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1. Introduction. Let s be a natural number, s ^ 2. We seek a positive number k(s)
with the following property:

Let £ >0. Let Q\(xx,. . . ,xs), Q2(xi,. . . ,xs) be real quadratic forms, then for
N> Cx(s, e) we have

max(||e,(n)||, ll<22(n)||) <AT*<"+« (1.1)

for some integers nu . . . ,ns,

0 < m a x ( K | , . . . , k | ) < / V . (1.2)

Here ||0|| denotes the distance from 6 to the nearest integer.
The first result of this kind was obtained by Danicic [6], who showed that one may

take

Thus A(2) = 2/13 and A(3) = 9/50 are admissible. In 1976, however, Schmidt [11] showed
that, given real a, /S,

2|| ||/3/J2||)< C(e)N-y6+emin max(||<m2||, ||/3/J2||)< C2(e)N

This trivially permits one to take A(2) = 1/6.
Baker and Harman [2] showed that one may take

k(s) = 1 - 8(s)

where <5(s)—»0 as s—>^, although 6(s) was not calculated explicitly. The method of [2] is
weaker than Danicic's for small s, but obviously stronger for large s.

In the present paper we improve (1.3) for all s > 2. It is convenient to state our result
in terms of the corresponding exponent for a single quadratic form. We write a(s) for a
number with the following property: given a real quadratic form Q(xu . . . ,xs), then for
e > 0 and N > C3(s, e) we have

for some integers nu . . . ,ns satisfying (1.2).
For j > 1, we may take

a(s) = s/(s + l) (1.4)

(Danicic [5]). We shall need a generalization of (1.4), which we establish in Section 2. For
s 3:4, results stronger than (1.4) have been obtained [10,3,9]. In particular, we may take

= 8/9[9], a(5) = 1[3], a(6) = 78/71[9], (1.5)

a(s) = 2-8/s[9]. (1.6)
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52 R. C. BAKER AND J. BRUDERN

THEOREM 1. We may take

( ) for 5 < 5 , (1.7)

In particular, we may take A(2) = | , A(3) = J.

Clearly the limiting value of A(s) in (1.8) is 2/3; thus [2] is stronger for large s. We
also observe that stronger results hold for additive quadratic forms [4].

In our proof we use ideas from the lattice method of Schmidt [11], [1]. A key role is
also played by estimates for

£ \S(mQ)\2

m = \

where Q is a real quadratic form and

S(mQ)= § . . . § e{mQ{xu.. . ,*,)). (1.9)
*l = l x,= l

Here e{6) denotes e2Mie. Davenport [7,8] studied the case M = l, Nt = ...=Ns and
Danicic [5] treated the case M > 1, Nt = . . . = Ns. We discuss the general case in Section
2.

Constants implied by « and » depend at most on e,s. We suppose, as we may, that
e is sufficiently small and write 6 = e2. We write \s4\ for the cardinality of a finite set M.
The fractional part of 6 is written {6}.

2. Successive minima. Let

5 S

Q{xu . . . , xs) = 2 • • • E hjXiXj
/=i y=i

with Ay = Ay7, and write

s

Lj(x\,. . . , xs) = 2J XJJXJ.
/=i

Given positive integers M, Nu. . . ,NS, we define S(mQ) by (1.9) (w = 1,. . . ,M).
Just as on p. 107 of [1], we have

\S(mQ)\2= § ... 2
JCI = 1 Jr,= l ir

< 2 ••• t f l min((Â -, ||2mi.y(*)ir1)- (2-1)
z, = -(/V,-l) 2,= -(A^-l)y = l

In order to estimate the right hand side of (2.1) we define 2s linear forms as follows:

£,(*„ . . . ,X2s) = 2Ml/2Nj(L,(xlt. . . ,x,)-
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Throughout this section, let nx, • • . , n^ denote the successive minima of the lattice

r={(e,(x))...,Mx)):xeZ2s}
with respect to the unit ball.

LEMMA 1. We have

1 « njn2s+i_i« 1 (/ = 1,. . . , 2s). (2.2)

Proof. See [8], formula (20).

LEMMA 2. Let B>0. The number of integer solutions of

\xj\<B(2MmNj) I U - l , • • • > * ) • (2 .3 )

is

« 1 + (JF, . . . W/J-'fl' (2.4)

for some I, 1 < / < 2 S .

Proo/. The number of solutions of the inequalities (2.3) is at most the number of
lattice points p in F with |p| =s ^/2sB. As in the proof of Lemma 7.1 of [1], the number of
such points p is 1 if V2sB < xx and is

otherwise, where / is maximal with nt £ y/2sB.

LEMMA 3. We have

§ |5(mQ)|2«M6(N, . . . Ns)
l+26(1 + M"2(JT1 . . . n,)-1)

m = \

for some I, 1 < / < 2 S .

