CONTRACTIONS WITH FIXED POINTS AND CONDITIONAL EXPECTATION

BY
A. N. AL-HUSSAINI

1. Introduction. Let (Ω, α, μ) be a σ-finite measure space. By $L_{p}(\Omega, \alpha, \mu)$ or L_{p} for short we denote the usual Banach space of p th power μ-integrable functions on Ω if $1 \leq p<+\infty$ and μ-essentially bounded functions on Ω, if $p=+\infty$. In section (2) we characterize conditional expectation, by a method different than those used previously. Modulus of a given contraction is discussed in section (3). If the given contraction has a fixed point, then its modulus has a simple form (theorem 3.2). In section (4) we use results from section (3) to relate projections conditional expectation. Finally in section (5) we give a version of ChaconOrnestein ratio ergodic theorem. 1_{A} will denote the indicator function of A i.e. $1_{A}=1$ on $A, 1_{A}=0$ off A.
2. Conditional expectation. Let (Ω, α, μ) be an arbitrary measure space. For a given sub- σ-algebra $\beta \subset \alpha$, the conditional expectation $E\{f \mid \beta\}$ of f given β is a function measurable relative to β, such that

$$
\begin{equation*}
\int_{B} E\{f \mid \beta\} d \mu=\int_{B} f d \mu, \quad \text { all } \quad B \in \beta \tag{*}
\end{equation*}
$$

If $\mu(\Omega)=1$, then a linear operator T on L_{1} is a conditional expectation relative to some sub- σ-algebra $\beta \subset \alpha$ if and only if $\|T\| \leq 1, T^{2}=T$ and $T 1=1$ ([6], [2]). The condition $T 1=1$ does not make sense if $\mu(\Omega)=+\infty$. As it will turn out, our conditions for a σ-finite μ include the case when μ is finite. If T is a linear operator on L_{1}, we denote its adjoint by T^{*} i.e.
$(* *)$

$$
\int T f g d \mu=\int f T^{*} g d \mu, \quad f \in L_{1}, \quad g \in L_{\infty}
$$

Theorem 2.1. A linear operator T on L_{1} is a conditional expectation relative to some sub- σ-algebra $\beta \subset \alpha$ if and only if (1) $\|T\| \leq 1$, (2) $T^{2}=T$, (3) $T f=f$ some $0<f \in L_{1}$, (4) $T=T^{*}$ on $L_{1} \cap L_{\infty}$.

Proof. We give the if part of the proof only. Due to existence of one-dimensional projections, the condition (4) cannot be removed. By (1) and (3) of the hypothesis $T^{*} 1 \cdot f \leq f$ and $\int T^{*} 1 \cdot f=\int f$. Hence $T^{*} 1=1$, which together with (1) would imply that T^{*} is positive. The rest of the proof depends on relating (*)

[^0]to (**). Let $\beta=\left\{B: T^{*} 1_{B}=1_{B}\right\} . \beta$ is a sub- σ-algebra of α as it can easily be verified by using additivity and positivity of T^{*}. Conditions (3) and (4) imply that β is σ-finite. To complete the proof let \mathscr{E}, \mathscr{T} be the class of all conditional expectations and the class of linear operators on L_{1} satisfying the hypothesis of the theorem, respectively.

Define $\varphi: \mathscr{T} \rightarrow \mathscr{E}$, by $\varphi(T)=C$ where $C g=E\{g \mid \beta\}, g \in L_{1}$, and $\beta=\left\{B: T^{*} 1_{B}=\right.$ $\left.1_{B}\right\}$. By the only if part $\mathscr{E} \subset \mathscr{T} . \varphi$ is one-one by (2) and (4). The proof is complete.

Corollary 2.1. A linear operator T on L_{1} is a conditional expectation relative to some σ-finite sub- σ-algebra if and only if (1) $\|T\| \leq 1$, (2) $T^{2}=T$, (3) $T^{*} T g=T g$ for some $T g>0$.

