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Abstract

We study the boundedness from Hp(·)(Rn) into Lq(·)(Rn) of certain generalized Riesz potentials and the
boundedness from Hp(·)(Rn) into Hq(·)(Rn) of the Riesz potential, both results are achieved via the finite
atomic decomposition developed in Cruz-Uribe and Wang [‘Variable Hardy spaces’, Indiana University
Mathematics Journal 63(2) (2014), 447–493].
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1. Introduction

The Lebesgue spaces with variable exponents are a generalization of the classical
Lebesgue spaces, replacing the constant exponent p with a variable exponent function
p(·). For more than 25 years, the variable Lebesgue spaces have received considerable
attention for their applications in fluid dynamics, elasticity theory and differential
equations with nonstandard growth conditions, see [6] and references therein.

In the celebrated paper [7], Fefferman and Stein defined the Hardy spaces Hp(Rn)
for 0 < p <∞. One of the principal interests of Hp theory is that the Lp boundedness
of certain integral operators proved for p > 1 extend to the context of Hp, for all p > 0.
In many cases, this is achieved by means of the atomic decomposition of elements in
Hp (see [8, 11, 20]).

The theory of variable exponent Hardy spaces was developed independently by
Nakai and Sawano in [15] and by Cruz-Uribe and Wang in [4]. Both theories prove
equivalent definitions in terms of maximal operators using different approaches. In
[4, 15], one of their main goals is the atomic decomposition of elements in Hp(·)(Rn),
as an application of the atomic decomposition they proved that singular integrals are
bounded on Hp(·).
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Let 0 ≤ α < n and m > 1, (m ∈ N), we consider the following generalization of Riesz
potential

Tα,m f (x) =

∫
Rn
|x − A1y|−α1 . . . |x − Amy|−αm f (y) dy, (1.1)

where α1 + · · · + αm = n − α, and A1, . . . , Am are n × n orthogonal matrices such that
Ai − A j are invertible if i , j. We observe that in the case α > 0, m = 1 and A1 = I,Tα,1
is the classical fractional integral operator (also known as the Riesz potential) Iα. A
interesting survey about fractional integrals can be found in [14].

With respect to classical Lebesgue or Hardy spaces, for the case 0 ≤ α < n and
m > 1, in the paper [17], the author jointly with Urciuolo proved the Hp(Rn) −
Lq(Rn) boundedness of the operator Tα,m and we also showed that the Hp(R) − Hq(R)
boundedness does not hold for Tα,m with 0 ≤ α < 1, m = 2, A1 = 1, and A2 = −1.
This is an important difference with the case 0 < α < n and m = 1. Indeed, in the
paper [22], Taibleson and Weiss, using molecular characterization of the real Hardy
spaces, obtained the boundedness of Iα from Hp(Rn) into Hq(Rn), for 0 < p ≤ 1 and
1/q = 1/p − α/n.

In [1], it gives the boundedness of the Riesz potential from Lp(·) into Lq(·) where
1/q(·) = 1/p(·) − α/n. Sawano obtains in [19] the Hp(·) − Hq(·) boundedness of the
Riesz potential using a finite atomic decomposition different from that given in [4].
In [18], the author jointly with Urciuolo proved the Hp(·) − Lq(·) boundedness of the
operator Tα,m and the Hp(·) − Hq(·) boundedness of the Riesz potential via the infinite
atomic and molecular decomposition developed in [15].

The purpose of this article is to give another proof of the results obtained in [18],
but by using the finite atomic decomposition developed in [4]. Here, a key tool is a
weighted vector-valued inequality for the fractional maximal operator. We also rely on
the theory of weighted Hardy spaces and on the Rubio de Francia iteration algorithm.

This method allows us to avoid the more delicate convergence arguments that are
often necessary when utilizing the infinite atomic decomposition.

The main results of this work are contained in the following theorem.

Theorem 1.1. For 0 ≤ α < n and m > 1, let Tα,m be the operator defined by (1.1).
Given a measurable function q(·) : Rn → (0,∞) such that 0 < q0 < q− ≤ q+ < +∞,
with 0 < q0 < 1, define the function p(·) by 1/p(·) = 1/q(·) + α/n. If q(·) ∈ MP0,
and q(Aix) = q(x) for all x and all i = 1, . . . ,m, then Tα,m can be extended to an
Hp(·)(Rn) − Lq(·)(Rn) bounded operator.

Theorem 1.2. Let 0 < α < n. Given a measurable function q(·) : Rn → (0,∞) such
that 0 < q0 < q− ≤ q+ < +∞, with 0 < q0 < 1, define the function p(·) by 1/p(·) =

1/q(·) + α/n. If q(·) ∈ MP0, then the Riesz potential Iα can be extended to a bounded
operator from Hp(·)(Rn) into Hq(·)(Rn).

In Theorem 1.1 we assume that the exponent q(·) is invariant under the m
orthogonal matrices Ai, this hypothesis allows us to recover the norm ‖ · ‖q(·), that is
‖ fAi‖q(·) = ‖ f ‖q(Ai ·) = ‖ f ‖q(·), where fAi (x) = f (A−1

i x). This identity is used in the proof
of Theorem 1.1.
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We give two examples of variable exponents which satisfy the hypothesis of
Theorem 1.1.

Example 1.3. Suppose h : R→ (0,∞) that satisfies the log-Hölder continuity on R
(see [2]) and 0 < h− ≤ h+ < +∞. Let q(x) = h(|x|) for x ∈ Rn and for m > 1 let
A1, . . . , Am be n × n orthogonal matrices such that Ai − A j is invertible for i , j. It
is easy to check that the function q(·) satisfies 0 < q− ≤ q+ < +∞ and the log-Hölder
continuity on Rn. So q(·) ∈ MP0 and q(Aix) = q(x) for 1 ≤ i ≤ m.

Another nontrivial example of exponent functions and orthogonal matrices
satisfying the hypothesis of the theorem is given below.

We consider m = 2, q(·) : Rn→ (0,∞) that satisfies the log-Hölder continuity on Rn,
0 < q− ≤ q+ < +∞, and then we take qe(x) = q(x) + q(−x), A1 = I and A2 = −I.

