Canad. Math. Bull. Vol. 18 (4), 1975

CONTRACTIONS WITH FIXED POINTS AND CONDITIONAL EXPECTATION

BY

A. N. AL-HUSSAINI

1. Introduction. Let (Ω, α, μ) be a σ -finite measure space. By $L_p(\Omega, \alpha, \mu)$ or L_p for short we denote the usual Banach space of *p*th power μ -integrable functions on Ω if $1 \le p < +\infty$ and μ -essentially bounded functions on Ω , if $p=+\infty$. In section (2) we characterize conditional expectation, by a method different than those used previously. Modulus of a given contraction is discussed in section (3). If the given contraction has a fixed point, then its modulus has a simple form (theorem 3.2). In section (4) we use results from section (3) to relate projections conditional expectation. Finally in section (5) we give a version of Chacon-Ornestein ratio ergodic theorem. 1_A will denote the indicator function of A i.e. $1_A=1$ on A, $1_A=0$ off A.

2. Conditional expectation. Let (Ω, α, μ) be an arbitrary measure space. For a given sub- σ -algebra $\beta \subset \alpha$, the conditional expectation $E\{f \mid \beta\}$ of f given β is a function measurable relative to β , such that

(*)
$$\int_{B} E\{f \mid \beta\} d\mu = \int_{B} f d\mu, \text{ all } B \in \beta$$

If $\mu(\Omega)=1$, then a linear operator T on L_1 is a conditional expectation relative to some sub- σ -algebra $\beta \subset \alpha$ if and only if $||T|| \leq 1$, $T^2=T$ and T1=1 ([6], [2]). The condition T1=1 does not make sense if $\mu(\Omega)=+\infty$. As it will turn out, our conditions for a σ -finite μ include the case when μ is finite. If T is a linear operator on L_1 , we denote its adjoint by T^* i.e.

(**)
$$\int Tfg \, d\mu = \int f \, T^*g \, d\mu, \quad f \in L_1, \quad g \in L_\infty$$

THEOREM 2.1. A linear operator T on L_1 is a conditional expectation relative to some sub- σ -algebra $\beta \subset \alpha$ if and only if (1) $||T|| \leq 1$, (2) $T^2 = T$, (3) Tf = f some $0 < f \in L_1$, (4) $T = T^*$ on $L_1 \cap L_\infty$.

Proof. We give the if part of the proof only. Due to existence of one-dimensional projections, the condition (4) cannot be removed. By (1) and (3) of the hypothesis $T^*1 \cdot f \leq f$ and $\int T^*1 \cdot f = \int f$. Hence $T^*1 = 1$, which together with (1) would imply that T^* is positive. The rest of the proof depends on relating (*)

Received by the editors November 6, 1974 and, in revised form, February 12, 1975.

to (**). Let $\beta = \{B: T^*1_B = 1_B\}$. β is a sub- σ -algebra of α as it can easily be verified by using additivity and positivity of T^* . Conditions (3) and (4) imply that β is σ -finite. To complete the proof let \mathscr{E}, \mathscr{T} be the class of all conditional expectations and the class of linear operators on L_1 satisfying the hypothesis of the theorem, respectively.

Define $\varphi: \mathcal{T} \to \mathscr{E}$, by $\varphi(T) = C$ where $Cg = E\{g \mid \beta\}, g \in L_1$, and $\beta = \{B: T^*1_B = 1_B\}$. By the only if part $\mathscr{E} \subset \mathcal{T}$. φ is one-one by (2) and (4). The proof is complete.

COROLLARY 2.1. A linear operator T on L_1 is a conditional expectation relative to some σ -finite sub- σ -algebra if and only if (1) $||T|| \le 1$, (2) $T^2 = T$, (3) $T^*Tg = Tg$ for some Tg > 0.