Proof. By (2.1), and a standard divisor argument,
M 2MN, 2MN, s

S 2 6 / V , . • • K)6 2 • • • £ El min(fy, HL^x)!!"1). (2.5)

Let kt,...,ksbe integers satisfying 0 ̂  k,< Nj and let ^(k},. . . , ks) be the set of x in Zs

with

Fix x' in g(A:,,. . . , fcj. Then for x" = x' + x in %(ku . . . , ks),

Applying Lemma 2 with B = 2Mm, we obtain
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max \%{ku ... ,ks)\«l + M'n(n{ . . . n,)~l (2.6)
* i k,

for some /, 1 < / < 2s.
Combining (2.5) and (2.6), and writing k) = min(&,, N-\- kj),

2 \S(mQ)\2«M6(Nl .. . AQ^Y • • • 1 ' !*(*., • • • , *,)l fl min(ty,$

«A^(/V, . . . AOa(l + M'(*i • • • n,V) Y • • • ' E ' ft
*,=o jtJ=oy=i

The lemma follows at once.

We can now prove the generalization of (1.4) mentioned in Section 1.

THEOREM 2. Let Q(xu. . . ,xs) be a real quadratic form. Let N> C4(s, e) and let
Ni,. . . , Ns be positive real numbers satisfying

N,...NS^NS. (2.7)

Then there are integers nu . . . ,ns, not all zero, satisfying

||G(n,,...,«,||<Ar"<'+1>+e, (2.8)

K I ^ A y (j = l,...,s). (2.9)

Proof. We consider first the case of positive integral Nu . . . , Ns. Suppose if possible
that (2.8) has no nonzero solution satisfying (2.9). Let M = [NsKs+>)~e] + l. Applying
Theorem 2.2 of [1], together with Cauchy's inequality, we obtain

M M

)2»(NN)2M-i\S(mQ)\)2»(N]...Ns)
2M-i.

m = 1 m = 1

Combining this with Lemma 3, we have

{Nx . . . NsfM~l « ( 1 + M"2(nl . . . K,YX)M6(N, . . . Ns)
l+26. (2.10)

From (2.2),

-'\ (2.11)

Combining (2.10), (2.11), we have

{Nx... Ns)
l-26M-l-d«l + Mrawr(2l"'). (2.12)

From the hypothesis that (2.7) has no solution satisfying (2.8), it follows that

nx>{4sMmy\ (2.13)

For suppose the contrary; then there is a nonzero integer point (*,,. . . ,*2s) with

\Lj(xu . . . ,xs)-xs+j\ < (2MU2Nir
1(4sMl/2r1

<s~iM-lN-\ (2.14)
1 / 2 1 / 2 ' (2.15)
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for y = l , . . . ,s. Now (*,,. . . ,;ts)=£0, since from x, = . . . = xs = 0 one obtains xs+l =
. . . = J C Z 9 = O via (2.14). Thus there is a nonzero integer point ( * , , . . . ,xs) satisfying
(2.15) and

S l*yl \\Lj(x)\\ < t NjS-'M-'N-1 = M~\

which is a contradiction. This establishes (2.13).
Combining (2.12) and (2.13) yields

from (2.7). This contradicts the definition of M, and Theorem 2 is proved in the case of
positive integral Nj.

The case N, > 1,. . . ,NS>1 follows at once. For (2.7) implies

. . . [N,] > (N/2y.
Since

for large N, this permits us to solve (2.8) subject to (2.9) on enlarging C4.
We may now prove the general case by induction on s. The case s = 1 has been done.

Now let s3=2 and suppose the theorem known for forms in s — 1 variables. Let
N, > 0,. . . , Ns > 0 satisfy (2.7) with N > C4(s, E). We may suppose some N, is less than 1;
say

But then

where H = Ns/(s~l\ Since H is large, there is a nonzero solution of

| i e (n I , . . . , n , - i , 0 )

in integers « , , . . . , n^-i with |/iy| < TV,. Since

this completes the induction step, and Theorem 2 is proved.
We may describe the substitution of (2.9) for (1.2) as "replacing a cube by a box". It

seems to be difficult to replace a cube by a box in the work of Baker and Harman [3], and
more difficult still in the work of Heath-Brown [9]. This is a pity, since such results would
lead to an improvement of Theorem 1 for 5 ^ 4.
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3. Proof of Theorem 1. Define k(s) by (1.7), (1.8). Let N > C,(s, e) and let

A = N2(A~E), A = A1/2Z2, n = A~1/2Z2.

Let IT* denote the set of primitive points of n . Let Ko denote the unit ball in K2. Let

Q(x) = A1/2(0,(x), Q2(x)) = 2 lljXixh

where X,y = X,;/. Let

To prove the theorem, it suffices to find n satisfying (1.2) for which

Q(n)GA+K0. (3.1)

Suppose that there is no such n. Applying [1], Lemma 7.4, we find that

X |S(pQ)|»Ar. (3.2)
pen

Here O<IPI<N*

S ( P Q ) = £ . . . I C ( P Q ( / I , , . . . , « , ) ) ,
n i = 1 ns = 1

ab denotes dot product, and |a| = (aa)1/2.
We may rewrite (3.2) in the form

pen* m=\
0<|p|</V*

V/ |p | |

2 |S(mpQ|»AP-.