In Section 2 we give some basic results about the variable Lebesgue spaces and
the theory of weights. We also recall the definition and atomic decomposition of the
variable Hardy spaces given in [4]. In Section 3 we state some auxiliary lemmas and
propositions to get the main results. In Section 4 we prove Theorems 1.1 and 1.2.

Notation 1.4. We denote by B(x0, r) the ball centered at x0 ∈ R
n of radius r. For a

measurable subset E ⊂ Rn we denote |E| and χE the Lebesgue measure of E and
the characteristic function of E, respectively. Given a real number s ≥ 0, we write
bsc for the integer part of s. As usual we denote with S(Rn) the space of Schwartz
functions, with S′(Rn) the dual space. If β is the multiindex β = (β1, . . . , βn), then
|β| = β1 + · · · + βn.

Throughout this paper, C will denote a positive constant, not necessarily the same
at each occurrence.

2. Preliminaries

In this section, we give some definitions and some basic results about the variable
Lebesgue spaces and the theory of weights.

Given a measurable function p(·) : Rn → (0,∞) such that

0 < ess inf
x∈Rn

p(x) ≤ ess sup
x∈Rn

p(x) <∞,

let Lp(·)(Rn) denote the space of all measurable functions f such that for some λ > 0,∫
Rn

∣∣∣∣∣ f (x)
λ

∣∣∣∣∣p(x)
dx <∞.

We set

‖ f ‖p(·) = inf
{
λ > 0 :

∫
Rn

∣∣∣∣∣ f (x)
λ

∣∣∣∣∣p(x)
dx ≤ 1

}
.

We see that (Lp(·)(Rn), ‖.‖p(·)) is a quasi normed space.
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Here we adopt the standard notation in variable exponents. We write

p− = ess inf
x∈Rn

p(x), p+ = ess sup
x∈Rn

p(x), and p = min{p−, 1}.

From now on we assume 0 < p− ≤ p+ <∞. It is not so hard to see the following lemma.

Lemma 2.1. The following statements hold:

(1) ‖ f ‖p(·) ≥ 0, and ‖ f ‖p(·) = 0 if and only if f ≡ 0.
(2) ‖c f ‖p(·) = |c| ‖ f ‖p(·) for c ∈ C.
(3) ‖ f + g‖

p
p(·) ≤ ‖ f ‖

p
p(·) + ‖g‖

p
p(·).

(4) ‖| f |s‖p(·) = ‖ f ‖ssp(·), for all s > 0.
(5) If A is an n × n orthogonal matrix and p(Ax) = p(x) for all x ∈ Rn, then ‖ fA‖p(.) =

‖ f ‖p(.), where fA(x) = f (A−1x).

LetP0 denote the collection of all measurable functions p(.) : Rn→ (0,∞) such that
0 < p− ≤ p+ <∞.

Given p(·) ∈ P0 with p− > 1, define the conjugate exponent p′(·) by the equation
1/p(·) + 1/p′(·) = 1.

Lemma 2.2 (See [2, Theorem 2.34]). If p(·) ∈ P0 with p− > 1, then for all f ∈ Lp(·),

‖ f ‖p(·) ≤ C sup
∫
Rn
| f (x)g(x)| dx,

where the supremum is taken over all g ∈ Lp′(·) such that ‖g‖p′(·) ≤ 1.

Let f be a locally integrable function on Rn. The function

M( f )(x) = sup
B3x

1
|B|

∫
B
| f (y)| dy,

where the supremum is taken over all balls B containing x, is called the uncentered
Hardy–Littlewood maximal function of f .

Throughout, we will make use of the following class of exponents.

Definition 2.3. Given p(·) ∈ P0, we say p(·) ∈ MP0 if there exists p0, 0 < p0 < p−,
such that ‖M f ‖p(·)/p0 ≤ C‖ f ‖p(·)/p0 .

Lemma 2.4. Given p(·) ∈ P0, with p− > 1, if the maximal operator is bounded on Lp(·),
then for every s > 1 it is bounded on Lsp(·).

Proof. From Hölder’s inequality and Lemma 2.1(4),

‖M f ‖sp(·) = ‖(M f )s‖
1/s
p(·) ≤ ‖(M(| f |s)‖1/s

p(·) ≤ C‖| f |s‖1/s
p(·) = C‖ f ‖sp(·). �
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The following lemma is a remarkable result in the theory of the variable Lebesgue
spaces (see [5, Theorem 8.1]).

Lemma 2.5. Given p(·) ∈ P0, with p− > 1, the maximal operators are bounded on Lp(·)

if and only if they are bounded on Lp′(·).

It is well known that a useful sufficient condition for the boundedness of the
maximal operator is a log-Hölder continuity, (see [2, 6]). In our main results, we will
only assume that the exponent p(·) belongs to MP0.

In the paper [4], Cruz-Uribe and Wang give a variety of distinct approaches, based
on differing definitions, all leading to the same notion of the variable Hardy space
Hp(.).

We recall the definition and the atomic decomposition of the Hardy spaces with
variable exponents.

Topologize S(Rn) by the collection of semi-norms ‖ · ‖α,β, with α and β multi-
indices, given by

‖ϕ‖α,β = sup
x∈Rn
|xα∂ βϕ(x)|.

For each N ∈ N, we set SN = {ϕ ∈ S(Rn) : ‖ϕ‖α,β ≤ 1, |α|, |β| ≤ N}. Let f ∈ S′(Rn), we
denote byMN the grand maximal operator given by

MN f (x) = sup
t>0

sup
ϕ∈SN

|(t−nϕ(t−1·) ∗ f )(x)|.

Definition 2.6. Let p(·) ∈ MP0. For N > n/p0 + n + 1, define the Hardy space with
variable exponents Hp(·)(Rn) as the set of all f ∈ S ′(Rn) for whichMN f ∈ Lp(·)(Rn). In
this case, we write ‖ f ‖Hp(·) = ‖MN f ‖p(·).

