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In this paper we examine when a twisted group ring, Ry(G), has a semi-simple, artinian
quotient ring. In §1 we assemble results and definitions concerning quotient rings, Ore sets
and Goldie rings and then, in §2, we define Ry(G). We prove a useful theorem for constructing
a twisted group ring of a factor group and establish an analogue of a theorem of Passman.
Twisted polynomial rings are discussed in §3 and I am indebted to the referee for informing
me of the existence of [4]. These are used as a tool in proving results in §4.

A group G is a poly- {torsion-free abelian or finite) group if G has a series of subgroups
{e} = Ho «=a Ht <J H2 O . . . -o Hn = G such that HJH^^ is either torsion-free abelian
or finite (/ = 1,2,...,«). These groups are considered here and we prove (Theorem 4.5)
that if such a group G has only a finite set S of periodic elements with |S| regular in R and R is
semi-prime, left Goldie, then Ry(G) is semi-prime, left Goldie.

In §5 we define a class of groups % such that if G is a torsion-free element of # and D is a
division ring then Dy(G) is an Ore domain. We call these groups Ore groups and prove a
theorem similar to Theorem 4.5 for this class of groups.

Throughout, R will denote a ring with identity element 1 and G a multiplicative group
with identity e. By artinian and noetherian we mean left artinian and left noetherian.

1. Goldie rings.

We restate the following definitions which appear in [2, pp. 228,229].
An element of a ring R is regular if it is neither a left nor a right zero divisor. A set T of

regular elements of R which is multiplicatively closed is a left Ore set if, whenever ae R,
ceT, there exist a' eR,c' e Tsuch that c'a = a'c.

A ring Q is a left quotient ring of R with respect to a set T of regular elements of R if

0) Q^R,
(ii) the elements of Tare units in Q,

(iii) the elements of Q have the form c"1 a where ceT,aeR.

If such a ring Q exists, it will be denoted by RT. When T is the set of all regular elements
of R we say that Q is the left quotient ring ofR.

THEOREM 1.1. Let T be a set of regular elements of R. Then RT exists if and only ifT
is a left Ore set in R.

t This work was supported by the Science Research Council and forms part of the author's Ph.D.
thesis (Aberdeen). I wish to thank Professor D. A. R. Wallace for his invaluable encouragement and advice
and the referee for his helpful suggestions. In particular I am indebted to the referee for pointing out the method
of proof of Theorem 2.7. My original, longer proof followed the lines of [6, Appendices 2, 3].
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2 A. REID

Proof. [3, p. 170].

A ring R has finite left Goldie rank if it contains no infinite direct sum of non-zero left
ideals. Let S be a non-empty subset of R; then £(S), the left annihilator of S, is the left ideal
{a 6 R: as = 0 for all s e S}. A ring R is a left Goldie ring if (i) R has finite left Goldie rank
and (ii) R has ascending chain condition on left annihilators.

GOLDIE'S THEOREM [2, Theorem 1.37]. A ring R has a semi-simple artinian left quotient
ring if and only ifR is a semi-prime left Goldie ring.

LEMMA 1.2 [11, Corollary 2.5]. Let Q be an artinian ring with subring R such that every
element ofQ has the form c~1a, where c,ae R. Then Q is the left quotient ring ofR.

For convenience, we formulate the following straightforward lemmas.

LEMMA 1.3. Let Rbea ring and letT s R be a left Ore set.

(i) Let L be a left ideal and let LT = RTL, the left ideal in RT generated by L. Then
LT = {c~xr:ceT,reL}.

(ii) LetL and J be left ideals in R. Then LT r\JT = (L n J)T.
(iii) IfL is a left annihilator in R, then LT is a left annihilator in RT andLT n R = L.
(iv) IfRT is a left Goldie ring, then R is a left Goldie ring.

LEMMA 1.4. Let Ru R2,. . ., Rn be a finite number of left Goldie rings. Then R =
Ri®R2®-- -®Rn is also a left Goldie ring.

2. Twisted group rings.

DEFINITION. Let G be a group with identity element e, R a ring with identity 1, R* the
group of central units of R and y: GxG-+ R* a 2-cocycle. [That is, y(g,h)y(gh,k) =
y{g, hk)y(h, k), g,h,ke G]. Let R\G) be the free left fl-module with basis {g: g e G}. Define
multiplication in Ry(G) by

gh= y(g, hjgH (g, heG)

extending this, by linearity, to the whole of Ry(G). Then Ry(G) is an associative ring with
identity element y(e, e)~1e. We call i?Y(G) the twisted group ring of G over R with twist y.