The outer summation is taken over «AN26 points p. We select p for which
[/V*/|p|]

2 |S(/npQ)|»A^-26A-'. (3.3)
m = 1

It is helpful to note that
A-I /2<|p|<yV6 (3.4)

5 S

We now apply Lemma 3, taking Q(\) = E £ p*/,*-*/ a n d ^ ' W = pL,(x); also
/•=i/=i

Nt =. .. =NS = N. With successive minima nu. . . ,71^ defined as in Section 2, and with

M = [N6\Pr], (3.5)

we have

for some /, 1 < /<2s . In conjunction with (3.3) and Cauchy's inequality, this yields
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In view of (3.4), (3.5), it is easily verified that

so that
n}...Jt,« N-s+56sM1+lf2A2. (3.6)

Suppose for a moment that l>s. We apply (2.2). Cancelling n^+x-iXi, • • • , ^s^s+\
from (3.6),

We deduce that in all cases there isafc, 1 < fc < s , such that

» , . . . « * « N-'+5"M1+'-kl2A2. (3.7)

We now find a lower bound for nr (1 < r < s). By definition of successive minima,
there are points z^y,, . . . , zs, ys in Zs such that (zi,yi), • • . , (z.,,ys) are linearly
independent in Z2* and, for j = 1 , . . . , s,

)-yri\*nr, (3.8)

)-x\zrj\^Kr. (3.9)

Here zr = (z r l , . . . , zra), yr = (yrU .. . , yrs).
In particular,

| |pL>(zr) | |«M-1 / 2N-1
Jr r .

According to [1], Lemma 7.9, this implies

Li(z,) = ljr + sj, + bj,

with (,> e A and

where sy> lies in the 1-dimensional space p^ orthogonal to p.
Consider the points 8UU defined by

(3.10)

. . . + xrzr) =
U

By an easy computation,

s

8™ = 2 ZujL

Consequently, there is a form Q0(*i,. . . ,xr) with coefficients in px such that

r r s

Q(JC,Z,+ . . .+xrzr) = Q0(xu. . . ,xr)+ 2 2 *„*„]£ 2u/b^(modA) (3.11)
u = l u = ! y = l

whenever x e Zr.
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The one-dimensional lattice A' = 2Anp-L has determinant 2|p|A, as one easily
verifies. By the definition of a(r) we may choose integers x{,. . . ,xr with

0<max

such that

In particular, we have

, . . . ,xr)eA'

Suppose for a moment that
r

X xuzu = 0.
u = l

Then, recalling (3.12), (3.8), we have
r

xuyuj = *Z
\ u=\

(3.12)

(3.13)

(3.14)

(3.15)

u{pL;(zu) -yuj}

for j = 1,. . . , s. Since (z1; y,), . . . , (zs, ys) are linearly independent, not all the integers

are zero. It follows that

Now suppose that

Then either

or

xuzu * 0.

>N

UXV 2a "^uj"jv
j=\

(3.16)

(3.17)

(3.18)

(3.19)

For, if both these inequalities fail, we can combine (3.11), (3.14) to obtain a non-zero
integer vector

satisfying (1.2) and (3.1), which is a contradiction.
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If (3.18) holds then, recalling (3.9), (3.12), we have

(\p\A)6+Va(r)JirM
il2N»N,

If (3.19) holds, then recalling (3.9), (3.12), (3.10), we have

that is

Taking into account (3.5), we conclude that, in all cases

Kr» |p|1 / 2Ara( |p|A)-a-1 / a r ( r ) . (3.20)

We can refine the above method to obtain a lower bound for nx . . . nr which is useful
for small r. By Theorem 1, we may choose integers xu...,xr, not all zero, such that

\XU\<HJZZ1 (u = l , . . . , r ) (3.21)

and (3.13) holds, provided that H satisfies

We take

/ / = ( « , . . . wr)
1/r(|p|A)a+<r+1>". (3.22)

Suppose now that (3.15) holds. Then from (3.8), (3.21),

r r

X xuyuj= 2 xu{pL,(zu) -yUJ}

As in the proof of (3.16) we find that

H»Mll2N. (3.23)

Now suppose that (3.17) holds. As before, either (3.18) or (3.19) holds. If (3.18)
holds, then

from (3.21), (3.9), that is,

H»M~m.
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If (3.19) holds, then

tZ1HnZ1M1'2Nn\p\-1M-mN-lE S H}tZ1HnZ1M1'2Nnu\p\-1M-mN-lnv»l
u = l v = \

from (3.21), (3.9), (3.10). That is,

H»\p\U2.

We deduce that

n]...Jtr» (|p| A)-rfl-(r+1)|p|"2Arra (3.24)

in all cases.
For r s= 6, we can combine (3.24) (with r replaced by 5) and (3.20) (with 6,. . . , r in

place of r). The outcome can be written in a way that incorporates (3.24), namely
S-^\p\rl2N-rS (3.25)

for r > 1. Here /i(r) = r + 1 for r < 5, while

We now combine (3.7) with the case r = k of (3.25), obtaining

(|p| A)-*d-"W|p|*/2Ar*fi « N~'+56'Ml+'-k'2A2.

Taking into account (3.4) and (3.5), we deduce that

This contradicts the definition of A, and Theorem 1 is proved.
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