Let φ ∈ S(Rn) be a function such that
∫
φ(x) dx , 0. For f ∈ S′(Rn), we define the

maximal function Mφ f by

Mφ f (x) = sup
t>0
|(t−nφ(t−1·) ∗ f )(x)|.

Theorem 3.1 in [4] asserts that the quantities ‖Mφ f ‖p(·) and ‖MN f ‖p(·) are comparable,
with bounds that depend only on p(·) and n and not on f , if N > n/p0 + n + 1.

Now, we give the definition of atoms.

Definition 2.7. Given p(·) ∈ MP0, and 1 < q ≤ ∞, a function a(·) is a (p(·), q)-atom if
there exists a ball B = B(x0, r) such that

(a1) supp(a) ⊂ B,
(a2) ‖a‖q ≤ |B|1/q‖ χB‖

−1
p(·),

(a3)
∫

a(x)xαdx = 0 for all |α| ≤ bn(1/p0 − 1)c.

Remark 2.8. Let a(·) be a (p(·),q)-atom and 1 < s < q, then Hölder’s inequality implies
‖a‖s ≤ |B|1/s/‖ χB‖p(·).
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Given 1 < q <∞, let Hp(·),q
fin (Rn) be the subspace of Hp(·)(Rn) consisting of all f that

have decompositions as finite sums of (p(·), q)-atoms. By [4, Theorem 7.1], if q is
sufficiently large, Hp(·),q

fin (Rn) is dense in Hp(·)(Rn).
For f ∈ Hp(·),q

fin (Rn), define

‖ f ‖Hp(·),q
fin

= inf
{∥∥∥∥∥ k∑

j=1

λ j
χB j

‖ χB j‖p(·)

∥∥∥∥∥
p(·)

: f =

k∑
j=1

λ ja j

}
,

where the infimum is taken over all finite decompositions of f using (p(·), q)-atoms.
Theorem 7.8 in [4] asserts that ‖ f ‖Hp(·),q

fin
' ‖ f ‖Hp(·) for all f ∈ Hp(·),q

fin (Rn).
A weight is a nonnegative locally integrable function on Rn that takes values in

(0,∞) almost everywhere, that is: the weights are allowed to be zero or infinity only
on a set of measure zero with respect to Lebesgue measure.

Given a weight w and a measurable set E, we use the notation w(E) =
∫

E w(x) dx.
Let f be a locally integrable function on Rn. The function

M̃( f )(x) = sup
δ>0

1
|B(x, δ)|

∫
B(x,δ)

| f (y)| dy,

is called the centered Hardy–Littlewood maximal function of f . It is easy to check that

2−nM( f )(x) ≤ M̃( f )(x) ≤ M( f )(x) for all x ∈ Rn. (2.1)

We say that a weight w ∈ A1 if there exists C > 0 such that

M(w)(x) ≤ Cw(x) a.e. x ∈ Rn, (2.2)

the best possible constant is denoted by [w]A1 . Equivalently, a weight w ∈ A1 if there
exists C > 0 such that for every ball B

1
|B|

∫
B

w(x) dx ≤ C ess inf
x∈B

w(x). (2.3)

Remark 2.9. The orthogonal group O(n)1 induces an action on functions by fA(x) =

f (A−1x), where A ∈ O(n). Since M̃(wA)(x) = [M̃(w)]A(x) for all x ∈ Rn, and taking
account (2.1) and (2.2), it follows that w ∈ A1 if and only if wA ∈ A1 for all A ∈ O(n).
Therefore, the space of weights A1 is invariant under the orthogonal group, and the
A1 constant is preserved.

Remark 2.10. If w ∈ A1 and 0 < r < 1, then by the Hölder inequality, wr ∈ A1.

For 1 < p <∞, we say that a weight w ∈ Ap if there exists C > 0 such that for every
ball B ( 1

|B|

∫
B

w(x) dx
) ( 1
|B|

∫
B
[w(x)]−1/(p−1) dx

)p−1
≤ C.

It is well known thatAp1 ⊂ Ap2 for all 1 ≤ p1 < p2 <∞.

1O(n) = {A ∈ GLn(R) : At = A−1}.
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Given 1 < p ≤ q <∞, we say that a weight w ∈ Ap,q if there exists C > 0 such that
for every ball B( 1

|B|

∫
B
[w(x)]q dx

)1/q( 1
|B|

∫
B
[w(x)]−p′ dx

)1/p′

≤ C <∞.

For p = 1, we say that a weight w ∈ A1,q if there exists C > 0 such that for every
ball B ( 1

|B|

∫
B
[w(x)]q dx

)1/q
≤ C ess inf

x∈B
w(x).

When p = q, this definition is equivalent to wp ∈ Ap.

Remark 2.11. From the inequality in (2.3) it follows that if a weight w ∈ A1, then
0 < ess infx∈B w(x) < ∞ for each ball B. Thus, w ∈ A1 implies that w1/q ∈ Ap,q, for
each 1 ≤ p ≤ q <∞.

A weight satisfies the reverse Hölder inequality with exponent s > 1, denoted by
w ∈ RHs, if there exists C > 0 such that for every ball B,( 1

|B|

∫
B
[w(x)]s dx

)1/s
≤ C

1
|B|

∫
B

w(x) dx;

the best possible constant is denoted by [w]RHs . We observe that if w ∈ RHs, then by
Hölder’s inequality, w ∈ RHt for all 1 < t < s, and [w]RHt ≤ [w]RHs .

Lemma 2.12. Given w ∈ A1, then w ∈ RHs, where s = 1 + (2n+1[w]A1 )−1.

This result was proved for cubes in [10]. However, since w ∈ A1 is doubling, the
lemma holds for balls with same exponent.

Given 0 < α < n, we define the fractional maximal operator Mα by

Mα f (x) = sup
B

1
|B|1−α/n

∫
B
| f (y)| dy,

where f is a locally integrable function and the supremum is taken over all the balls
B which contain x. In the case α = 0, the fractional maximal operator reduces to the
Hardy–Littlewood maximal operator.

The fractional maximal operator satisfies the following weighted vector-valued
inequality.