We shall identify an element r e R with its image ry(e, e)~ xe in R\G).
In this section we prove some results about Rr(,G) that we shall require later.

THEOREM 2.1. Let G be a group with a central normal subgroup Z and Ry(G) a twisted
group ring such that y(g, z) = y(z, g) for all g eG and zeZ. Then there exists a twisted group
ring ofGfZ over R\Z) with twist 5 such that

R\G) £ \R\Zf\\GlZ).
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TWISTED GROUP RINGS WHICH ARE SEMI-PRIME GOLDIE RINGS 3

Proof. Let T be a set of coset representatives for Z in G. Then every element of G is
uniquely represented in the form tz for some t e T, zeZ. Thus given tut2eT there are a
unique x(tu t2) e Jand zeZ such that t^t2 = i(tu t2)z. Then, in Ry(G),

hh = y('i. h) r{tlt t2)z = y(tu t2)y(z, x(tlt h))'1 z i(tlf t2).
Thus

hhWh'h))'1 = y('i> <2)y(z, T(<15 tj)'
1 ze central units of RV(Z).

Let F = G\Z. Then for each/e Fthere is a unique / 6 Tsuch that/ = tZ. Define 5:FxF-
(K<(Z))* by

<5(/i, fi) = hhWh, t2))~
l, where A = t,Z,f2 = t2Z, (1( t2 e T.

Given/^/j, then tu t2 and T ^ , r2) are uniquely determined. Thus 8 is well-defined and it is
readily verified that 5 is a 2-cocycle.

Hence we have defined [/P(Z)]'(F). We shall denote by/* the image in [^(Z)] '^) of an
element/e F.

Now we construct an isomorphism between Ry(G) and [J?Y(Z)]*(F). As remarked earlier,
given g eG there are a unique t e T and zeZ with g = tz = zt. Then <j = y(z, tY^zl in

). Define 0: i?Y(G) -> [J?Y(Z)]'(F) to be the tf-homomorphism denned by

We show that 0 is also a ring homomorphism. To do this, it is sufficient to show that Oig^2)
(0i, g2 e G)- Let gfi = zltug2 = z2f2, where zu z2 e Z, rlf t2 e 71. Then

'i. h) z i z2 <i'

= y(zi, f i r V f a , <2)"1y(zi, z2Mziz2, z3)y(z3.

(where f^ i = z3t3, z3 eZ, t3e T). Thus

(t3z)*
Also

Thus, recalling that

afoz, r2z) = hhihr1 = yOi. <2)y(z3,

it follows that 0foS2) = Oi
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4 A. REID

Hence 0 is a ring homomorphism and, since 6 is clearly both one-one and onto, the re-
quired isomorphism is established.

COROLLARY 2.2. Let G be a group, Z a central normal subgroup ofG and R a ring. Then
there exists a twisted group ring ofG/Z over R(Z) with twist 5, such that

R(G) £ R(Z)'(GIZ).

Thus twisted group rings occur in a fairly natural way and we have a useful method of
expressing a group ring in terms of a subgroup and a factor group.

For Lemma 2.5 we shall require the following result. We denote the set of positive
integers by P.

LEMMA 2.3. Let R be a semi-simple, artinian ring and let neP. Let W = {we R*:
W = 1}. Then W is finite.

Proof. Let S be the centre of R. Then, since R is semi-simple artinian, there exist
fields Fu F2, ...,Fr (say) such that S = Fi®F2®.. .®Fr. For weW, let (wlt w2,..., wr)
be the image of w in ^ © F j © . . .®Fr. Then w" = 1 implies that < = 1 (/ = 1, 2 , . . . , r).
Hence W = W1@W2®. • -®Wr, where Wt is the set of nth roots of unity in Ft. But the set
of «th roots of unity in a field is finite. Hence Wis finite.

COROLLARY 2.4. Let Rbea semi-prime left Goldie ring and let« e P. Let W = {we R*:
w" = 1}. Then Wisfinite.

Proof. Let Q be the semi-simple, artinian quotient ring of R. Then W c {we Q*:
w" = 1} which, by the lemma, is finite.

DEFINITION. Let Ry(G) be a twisted group ring and let H ^ G. Define

Cc(H) = {geG:gn = Hg for all heH}

= {geCG(H):y(g,h)=y(h,g) for all heH}.

It is readily verified that CG(H) is a subgroup of G.

