) = (fcl>) 

for all <£ G Jt^'(DA*). 
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Now we are going to prove that u satisfies (3.15). Let <j>=y)(g)x where \p e J^~^r{C)r 

rz=s—k—\ and x e DA*. Treating/and u belonging to J^0G(H) from (3.17), we 
observe that 

(3.18) « A * - / , V), x) = «ii, v>, A*x) 

for all xeDA*. Thus (u, ip) e DA** = DA; A is closed with dense domain. As 
(u, tp) G DA for all ip G ^ / ( C ) , u e 3tf\0G(DA) and verifies the relation 

(3.19) (Du-Au, y>®x) = (f,y)(g)x) 

for all y(g)x G je~r(C)®DA. We also know that 

(3.20) ^ Y ( C ) ® DA c ^\DA) c J*V(#)(r < J) 

and the embedding is dense. Consequently, from (3.19), we conclude 

Du—Au = f 

where/G tf\JH) and u e ^l~*~\DA). The proof is complete. 

We immediately have the following: 

COROLLARY. Suppose Hypothesis I and Hypothesis II are satisfied. Then for 
feC™(H) the abstract differential equation Lu=f has at least one solution 
u G C°{DJ). 
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