Lemma 2.13. Given 0 < α < n, let p and q such that 1 < p ≤ q < ∞ and 1/q =

1/p − α/n. Then, for all w ∈ A1 and all 1 < θ <∞,∥∥∥∥∥{ ∞∑
j=1

[Mα( f j)]θ
}1/θ∥∥∥∥∥

Lq(w)
≤ C

∥∥∥∥∥{ ∞∑
j=1

| f j|
θ
}1/θ∥∥∥∥∥

Lp(wp/q)
,

for all sequences of functions { f j}
∞
j=1 ⊂ Lp(wp/q).
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Proof. Given w ∈ A1, from Remark 2.11, w1/q ∈ Ap,q. So, the lemma follows from
[3, Theorem 3.23]. �

We conclude these preliminaries with the definition of the weighted Hardy spaces.
Given a weight w ∈ A1 and p0 > 0, the weighted Hardy space Hp0 (w) consists of all
tempered distributions f such that

‖ f ‖Hp0 (w) = ‖Mφ f ‖Lp0 (w) =

(∫
Rn

[Mφ f (x)]p0 w(x) dx
)1/p0

<∞.

For a sufficiently large N, ‖Mφ f ‖Lp0 (w) ' ‖MN f ‖Lp0 (w), (see [21]).
Let p(·) ∈ MP0, and q > 1. Given w ∈ A1, define Hp0,q

fin (w) as the set of all finite sums
of (p(·), q)-atoms. If q sufficiently large, then by [4, Lemma 7.6], Hp0,q

fin (w) ⊂ Hp0 (w).
Moreover, by [4, Lemma 7.3], Hp(·),q

fin (Rn) = Hp0,q
fin (w) as sets. (We introduce this

notation involving w to stress that it is a subset of Hp0 (w).)
For f ∈ Hp0,q

fin (w), define

‖ f ‖Hp0 ,q
fin (w) = inf

{∥∥∥∥∥ k∑
j=1

λ
p0
j

χB j

‖ χB j‖
p0
p(·)

∥∥∥∥∥1/p0

L1(w)
: f =

k∑
j=1

λ ja j

}
,

where the infimum is taken over all finite decompositions of f using (p(·), q)-atoms.
If w ∈ A1 ∩ L(p(·)/p0)′ , then [4, Lemma 7.11] asserts that ‖ f ‖Hp0 ,q

fin (w) ≤ C‖ f ‖Hp0 (w) for all
f ∈ Hp0,q

fin (w).

3. Auxiliary results

The following lemmas are crucial to get the main results.

Lemma 3.1. For 0 ≤ α < n and m > 1, let Tα,m be the operator defined by (1.1). If
w ∈ A1, then

w({x : |Tα,m f (x)| ≥ λ}) ≤ Cλ−n/(n−α)
m∑

i=1

(∫
Rn
| f (x)|[wA−1

i
(x)](n−α)/n dx

)n/(n−α)
(3.1)

for all integrable function f with compact support.

Proof. We study separately the cases 0 < α < n and α = 0. For 0 < α < n, |Tα,m f (x)| ≤∑m
i=1(Iα| f |)Ai (x), so

{x : |Tα,m f (x)| ≥ λ} ⊂
m⋃

i=1

Ai({x : (Iα| f |)(x) ≥ λ/m}).

Since w ∈ A1, from Remarks 2.9 and 2.11, it follows that [wA−1
i

](n−α)/n ∈ A1,n/(n−α) for
each i = 1, 2, . . . ,m. Now [13, Theorem 5] gives (3.1).

The proof for α = 0 is analogous to [16, Proof of Theorem 1(b)]. �
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Lemma 3.2. For 0 ≤ α < n and m > 1, let Tα,m be the operator defined by (1.1) and let
a(·) be a (p(·), q/p0)-atom supported on a ball B.

(a) If 0 < α < n, w ∈ A1 and q > np0/α, then for 1/q0 = 1/p0 − α/n∫
Rn
|Tα,ma(x)|q0 w(x) dx ≤ C|B|α/nq0‖ χB‖

−q0
p(.)

m∑
i=1

wA−1
i

(B).

(b) If α = 0 and w ∈ A1 ∩ RH(q/p0)′ , then∫
Rn
|T0,ma(x)|p0 w(x) dx ≤ C‖ χB‖

−p0
p(.)

m∑
i=1

wA−1
i

(B).

Proof. (a) Let B = B(x0, r) be the ball which a is supported, we put B∗i = B(Aix0, 2r)
with i = 1, . . . ,m. We decompose Rn =

⋃m
i=1 B∗i ∪ R, where R = Rn\(

⋃m
i=1 B∗i ) and write∫

Rn
|Tα,ma(x)|q0 w(x) dx =

∫
⋃m

i=1 B∗i

|Tα,ma(x)|q0 w(x) dx +

∫
R
|Tα,ma(x)|q0 w(x) dx

= I1 + I2.

We first estimate I1,

I1 ≤

m∑
i=1

∫
B∗i

|Tα,ma(x)|q0 w(x) dx =

m∑
i=1

∫ ∞

0
q0λ

q0−1w({x ∈ B∗i : |Tα,ma(x)| > λ})dλ

for i = 1, . . . ,m, we write wi(x) = [wA−1
i

(x)](n−α)/n, from Lemma 3.1 and the generalized
Kolmogorov’s inequality (see [9, Theorem 3.3.1, page 51])

I1 ≤ C
( m∑

i=1

w(B∗i )
)1−(n−α)/nq0( m∑

i=1

‖a‖L1(wi)

)q0

.

Now we estimate
∑m

i=1 ‖a‖L1(wi), by Hölder’s inequality and since a(.) is a (p(.), q/p0)
atom

‖a‖L1(wi)

=

∫
|a(x)|[wA−1

i
(x)](n−α)/n dx

≤

(∫
B
|a(x)|q/p0 dx

)p0/q(∫
B
[wA−1

i
(x)](n−α)/n(q/p0)′ dx

)1/(q/p0)′

≤ |B|1/(q/p0)′ |B|p0/q‖ χB‖
−1
p(.)