LEMMA 2.5. Let R be a semi-prime left Goldie ring and let Ry(G) be a twisted group
ring. Let H be a subgroup of G. Then (/) CG(H) <a CG(H) and (ii) if, further, \H\ < oo, then
\CG(H)--CG(H)\< co.

Proof. Letgug2eCG(H),heH. Then

7(gi. h)y(9i, h) = y(guh)y(g2,h)y(hgug2)
, g2) y(h, g^h, gMhg^ g2)

https://doi.org/10.1017/S0017089500002433 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500002433


TWISTED GROUP RINGS WHICH ARE SEMI-PRIME GOLDIE RINGS

_ y(ffi, hg2)y(h, g2)y(g2, h)

, g2)

Now define 0h: CG(H) - R* by

eh(g)=y(9,h)y(h,gy1 (geC0(H)).

Then, by the above argument, 6h is a group homomorphism, Ker 9h = {g e CG(H): y(g, h) =
y(h, g)} and hence

CG(H) = f] Ker 9h.
hell

It follows that CG(H) <J CG(H).

Now suppose that \H\ = n and let hsH, ge CG(H). Then (hg)n = ah"g" for some
a e R. But h" = e therefore h" e R and so (hg)n = bg" for some 6 e /?. Thus

)" = [?(«, h)y(h, g)-1 Eg}".

Therefore[y(g, h)y(h, g)"1]" = 1 and so

Cc(//)/Ker 6h = subgroup of group of «th roots of unity in R*.

Hence, by Corollary 2.4, |Cc(J7):Ker 6h\ < oo. Further, since \H\ < oo, \CG(H): CG(H)\ < oo
and the result is proved.

We now give a lemma concerning rings of quotients.

LEMMA 2.6. (i) Let Ho G such that i?Y(G) has a left quotient ring and let Tbe the set of
regular elements in Ry(H). Then T is a left Ore set in R^G).

(ii) If R has a left quotient ring Q, then Qy(G) is well-defined and is the left quotient ring
ofRr(G) with respect to the set of regular elements ofR.

Proof, (i) Adapt [12, Lemma 2.6].

(ii) This is clear.

We shall wish to know when Ry(G) is semi-prime. We denote by PRy(G) the prime radical
of /?Y(G). In the 'untwisted' situation we have the following theorem due to D. Passman
[6, p. 162, see also 7] and I. Connell [6, Appendices 2 and 3].

THEOREM A. The group ring R(G) is semi-prime if and only if R is semi-prime and the
order of each finite normal subgroup ofG is regular in R.

In [8, Theorem 3.7] Passman proves the following extension of this.
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6 A. REID

THEOREM B. Let K be an algebraically closed field of characteristic p > 0 and fC(G) a
twisted group ring. Then 1C(G) is semi-prime if and only ifG has no finite normal subgroups of
order divisible by p.

Let K be ajiy field of characteristic p > 0, F its algebraic closure and 1C(G) a twisted
group ring. Then F'iG) is well-defined and, arguing as in [1, Proposition 9], it can be shown
that

PK\G = K\G) n PF\G).

It is immediate from this and Theorem B that, if G has no finite normal subgroups of order
divisible by p then, IC(G) is semi-prime and we generalise this below in Theorem 2.7. The
converse of this, however, is not true. We recall a counter example discussed in [9]. Let K
be a field over which the polynomials xpn—a are irreducible for some aeKand wherep =
char K. Let G = Zp™. Then we may construct a twisted group ring FO{G) which is a field
and hence semi-prime. The orders of finite normal subgroups of G, however, are powers of p.

THEOREM 2.7. Let R be a semi-prime ring and one of the following: (i) commutative,
(ii) a semi-direct product of simple rings, (Hi) left Goldie. Let G be a group such that the order
of each finite normal subgroup is regular in R and let Ry(G) be a twisted group ring. Then Ry(G)
is semi-prime.

Proof. (i) As in[ l , proof of Theorem 5, p. 668].
(ii) As in[ l , proof of Proposition 10, pp. 669 and 670].

(iii) Let Q be the semi-simple artinian left quotient ring of R. Then, by (ii),
Qy(G) is semi-prime and hence Ry(G) is semi-prime.

3. Twisted polynomial rings.

DEFINITION. Let R be a ring and 6: R -*• R an automorphism of R. Let <x> be an
infinite cyclic group. We define Re(x) to be the free left /?-module with basis <x> and, for
reR,v/e define multiplication on Re(x) by

xr = 6(r)x

extending by linearity to the whole of Re(x). With this definition of multiplication Re(x)
is an associative ring.