Proof. Let $f=T g$. By (2) $T f=f$ implying that T, T^{*} are positive as before. We will show that $T=T^{*}$ on $L_{1} \cap L_{\infty}$. Define $d \nu=f d \mu$, then T on $L_{1}(\Omega, \alpha, v)$ satisfies the hypothesis of the corollary and further that T^{*} is contraction in L_{1}. Therefore (by the Riez-Convexity theorem) $\|T\|_{p} \leq 1$ for $1 \leq p \leq+\infty$, and in particular for $p=2$. Thus $T=T^{*}$ on $L_{1}(\Omega, a, v) \cap L_{\infty}(\Omega, \alpha, v)$, and consequently $T h=E_{v}\{h \mid \beta\}$, where E_{v} refers to conditional expectation relative to v, from which we conclude that $T h=E\{h \mid \beta\}$ as f is β-measurable.

This corollary was proved in [1] by a different method and under further condition that T is positive, which is redundant.

Corollary 2.2 (R. G. Douglas). Suppose $\mu(\Omega)=1$. A linear operator T on L_{1} is a conditional expectation if and only if (1) $\|T\| \leq 1$, (2) $T^{2}=T$, (3) $T 1=1$.

Proof. $T^{*} 1=1$ using (1) and (3). The proof follows from the previous corollary by putting $1=g$.
3. Modulus and consequences. Throughout this section (Ω, α, μ) is a σ-finite measure space. Modulus of a linear operator T on L_{1} is denoted by $|T|$. Its definition and some properties are given in the following theorem.

Theorem 3.1. For a linear operator T on L_{1}, there exists a linear operator $|T|$ the modulus of T, satisfying:
(1) $\||T|\| \leq\|T\|$
(2) $|T g| \leq|T||g|$ all $g \in L_{1}$
(3) $|T| h=\sup _{|g| \leq h}|T g|, 0 \leq h \in L_{1}$

Proof. See [4].
Lemma 3.1. If T is contraction on L_{1} with $T f=f$, then $|T||f|=|f|$.
Proof. By (2) of theorem $3.1|T||f| \geq|T f|=|f|$. However by (1) of the same theorem $\int|T||f| \leq \int|f|$. Therefore $|T||f|=|f|$.

Lemma 3.2. If T is a contraction with $T f=$ ffor some $0 \neq f \in L_{1}$, then $T^{*}(f /|f|=$ $f||f|$.

Proof. $\int|f|-\int|f|=\int\left((f /|f|)-T^{*}(f /|f|)\right) \cdot f$, since $T f=f$. But $\left|T^{*}(f /|f|)\right| \leq$ $|(f /|f|)|$ for T^{*} is contraction. Hence $T^{*}(f /|f|)=f| | f \mid$.

Theorem 3.2 (representation). If T is a linear contraction on L_{1} with $T f=f$ for some $0 \neq f \in L_{1}$ then

$$
|T| g=\frac{f}{|f|} T\left(\frac{f}{|f|} g\right), \quad \text { or equivalently } \quad T g=\frac{f}{|f|}|T|\left(\frac{f}{|f|} g\right)
$$

Proof. We shall show that $|T| g=(f| | f \mid) T((f| | f \mid) g)$. Equivalence of this with $T g=(f /|f|)|T|((f| | f \mid) g)$ follows by observing that $(f||f|)=(|f| / f)$

We may and do assume that $g \geq 0$. Now $|T| g \geq(f /|f|) T((f /|f|) \cdot g)$ using (3) of theorem 3.1. By Lemma 3.2 and property (1) of $|T|$; we have:

$$
\int|T| g \geq \int \frac{f}{|f|} T\left(\frac{f}{|f|} \cdot g\right)=\int g \geq \int|T| g
$$

Hence

$$
|T| g=\frac{f}{|f|} T\left(\frac{f}{|f|} \cdot g\right)
$$

4. Projections on L_{1}. In this section we imploy the representation theorem of the previous section, to represent projections defined on $L_{1}(\Omega, \alpha, \mu)$ where μ is σ-finite. The representation we prove is different than those given in ([2], [5]).