( 1
|B|

∫
B
[wA−1

i
(x)](n−α)/n(q/p0)′ dx

)1/(q/p0)′

the condition q > np0/α implies (n − α)/n(q/p0)′ < 1, then from Hölder’s inequality

≤|B|‖ χB‖
−1
p(.)

( 1
|B|

∫
B

wA−1
i

(x) dx
)(n−α)/n

= |B|α/n‖ χB‖
−1
p(.)[wA−1

i
(B)](n−α)/n,
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so ( m∑
i=1

‖a‖L1(wi)

)q0

≤ |B|α/nq0‖ χB‖
−q0
p(.)

( m∑
i=1

[wA−1
i

(B)](n−α)/n
)q0

≤C|B|α/nq0‖ χB‖
−q0
p(·)

( m∑
i=1

[wA−1
i

(B)]
)(n−α)/nq0

.

Since wA−1
i
∈ A1 for each i = 1, . . . ,m (see Remark 2.9) and the weights in A1 are

doubling measures (see [4, Remark 7.7]), it follows that

I1 ≤ C|B|α/nq0‖ χB‖
−q0
p(·)

m∑
i=1

wA−1
i

(B).

To estimate I2, we start with a pointwise estimate. Let d = bn(1/p0 − 1)c. We denote
k(x, y) = |x − A1y|−α1 · · · |x − Amy|−αm . In view of the moment condition of a(.)

Tα,ma(x) =

∫
B(x0,r)

k(x, y)a(y) dy =

∫
B(x0,r)

(k(x, y) − qd(x, y))a(y) dy,

where qd is the degree d Taylor polynomial of the function y→ k(x, y) expanded
around x0. By the standard estimate of the remainder term of the Taylor expansion,
there exists ξ between y and x0 such that

|k(x, y) − qd(x, y)|. |y − x0|
d+1

∑
k1+···+kn=d+1

∣∣∣∣∣ ∂d+1

∂yk1
1 · · · ∂ykn

n

k(x, ξ)
∣∣∣∣∣

≤C|y − x0|
d+1

( m∏
i=1

|x − Aiξ|
−αi

)( m∑
l=1

|x − Alξ|
−1

)d+1
.

Now, we decompose R =
⋃m

k=1 Rk where

Rk = {x ∈ R : |x − Ak x0| ≤ |x − Aix0| for all i , k}.

If x ∈ R then |x − Aix0| ≥ 2r, since ξ ∈ B it follows that |Aix0 − Aiξ| ≤ r ≤ 1
2 |x − Aix0|

so

|x − Aiξ| = |x − Aix0 + Aix0 − Aiξ| ≥ |x − Aix0| − |Aix0 − Aiξ| ≥
1
2 |x − Aix0|.

If x ∈ R, then x ∈ Rk for some k and since α1 + · · · + αm = n − α

|k(x, y) − qd(x, y)| ≤C|y − x0|
d+1

( m∏
i=1

|x − Aix0|
−αi

)( m∑
l=1

|x − Alx0|
−1

)d+1

≤Crd+1|x − Ak x0|
−n+α−d−1,

this inequality allows us to conclude that

|Tα,ma(x)| ≤C‖a‖1rd+1|x − Ak x0|
−n+α−d−1

≤C|B|1−p0/q‖a‖q/p0 rd+1|x − Ak x0|
−n+α−d−1,
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since ‖a‖q/p0 ≤ |B|
p0/q‖ χB‖

−1
p(·),

|Tα,ma(x)| ≤C
rn+d+1

‖ χB‖p(·)
|x − Ak x0|

−n+α−d−1

≤C
(Mαn/(n+d+1)(χB)(A−1

k x))(n+d+1)/n

‖ χB‖p(·)
if x ∈ Rk. (3.2)

This pointwise estimate gives

I2 =

∫
R
|Tα,ma(x)|q0 w(x) dx ≤ C

m∑
k=1

∫
Rn

(Mαn/(n+d+1)(χB)(A−1
k x))q0(n+d+1)/n

‖ χB‖
q0
p(·)

w(x) dx

= C‖ χB‖
−q0
p(·)

m∑
k=1

∫
Rn

(Mαn/(n+d+1)(χB)(x))q0(n+d+1)/nwA−1
k

(x) dx.

Since d = bn(1/p0 − 1)c, q0(n + d + 1)/n > 1. We write q̃ = q0(n + d + 1)/n and
let 1/(p̃) = 1/q̃ + α/(n + d + 1), so p̃/q̃ = p0/q0 and (wA−1

k
)1/q̃ ∈ A p̃,̃q. From [13,

Theorem 3],∫
Rn

(Mαn/(n+d+1)(χB)(x))q0(n+d+1)/nwA−1
k

(x) dx ≤
(∫
Rn
χB(x)[wA−1

k
(x)]p0/q0 dx

)q0/p0

≤ |B|α/nq0 wA−1
k

(B),

where Hölder’s inequality gives the last inequality.
(b) As in (a) we decompose Rn =

⋃m
i=1 B∗i ∪ R, where R = Rn\(

⋃m
i=1 B∗i ), but now

we write∫
Rn
|T0,ma(x)|p0 w(x) dx =

∫
⋃m

i=1 B∗i

|T0,ma(x)|p0 w(x) dx +

∫
R
|T0,ma(x)|p0 w(x) dx

= I1 + I2.

A similar computation as done in (a) allows us to obtain the following equation:

I1 ≤ C
( m∑

i=1

w(B∗i )
)1−p0( m∑

i=1

∫
B
|a(x)|wA−1

i
(x) dx

)p0

.

To estimate the last integral we use that a(·) is an (p(·), q/p0) atom and w ∈ RH(q/p0)′ ,
so ∫

B
|a(x)|wA−1

i
(x) dx ≤ |B|1/(q/p0)′ |B|p0/q‖ χB‖

−1
p(·)

( 1
|B|

∫
B
[wA−1

i
(x)](q/p0)′ dx

)1/(q/p0)′

≤C‖ χB‖
−1
p(·)wA−1

i
(B).