Thus Re(x) is a ring of polynomials in x and x'1 with coefficients from R. The subring
of i?e(x) containing only the polynomials in non-negative powers of x, denoted by Rg^x}, is
called a twisted polynomial ring.

A. Horn in [4, §2] has proved the following.

THEOREM 3.1. Let R be a noetherian ring. Then /?8[x] has an artinian left quotient ring if
and only ifR has an artinian left quotient ring.
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TWISTED GROUP RINGS WHICH ARE SEMI-PRIME GOLDIE RINGS 7

From this we may deduce the following corollary.

COROLLARY 3.2. Let R have an artinian left quotient ring. Then Re(x) has an artinian
left quotient ring.

Proof. Let Q be the left quotient ring of R. Then, by the theorem, 2eW has an artinian
left quotient ring Q. Since x' is regular in Qe[x], x~' e Q (i e P) and hence

Re(x) c QB(X) c Q.

It is now clear from Lemma 1.2 that Q is the artinian left quotient ring of Re(x).

4. Quotient rings of Ry(G). In this section we obtain sufficient conditions for Ry(G) to
have a semi-simple artinian quotient ring, similar to but less stringent than those obtained by
P. Smith in [12, Theorem 2.18] for R(G). By Goldie's Theorem, if Ry(G) is to have a semi-
simple artinian left quotient ring, then it must itself be a semi-prime left Goldie ring and
therefore must have both a.c.c. on left annihilators and finite left Goldie rank.

LEMMA 4.1. Let Ry(G) be semi-prime and let H<3 G be such that (i) \G: H\ < oo and
(ii) Ry(H) is semi-prime left Goldie. Then Ry(G) is semi-prime left Goldie.

Proof. By Lemma 2.6, the set T of regular elements of Ry(H) is a left Ore set in Ry(G).
Let S = [/?Y(G)]r. Then S is semi-prime and S = £ Qc, where Q is the left quotient ring

ceC

of Ry(H) and C is a set of coset representatives for H in G. But C is finite; therefore S is an
artinian g-module and hence an artinian ring. It follows from Lemma 1.2 that S is the left
quotient ring of Ry(G) and so, by Goldie's Theorem, Ry(G) is a semi-prime left Goldie ring.

LEMMA 4.2. Let Ry{G) have a left quotient ring and let H o G be such that

(i) Ry(H) is semi-prime left Goldie, and
(ii) GfH is ordered.

Then Ry(G) is semi-prime left Goldie.

Proof. We prove that every essential left ideal in Ry(G) contains a regular element. Let
E be an essential left ideal in Ry(G) and let

EQ = {aeRy(H):g<ia+gial + .. .+gnaneE for some « and aiBRy{H) and where
g0H<giH<...<gnH in GjH}.

Then Eo is a left ideal in Ry(H). Let a e Ry(H), a # 0. Then there exists a = Tclbl +
. . .+KmbmeRy(G), bieRy(H), k^H < k2H < ... < kmH in G/H, such that <xa * 0 and
aa e E. Therefore bta ¥= 0 and btaeE0 for some 1 ^ / ^ m and it follows that Eo is essential
in Ry(H). But Ry(H) is semi-prime left Goldie; therefore Eo contains a regular element of
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Ry(H). That is, there exists xeE with x = goc+gic1 + .. .+gncn, where c^R^H)), c is
regular in Ry(H) and g0H < gtH < . . . < gnH in G\H. It is readily verified that x is regular

Now since every essential left ideal of Ry(G) contains a regular element, Q, the left
quotient ring of Ry(G), contains no proper essential left ideals and is therefore a semi-simple
artinian ring[2, p. 234 and p. 219].

COROLLARY 4.3. Let Ry(G) be a twisted group ring and H <a G be such that G\H is
infinite cyclic and Ry(H) is semi-prime left Goldie. Then Ry(G) is semi-prime left Goldie.

Proof. G/H = (gHy for some g e G\H. Define 0: Ry(H) -» Ry(H) by 0(a) = gag'1

(a e Ry(H)). Then, since H <a G, 8 is an automorphism of Ry(H) and, in the notation of §3,
with g = x, Ry(G) = Ry(H)g(g). Now it follows from Corollary 3.2 that Ry(G) has an artinian
left quotient ring and so, G\H being an ordered group, Ry(G) is semi-prime left Goldie.