Proof. Let f=Tg. By (2) Tf=f implying that T, T^* are positive as before. We will show that $T=T^*$ on $L_1 \cap L_{\infty}$. Define $d\nu=f d\mu$, then T on $L_1(\Omega, \alpha, \nu)$ satisfies the hypothesis of the corollary and further that T^* is contraction in L_1 . Therefore (by the Riez-Convexity theorem) $||T||_{\nu} \leq 1$ for $1 \leq p \leq +\infty$, and in particular for p=2. Thus $T=T^*$ on $L_1(\Omega, a, \nu) \cap L_{\infty}(\Omega, \alpha, \nu)$, and consequently $Th=E_{\nu}\{h \mid \beta\}$, where E_{ν} refers to conditional expectation relative to ν , from which we conclude that $Th=E\{h \mid \beta\}$ as f is β -measurable.

This corollary was proved in [1] by a different method and under further condition that T is positive, which is redundant.

COROLLARY 2.2 (R. G. Douglas). Suppose $\mu(\Omega)=1$. A linear operator T on L_1 is a conditional expectation if and only if (1) $||T|| \le 1$, (2) $T^2=T$, (3) T1=1.

Proof. $T^*1=1$ using (1) and (3). The proof follows from the previous corollary by putting 1=g.

3. Modulus and consequences. Throughout this section (Ω, α, μ) is a σ -finite measure space. Modulus of a linear operator T on L_1 is denoted by |T|. Its definition and some properties are given in the following theorem.

THEOREM 3.1. For a linear operator T on L_1 , there exists a linear operator |T| the modulus of T, satisfying:

- $(1) || |T| || \le ||T||$
- (2) $|Tg| \leq |T| |g|$ all $g \in L_1$
- (3) $|T| h = \sup_{|g| \le h} |Tg|, 0 \le h \in L_1$

Proof. See [4].

LEMMA 3.1. If T is contraction on L_1 with Tf = f, then |T| | f| = |f|.

Proof. By (2) of theorem 3.1 $|T| |f| \ge |Tf| = |f|$. However by (1) of the same theorem $\int |T| |f| \le \int |f|$. Therefore |T| |f| = |f|.

LEMMA 3.2. If T is a contraction with Tf = f for some $0 \neq f \in L_1$, then $T^*(f/|f| = f/|f|$.

Proof. $\int |f| - \int |f| = \int ((f/|f|) - T^*(f/|f|)) \cdot f$, since Tf = f. But $|T^*(f/|f|)| \le |(f/|f|)|$ for T^* is contraction. Hence $T^*(f/|f|) = f/|f|$.

THEOREM 3.2 (representation). If T is a linear contraction on L_1 with Tf=f for some $0 \neq f \in L_1$ then

$$|T| g = \frac{f}{|f|} T\left(\frac{f}{|f|} g\right)$$
, or equivalently $Tg = \frac{f}{|f|} |T| \left(\frac{f}{|f|} g\right)$

Proof. We shall show that |T|g=(f/|f|)T((f/|f|)g). Equivalence of this with Tg=(f/|f|)|T|((f/|f|)g) follows by observing that (f/|f|)=(|f|/f)

We may and do assume that $g \ge 0$. Now $|T|g \ge (f/|f|)T((f/|f|) \cdot g)$ using (3) of theorem 3.1. By Lemma 3.2 and property (1) of |T|; we have:

$$\int |T| g \ge \int \frac{f}{|f|} T\left(\frac{f}{|f|} \cdot g\right) = \int g \ge \int |T| g$$

Hence

$$|T| g = \frac{f}{|f|} T\left(\frac{f}{|f|} \cdot g\right).$$

4. **Projections on** L_1 . In this section we imploy the representation theorem of the previous section, to represent projections defined on $L_1(\Omega, \alpha, \mu)$ where μ is σ -finite. The representation we prove is different than those given in ([2], [5]).

THEOREM 4.1. Let T be a linear operator on L_1 satisfying (1) $||T|| \le 1$ (2) $T^2 = T$ (3) $T = T^*$ on $L_1 \cap L_{\infty}$, then there exists a unique $C \in \alpha$ such that:

$$1_C T 1_C g = \frac{f}{|f|} E\left\{\frac{f}{|f|} \cdot g \mid \beta\right\},\,$$

where C = support of f, and β is a σ -finite sub- σ -algebra of C.