Therefore,

I1 ≤ C‖ χB‖
−p0
p(·)

m∑
i=1

wA−1
i

(B).
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To estimate I2, following a similar argument to that used in (a),

I2 =

∫
R
|T0,ma(x)|p0 w(x) dx ≤ C‖ χB‖

−p0
p(·)

m∑
i=1

∫
Rn

[M(χB)(x)]p0(n+d+1)/nwA−1
i

(x) dx,

where d = bn(1/p0 − 1)c, so p0(n + d + 1)/n > 1. Finally, since wA−1
i
∈ A1 ⊂

Ap0(n+d+1)/n for each i = 1, . . . ,m, from [12, Theorem 9], it follows that

I2 ≤ C‖ χB‖
−p0
p(.)

m∑
i=1

wA−1
i

(B).

The proof is therefore concluded. �

Proposition 3.3. For 0 ≤ α < n and m > 1, let Tα,m be the operator defined by (1.1).
Let p(·) ∈ MP0, with 0 < p0 < n/(n + α), such that p(Aix) = p(x) for all i = 1, . . . ,m.
If w ∈ A1 ∩ Lp0/q0(p(·)/p0)′(Rn) and 0 < α < n or w ∈ A1 ∩ L(p(·)/p0)′(Rn) ∩ RH(q/p0)′ and
α = 0, then for 1/q0 = 1/p0 − α/n

‖Tα,m f ‖Lq0 (w) ≤ C
m∑

i=1

‖ f ‖Hp0 ([wA−1
i

]p0/q0 ),

for all f ∈ Hp0,q/p0
fin (w), where q is sufficiently large.

Proof. Given f ∈ Hp0,q/p0
fin (w), f =

∑k
j=1 λ ja j, where a j is a (p(·), q/p0)-atom supported

on a ball B j. Since 0 < q0 < 1, Lemma 3.2 gives

‖Tα,m f ‖q0
Lq0 (w) =

∫
Rn
|Tα,m f (x)|q0 w(x) dx ≤

k∑
j=1

λ
q0
j

∫
Rn
|Tα,ma j(x)|q0 w(x) dx

≤C
m∑

i=1

k∑
j=1

λ
q0
j |B j|

α/nq0‖ χB j‖
−q0
p(·)wA−1

i
(B j)

= C
m∑

i=1

∫
Rn

( k∑
j=1

λ
q0
j |B j|

α/nq0‖ χB j‖
−q0
p(·)χB j (x)

)
wA−1

i
(x) dx.

The embedding lp0 ↪→ lq0 gives

≤ C
m∑

i=1

∫
Rn

{ k∑
j=1

(λ j|B j|
α/nχB j (x)

‖ χB j‖p(·)

)p0}q0/p0

wA−1
i

(x) dx. (3.3)

It is clear that if α = 0, then the proposition follows from [4, Lemma 7.11], since wA−1
i
∈

A1 ∩ L(p(·)/p0)′(Rn) and Hp0,q/p0
fin (w) = Hp0,q/p0

fin (wA−1
i

) as sets. For the case 0 < α < n, a
computation gives |B j|

α/nχB j (x) ≤ (Mαp0/2(χB j )(x))2/p0 , so (3.3)

≤ C
m∑

i=1

∫
Rn

{ k∑
j=1

(λ j(Mαp0/2(χB j )(x))2/p0

‖ χB j‖p(·)

)p0}q0/p0

wA−1
i

(x) dx

= C
m∑

i=1

∥∥∥∥∥{ k∑
j=1

λ
p0
j (Mαp0/2(χB j )(·))

2

‖ χB j‖
p0
p(·)

}1/2∥∥∥∥∥2q0/p0

L2q0/p0 (wA−1
i

)
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because p0/2q0 = 1
2 − αp0/2n and [wA−1

i
]p0/2q0 ∈ A2,2q0/p0 , by Lemma 2.13

≤ C
m∑

i=1

∥∥∥∥∥{ k∑
j=1

λ
p0
j χB j (·)

‖ χB j‖
p0
p(·)

}1/2∥∥∥∥∥2q0/p0

L2([wA−1
i

]p0/q0 )

= C
m∑

i=1

∥∥∥∥∥ k∑
j=1

λ
p0
j χB j (·)

‖ χB j‖
p0
p(·)

∥∥∥∥∥q0/p0

L1([wA−1
i

]p0/q0 )
.

Since, for each i = 1, . . . , m, [wA−1
i

]p0/q0 ∈ A1 ∩ L(p(·)/p0)′(Rn) (see Lemma 2.1,

Remarks 2.9 and 2.10), and Hp0,q/p0
fin (w) = Hp0,q/p0

fin ([wA−1
i

]p0/q0 ) as sets, by [4, Lemma
7.11], we can take the infimum over all such decompositions to get

‖Tα,m f ‖Lq0 (w) ≤ C
m∑

i=1

‖ f ‖Hp0 ([wA−1
i

]p0/q0 ),

for all f ∈ Hp0,q/p0
fin (w). �

For 0 < α < n, let Iα be the Riesz potential given by

Iα f (x) =

∫
Rn

f (y)
|x − y|n−α

dy, (3.4)

where f ∈ Ls(Rn), and 1 ≤ s < n/α.
We introduce the following discrete maximal, given φ ∈ S(Rn) and f ∈ S′(Rn), we

define
Md
φ f (x) = sup

j∈Z
|(φ j ∗ f )(x)|,

where φ j(x) = 2 jnφ(2 jx). From [15, Lemma 3.2 and Proof of Theorem 3.3], it follows
that for all f ∈ S′(Rn) and all 0 < θ < 1

MN f (x) ≤ C[M((Md
φ f )θ)(x)]1/θ for all x ∈ Rn, (3.5)

if N is sufficiently large. This inequality gives the following lemma.

Lemma 3.4. If w ∈ A1 and 0 < q0 < 1, then ‖ f ‖Hq0 (w) ≤ C‖Md
φ f ‖Lq0 (w).