LEMMA 4.4. Let Ry(G) be a twisted group ring and let H<\ G be such that (/) Ry(H)
is semi-prime left Goldie, and (ii) G/H is torsion-free abelian. Then Jiy(G) is semi-prime left
Goldie.

Proof. G/H is an ordered group. Thus, from Lemma 4.2, it will be sufficient to prove that
Ry(G) has a left quotient ring. To do so it is enough to show that R'iG]) has a left quotient
ring for every subgroup Gx such that G1/Tis finitely generated. But (7J/7 is a direct sum of a
finite number of infinite cyclic groups and the required result follows by induction from
Corollary 4.3.

THEOREM 4.5. Let G be a poly- (torsion-free abelian or finite) group and let S be the set
of all periodic elements ofG. Let R be semi-prime left Goldie and let S be finite with \S\ regular
in R. Then Ry(G) is semi-prime left Goldie.

Proof. By Theorem 2.7, Ry(G) is semi-prime and so the result follows by induction from
Lemmas 4.1,4.4.

EXAMPLES of poly- (torsion-free abelian or finite) groups.

(i) Nilpotent groups with finite set of periodic elements. (A torsion-free nilpotent
group has central series with factors all torsion-free abelian [5, Theorem 1.2].)

(ii) Soluble groups with derived series whose factors have only a finite number of periodic
elements.

(iii) /"C-soluble groups [10, pp. 121,129] with series

= tf0 ifB =

such that Hi+lIHt is an .FC-group whose torsion subgroup [10, p. 121, Theorem 4.32] is
finite (i = 0, 1 , . . . , n - 1 ) .

((i) and (ii) are particular examples of (iii).)
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5. Ore groups.

DEFINITION. A ring R is called a left Ore domain if

(i) R contains no proper zero divisors, and
(ii) R satisfies the left Ore condition.

We shall be interested in the class of groups such that, given G torsion-free and an Ore
domain R, then Ry(G) is an Ore domain. We therefore make the following definition.

DEFINITION. Let <& be the class of groups such that

( i ) G e ^ H ^ G=> He<&,
(ii) GeV, H<i G, \H\ < oo => G / # e # ,
(iii) if G e <£ is torsion-free, D is a division ring and Dy(G) a twisted group ring, then

Dy(G) is an Ore domain.

If G e %> we call G an Ore group. Every periodic group is an Ore group. Also abelian groups,
nilpotent groups and FC-groups are Ore groups.

THEOREM 5.1. Let G be a group such that any twisted group ring DS(G), where D is a
division ring, is semi-prime left Goldie. Let R be a semi-prime left Goldie ring. Then Ry(G) is
semi-prime left Goldie.

Proof. Let Q be the semi-simple artinian quotient ring of R. By Lemmas 2.6 and 1.3,
(iv), it is sufficient to prove that Qy{G) is semi-prime left Goldie. Then

Q = M n i ( A ) 0 M n 2 ( i ) 2 ) e . • -®Mnr(Dr)

for some integers nlt.. ., nr and division rings Du D2).. ., Dr. Also there exist orthogonal
central idempotents eu e2,.. .,ere Q such that Mm (Z);) = Qet (/ = 1,2, . . . , r). Let g,heG.
Since y(g, h) is a central unit of R, y(g, h)et is a central unit of Dt (i = 1,2, . . . , r) and thus,
defining y^g, h) = y(g, h)e,, we have defined twisted group rings D]'(G) (i = 1 ,2 , . . . , r). It
follows that

Q\G) = Mnt(DV(G)) 0 MnlD\%G)) 0 ... 0 M j D

Hence it is sufficient to prove that each Mni (D]'(G)) is semi-prime left Goldie. But DJ'(G) has
a semi-simple artinian quotient ring Qit by the hypotheses of the theorem; hence [11, Theorem
3.1] Mm (Q,) is the semi-simple artinian quotient ring of Mm (Dyi (G)).

COROLLARY 5.2. Let R be a semi-prime left Goldie ring and G a torsion-free Ore group.
Then Ry(G) is semi-prime left Goldie.

Before the main theorem of this section we require the following lemma, the proof of
which is routine.

LEMMA 5.3. Let G be a group and let S be the set of all periodic elements of G. Then

(ii) \S\ < oo =>5<i G,

(iii) \S\ < oo => \G: CC(S)\ < oo.
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THEOREM 5.4. Let Rbe a semi-prime left Goldie ring and let G be an Ore group such that
the set S of all periodic elements of G is finite with \S\ regular in R. Then R?(G) is semi-prime
left Goldie.