Theorem 4.1. Let T be a linear operator on L_{1} satisfying (1) $\|T\| \leq 1$ (2) $T^{2}=T$ (3) $T=T^{*}$ on $L_{1} \cap L_{\infty}$, then there exists a unique $C \in \alpha$ such that:

$$
1_{C} T 1_{C} g=\frac{f}{|f|} E\left\{\left.\frac{f}{|f|} \cdot g \right\rvert\, \beta\right\}
$$

where $C=$ support of f, and β is a σ-finite sub- σ-algebra of C.
Proof. Let C be the largest support among the supports of all $T g$, as g ranges over L_{1}. By [2] there is a $g \in L_{1}$ such that $f=T g$ and $C=$ support of f. Actually in [2] this is proved when μ is finite, but extension to the case when μ is σ-finite is easy. It is easy to check that $1_{C} T 1_{C}$ is contraction, idempotent and fixes $1_{C} \cdot f$. By theorem 3.2

$$
1_{C} T 1_{C} g=\frac{f}{|f|} 1_{C}|T| 1_{C}\left(\frac{f}{|f|} \cdot g\right), \quad \text { since }|T| \text { fixes }|f| .
$$

But $1_{C}|T| 1_{C} g=E\{g \mid B\}$ using theorem 2.1. Here $\beta=\left\{B: 1_{C}\left|T^{*}\right| 1_{C} 1_{B}=1_{B}\right\}$. The proof is complete. We must remark that condition (3) cannot be removed. See other representations in ([2], [5]).
5. A version of Chacon-Ornstein theorem. Let T be a positive contraction on $L_{1}(\Omega, \alpha, \mu)$ some σ-finite measure space (Ω, α, μ). The Chacon-Ornstein theorem [3] says:

$$
\frac{\sum_{0}^{n} T^{i} h}{\sum_{0}^{n} T^{i} g}
$$

converges almost everywhere to a finite limit as $n \rightarrow \infty$ on the set $\left\{\sum_{0}^{+\infty} T^{i} g>0\right\}$ where $g \geq 0$. If T is a contraction and $T f=f>0$ then T is positive as is shown in the preceeding sections so that such a T will satisfy the Chacon-Ornstein theorem. However if T is a contraction and $T f=f \neq 0$ then T is not necessarily positive, and the Chacon-Ornstein Theorem fails in this case. The version we have in mind is:

Theorem 5.1. If T is a linear operator on L_{1} such that $T f=f \neq 0$ then

$$
\frac{\sum_{0}^{n}\left(1_{D} T 1_{D}\right)^{i} h}{\sum_{0}^{n}\left(1_{D} T 1_{D}\right)^{i} g}
$$

converges almost everywhere on $\left\{\sum_{0}^{\infty}\left(1_{D} T 1_{D}\right)^{n} g>0\right\}$ where $g \geq 0$. Here $D=\{f>0\}$ or $\{f<0\}$.

Proof. $1_{D} T 1_{D}$ is positive by theorem 3.2.
6. Remarks. Chacon's identification theorem ([5], pp. 104) could be utilized in characterizing conditional expectation as a linear operator (see [1]) for example. However our approach in section (2) would seem to be more direct and in a sense a head on.

Also one may give an alternative proof to theorem 5.1, and as follows: Assume $D=\{f>0\}$. The case where $D=\{f<0\}$ is handled by considering $-f$ instead of f. Now if $|g| \leq|f|$ on D then $\left|1_{D} T 1_{D} g\right| \leq\left|1_{D} T 1_{D} f\right|$. Using theorem 3.1. Setting $P_{n}=$ $1_{D} f, n=1,2, \ldots$ The proof follows from Lemma 4 of ([5], pp. 102).

References

1. A. N. Al-Hussaini, On characterization of conditional expectation, Canad. Math. Bull. vol. 16 (2) 1973.
2. T. Ando, Contractive projections in L_{p} space, Pacific Journal of Math. vol. 17 (3) 1966.
3. R. V. Chacon and D. Ornstein, A general ergodic theorem, Illinois J. Math. (1960).
4. R. V. Chacon and U. Krengel, Linear modulus of linear operators, Proc. Amer. Math. Soc. (1964).
5. R. V. Chacon, Convergence of operator averages, Proceeding Tulane Symp. Ergodic theory (1962) pp. 89-120.
6. R. G. Douglas, Contractive projections on an L_{1}-space, Pacific J. Math. (1965).

University of Alberta and University of Illinois

[^0]: Received by the editors November 6, 1974 and, in revised form, February 12, 1975.