Proof. Let 0 < θ < q0. Since A1 ⊂ Aq0/θ, then the lemma follows from the inequality
in (3.5) and [12, Theorem 9]. �

Proposition 3.5. Let 0 < α < n. If Iα is the Riesz potential defined in (3.4) and a(·) is a
(p(·), q/p0)-atom, q/p0 > n/α, such that

∫
xβa(x) dx = 0 for all |β| ≤ 2bn(1/q0 − 1)c +

3 + bαc + n, where 1/q0 = 1/p0 − α/n, then

Md
φ(Iαa)(x) ≤ C|B|α/n‖ χB‖

−1
p(·)[M(χB)(x)](n+k+1)/n if x ∈ Rn\B(x0, 2r), (3.6)

where B = B(x0, r) is the ball which a(·) is supported and k = bn(1/q0 − 1)c.
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Proof. We observe that 2bn(1/q0 − 1)c + 3 + bαc + n > bn(1/p0 − 1)c; thus, a(·) is an
atom with additional vanishing moments.

The same argument utilized to obtain the pointwise estimate that appears in (3.2)
works if we consider the operator Iα instead Tm,α, so

|Iαa(x)| ≤ C|β|
rn+|β|+1

‖ χB‖p(·)
|x − x0|

−n+α−|β|+1, (3.7)

for all x ∈ Rn\B(x0, 2r), and all 0 ≤ |β| ≤ 2bn(1/q0 − 1)c + 3 + bαc + n. Taking |β| =
2bn(1/q0 − 1)c + 3 + bαc + n in (3.7), a simple computation gives

|Iαa(x)| ≤ C
rα

‖ χB‖p(·)

(
1 +
|x − x0|

r

)−2n−2k−3
∀x ∈ Rn\B(x0, 2r) (3.8)

where k = bn(1/q0 − 1)c.
Let 1 < s < n/α, from the Ls − Lsn/(n−sα) boundedness of Iα and Remark 2.8,

‖Iαa‖Lsn/(n−sα)(B(x0,2r)) ≤ C‖a‖s ≤ C
|B|(n−sα)/sn|B|α/n

‖ χB‖p(·)
. (3.9)

Taibleson and Weiss in [22] proved that∫
Rn

xβIαa(x) dx = 0, (3.10)

for 0 ≤ |β| ≤ bn(1/q0 − 1)c.
Finally, we observe that the argument utilized in [15, Proof of Theorem 5.2] works

in this setting, but considering now the estimates (3.8), (3.9) and the moment condition
(3.10). Therefore, we get (3.6). �

Remark 3.6. If a(·) is a (p(·), q/p0)-atom such that
∫

xβa(x) dx = 0 for all |β| ≤
2bn(1/q0 − 1)c + 3 + bαc + n, where 1/q0 = 1/p0 − α/n, then from the inequality in
(3.7), it follows that

|Iαa(x)| ≤ C
|B|α/n

‖ χB‖p(·)
[M(χB)(x)](n+k+1)/n,

for all x ∈ Rn\B(x0, 2r), and k = bn(1/q0 − 1)c.

Proposition 3.7. For 0 < α < n, let Iα be the Riesz potential given by (3.4). Let
p(·) ∈ MP0, with 0 < p0 < n/(n + α). If w ∈ A1 ∩ Lp0/q0(p(·)/p0)′(Rn) ∩ RH(q/p0)′ , where
1/q0 = 1/p0 − α/n, then

‖Iα f ‖Hq0 (w) ≤ C‖ f ‖Hp0 (wp0/q0 ) for all f ∈ Hp0,q/p0
fin (w),

where q > max{1, p+, p0(1 + 2n+3(‖M‖(p(·)/p0)′ + ‖M‖(q(·)/q0)′)), p0n/α}.

Proof. We recall that in the atomic decomposition, we can always choose atoms with
additional vanishing moments. This is, if l is any fixed integer with l > bn(1/p0 − 1)c,
then in the definition of the space Hp(·),q

fin (Rn) we can assume that all moments up to
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order l of our atoms are zero. Thus, given f ∈ Hp(·),q/p0
fin (Rn), f =

∑k
j=1 λ ja j, where a j

are atoms with a moment condition up to order 2bn(1/q0 − 1)c + 3 + bαc + n.
By Lemma 3.4 and since 0 < q0 < 1∫

Rn
(MN(Iα f )(x))q0 w(x) dx ≤C

∫
Rn

(Md
φ(Iα f )(x))q0 w(x) dx

≤C
k∑

j=1

λ
q0
j

∫
Rn

(Md
φ(Iαa j)(x))q0 w(x) dx.

Thus, we estimate the last integral for an arbitrary atom a(·) supported on a ball
B = B(x0, r).∫

Rn
(Md

φ(Iαa)(x))q0 w(x) dx

=

∫
B(x0,2r)

(Md
φ(Iαa)(x))q0 w(x) dx +

∫
(B(x0,2r))c

(Md
φ(Iαa)(x))q0 w(x) dx = J1 + J2.

We first estimate J1 and we use the fact that Md
φ(Iαa)(x) ≤ M(Iαa)(x), for all x ∈ Rn.

w ∈ A1, and since the Hardy–Littlewood maximal operator satisfies Kolmogorov’s
inequality,

J1 ≤ Cw(B(x0, 2r))1−q0

(∫
Rn
|Iαa(x)|w(x) dx

)q0

.

To get the desired estimate for J1, it will suffice to show that

L =

∫
Rn
|Iαa(x)|w(x) dx ≤ C

|B|α/n

‖ χB‖p(·)
w(B(x0, 2r)).

To prove this, we split the integral

L =

∫
B(x0,2r)

|Iαa(x)|w(x) dx +

∫
B(x0,2r)c

|Iαa(x)|w(x) dx = L1 + L2.