Proof Let CG(S) = {g e CG(S): y(g, s) = y(s, g) for all seS}. By Lemma 2.5,
|CG(S): CG(S)\ < oo. Hence, since \G: CG(S)\ < oo, \G: CG(S)\ < oo. Also, by Theorem 2.7,
PR?(G) = 0 and so, by Lemma 4.1, it is sufficient to prove that i?Y(CG(S)) is semi-prime left
Goldie. Let C = CG(S) n S. Then C is a central subgroup of CG(S) and, since C s 5 ,
gc = eg for all g e CG(S), ceC. Therefore, by Theorem 2.1, we may construct a twisted
group ring of €G(S)jC over Ry(C) with twist 5 (say) such that

But, since \C\ < oo and \C\ is regular in R, Ry(C) is semi-prime left Goldie (Lemma 4.1).
Also, since G is an Ore group, CG(S) is an Ore group. Then, since C is the set of periodic
elements of CG(S) and C is finite, CG(S)IC is a torsion-free Ore group. It now follows from
Corollary 5.2 that [i?y(C)]*(Cc(.S')/C) is a semi-prime left Goldie ring. That is, R\CG(S)) is
semi-prime left Goldie and hence Ry(G) is also semi-prime left Goldie.

DEFINITIONS. If SC is a class of groups, LSC is the class of locally %-groups consisting of
all groups G such that every finite subset of G is contained in a ^-subgroup.

Se is called a local class if L3£ = X. [10, part 1 p. 5, part 2 p. 93].

THEOREM 5.5. The classes of Ore groups is a local class.

Proof. Let G e LM. Let S be a finite subset of G and let H = <S>. Since G e US, there
exists K e # such that i c £ Then H ^ K and so # 6 # . From this it is clear that L<6
satisfies (i) and (ii) of the definition of an Ore group. We must now prove that if G e lf€ is
torsion-free and D is a division ring then Dy(G) is an Ore domain. To prove this we show that

(a) xy = 0 if and only if x = 0 or y = 0 (x, y e D\G));
(b) given x, y e D\G), there exist x', y' e D\G) such that x'x = y'y.

Let x, y e -DY((?); then there exists a finitely generated subgroup H such that x,ye Dy(H).
Then HeW so that # is a torsion-free Ore group and D\H) is an Ore domain. Now, since
x, y 6 Dy(H), they satisfy conditions (a) and (b). Hence Dy(G) is an Ore domain. We have
shown that Uti satisfies (i), (ii) and (iii) of the definition of <#. Hence U8 s # and so L # = # .

COROLLARY 5.6. Let G be a locally nilpotent group (locally FC group); then G is an Ore
group.

THEOREM 5.7. Let G be a locally nilpotent (locally FC) group. Then R(G) is semi-prime
left Goldie if and only if

(i) R is semi-prime left Goldie, and
(ii) the subgroup S of all periodic elements ofG is finite with \S\ regular in R.
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Proof. That (i) and (ii) are sufficient for R(G) to be semi-prime left Goldie follows from
Theorem 5.4.

Conversely, let R(G) be semi-prime left Goldie. It is not hard to show that R must be a
left Goldie ring. Then, by Theorem A and the fact that the set of periodic elements of a
locally nilpotent (locally FC) group is a locally finite subgroup, it follows that (i) and (ii)
hold true.

THEOREM 5.8. Let G be a group and let Ho G be such that H is periodic and GjH is an
Ore group. Then G is an Ore group.

Proof. Let 9C = {G: G has a periodic normal subgroup H with GjH an Ore group}.
Clearly <# £ %. We shall prove that X satisfies the definition of <8 and hence that X = <g.

Let G e X with Ho G such that His periodic and G\He <€.

(i) If K ^ G, then K n H is a periodic normal subgroup of K. Also K/(K n H) s
KH\H £ G/H e <$. Hence K/(K nH)e<# and it follows that K e X.

(ii) Let Ko G, \K\ < oo. Now HKjK s H/(H n K) is a periodic normal subgroup
of G/K. Also (GIK)I(HKIK) s (GIH)I(HKIH) which belongs to V, since G/# e # and HK\Hs

n AT) is a finite normal subgroup of (?/#. Hence G/AT e X.
(iii) If G is torsion-free, then His trivial and hence G e # .

We have shown that #" satisfies conditions (i), (ii) and (iii) of the definition of <6. Hence
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