Proof. Let C be the largest support among the supports of all Tg, as g ranges over L_1 . By [2] there is a $g \in L_1$ such that f=Tg and C= support of f. Actually in [2] this is proved when μ is finite, but extension to the case when μ is σ -finite is easy. It is easy to check that 1_CT1_C is contraction, idempotent and fixes $1_C \cdot f$. By theorem 3.2

$$\mathbf{1}_C T \mathbf{1}_C g = \frac{f}{|f|} \mathbf{1}_C |T| \mathbf{1}_C \left(\frac{f}{|f|} \cdot g\right), \quad \text{since } |T| \text{ fixes } |f|.$$

But $1_C |T| 1_C g = E\{g | B\}$ using theorem 2.1. Here $\beta = \{B: 1_C | T^*| 1_C 1_B = 1_B\}$. The proof is complete. We must remark that condition (3) cannot be removed. See other representations in ([2], [5]). 5. A version of Chacon-Ornstein theorem. Let T be a positive contraction on $L_1(\Omega, \alpha, \mu)$ some σ -finite measure space (Ω, α, μ) . The Chacon-Ornstein theorem [3] says:

$$\frac{\sum_{0}^{n} T^{i} h}{\sum_{0}^{n} T^{i} g}$$

converges almost everywhere to a finite limit as $n \to \infty$ on the set $\{\sum_{0}^{+\infty} T^i g > 0\}$ where $g \ge 0$. If T is a contraction and Tf = f > 0 then T is positive as is shown in the preceeding sections so that such a T will satisfy the Chacon-Ornstein theorem. However if T is a contraction and $Tf = f \neq 0$ then T is not necessarily positive, and the Chacon-Ornstein Theorem fails in this case. The version we have in mind is:

THEOREM 5.1. If T is a linear operator on L_1 such that $Tf = f \neq 0$ then

$$\frac{\sum_{0}^{n} \left(\mathbf{1}_{D} T \mathbf{1}_{D}\right)^{i} h}{\sum_{0}^{n} \left(\mathbf{1}_{D} T \mathbf{1}_{D}\right)^{i} g}$$

converges almost everywhere on $\{\sum_{0}^{\infty} (1_D T 1_D)^n g > 0\}$ where $g \ge 0$. Here $D = \{f > 0\}$ or $\{f < 0\}$.

Proof. $1_D T 1_D$ is positive by theorem 3.2.

6. REMARKS. Chacon's identification theorem ([5], pp. 104) could be utilized in characterizing conditional expectation as a linear operator (see [1]) for example. However our approach in section (2) would seem to be more direct and in a sense a head on.

Also one may give an alternative proof to theorem 5.1, and as follows: Assume $D = \{f > 0\}$. The case where $D = \{f < 0\}$ is handled by considering -f instead of f. Now if $|g| \le |f|$ on D then $|1_D T 1_D g| \le |1_D T 1_D f|$. Using theorem 3.1. Setting $P_n = 1_D f$, $n = 1, 2, \ldots$ The proof follows from Lemma 4 of ([5], pp. 102).

REFERENCES

1. A. N. Al-Hussaini, On characterization of conditional expectation, Canad. Math. Bull. vol. 16 (2) 1973.

2. T. Ando, Contractive projections in L_p space, Pacific Journal of Math. vol. 17 (3) 1966.

3. R. V. Chacon and D. Ornstein, A general ergodic theorem, Illinois J. Math. (1960).

4. R. V. Chacon and U. Krengel, *Linear modulus of linear operators*, Proc. Amer. Math. Soc. (1964).

5. R. V. Chacon, *Convergence of operator averages*, Proceeding Tulane Symp. Ergodic theory (1962) pp. 89–120.

6. R. G. Douglas, Contractive projections on an L₁-space, Pacific J. Math. (1965).

UNIVERSITY OF ALBERTA AND UNIVERSITY OF ILLINOIS

478