To estimate L1, we take 1 < s < n/α such that 0 < 1/s − α/n < p0/q, so if s̃ is defined
by 1/s̃ = 1/s − α/n, Hölder’s inequality and the Ls − Ls̃ boundedness of Iα give

L1 ≤ ‖Iαa‖s̃
(∫

B(x0,2r)
[w(x)]s̃′ dx

)1/s̃′

≤ C‖a‖s
(∫

B(x0,2r)
[w(x)]s̃ ′ dx

)1/s̃′

since 1 < s < q/p0, Remark 2.8 gives

≤C
|B|1/s

‖ χB‖p(·)

(∫
B(x0,2r)

[w(x)]s̃′ dx
)1/s̃′

= C
|B|1+α/n

‖ χB‖p(·)

( 1
|B|

∫
B(x0,2r)

[w(x)]s̃′ dx
)1/s̃′

a computation gives 1 < s̃′ < (q/p0)′, since w ∈ RH(q/p0)′ it follows that w ∈ RHs̃′ and
thus

L1 ≤ C
|B|α/n

‖ χB‖p(·)
w(B(x0, 2r)).
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To estimate L2, we use [12, Remark 3.6 and Theorem 9] to obtain

L2 ≤ C
|B|α/n

‖ χB‖p(·)
w(B(x0, 2r)).

From the estimates of L1, L2 and since the weight w is doubling,

J1 ≤ C
|B|q0α/n

‖ χB‖
q0
p(·)

w(B).

Now we estimate J2. By Proposition 3.5 and since w ∈ A1 ⊂ Aq0(n+k+1)/n, once again
by [12, Theorem 9],

J2 ≤C
|B|q0α/n

‖ χB‖
q0
p(·)

∫
Rn

[M(χB)(x)]q0(n+k+1)/nw(x) dx

≤C
|B|q0α/n

‖ χB‖
q0
p(·)

∫
Rn
χB(x)w(x) dx = C

|B|q0α/n

‖ χB‖
q0
p(·)

w(B).

Then ∫
Rn

(Md
φ(Iαa)(x))q0 w(x) dx = J1 + J2 ≤ C

|B|q0α/n

‖ χB‖
q0
p(·)

w(B).

So

‖Iα f ‖q0
Hq0 (w) ≤ C

∫
Rn

{ k∑
j=1

(λ j|B j|
α/nχB j (x)

‖ χB j‖p(.)

)q0}
w(x) dx

the embedding lp0 ↪→ lq0 gives

≤C
∫
Rn

{ k∑
j=1

(λ j|B j|
α/nχB j (x)

‖ χB j‖p(.)

)p0}q0/p0

w(x) dx (3.11)

a computation allows us to obtain |B j|
α/nχB j (x) ≤ (Mαp0/2(χB j )(x))2/p0 , so (3.11)

≤C
∫
Rn

{ k∑
j=1

(λ j(Mαp0/2(χB j )(x))2/p0

‖ χB j‖p(·)

)p0}q0/p0

w(x) dx

= C
∥∥∥∥∥{ k∑

j=1

λ
p0
j (Mαp0/2(χB j )(·))

2

‖ χB j‖
p0
p(·)

}1/2∥∥∥∥∥2q0/p0

L2q0/p0 (w)

because p0/2q0 = 1
2 − αp0/2n and wp0/2q0 ∈ A2,2q0/p0 , by Lemma 2.13

≤C
∥∥∥∥∥{ k∑

j=1

λ
p0
j χB j (·)

‖ χB j‖
p0
p(·)

}1/2∥∥∥∥∥2q0/p0

L2(wp0/q0 )
= C

∥∥∥∥∥ k∑
j=1

λ
p0
j χB j (.)

‖ χB j‖
p0
p(·)

∥∥∥∥∥q0/p0

L1(wp0/q0 )
.

Since wp0/q0 ∈ A1 ∩ L(p(·)/p0)′(Rn) (see Lemma 2.1 and Remark 2.10), and
Hp0,q/p0

fin (wp0/q0 ) = Hp0,q/p0
fin (w) = Hp(·),q/p0

fin (Rn) as sets, by [4, Lemma 7.11], we can take
the infimum over all such decompositions to get

‖Iα f ‖Hq0 (w) ≤ C‖ f ‖Hp0 (wp0/q0 ),

for all f ∈ Hp0,q/p0
fin (w). �
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4. Main results
In the sequel, we will consider a measurable function q(·) : Rn → (0,∞) such

that 0 < q0 < q− ≤ q+ < +∞, with 0 < q0 < 1. Given 0 ≤ α < n, we define p(·) by
1/p(·) := 1/q(·) + α/n and p0 by 1/p0 := 1/q0 + α/n, it is easy to check that 0 <
p0 < p− ≤ p+ ≤ n/α and 0 < p0 < n/(n + α). If q(·) is such that the maximal operator
is bounded on Lq(·)/q0 (that is q(·) ∈ MP0), then by Lemma 2.5 we have that it is
bounded on L(q(·)/q0)′ , now by Lemma 2.4 it follows that the maximal operator is
bounded on L(p(·)/p0)′ because (p(·)/p0)′ = q0/p0(q(·)/q0)′. In the definition of the
space Hp(·),q/p0

fin (Rn) we will assume q > max{1, p+, p0(1 + 2n+3‖M‖(p(·)/p0)′)} if α = 0,
or q > max{1, p+, p0(1 + 2n+3(‖M‖(p(·)/p0)′ + ‖M‖(q(·)/q0)′)), p0n/α} if 0 < α < n.

Proof of Theorem 1.1. The operator Tα,m is well defined on the elements of
Hp(·),q/p0

fin (Rn). So, given f ∈ Hp(·),q/p0
fin (Rn), from Lemma 2.2,

‖Tα,m f ‖q0
q(·) = ‖|Tα,m f |q0‖q(·)/q0 ≤ C sup

∫
|Tα,m f (x)|q0 |g(x)| dx

where the supremum is taken over all g ∈ L(q(·)/q0)′ such that ‖g‖(q(·)/q0)′ ≤ 1. Now
we utilize the Rubio de Francia iteration algorithm with respect to L(q(·)/q0)′ . Given
a function g, define

Rg(x) =

∞∑
i=0

Mig(x)
2i‖M‖i(q(·)/q0)′

,

where M0g = g and, for i ≥ 1, Mig = M ◦ · · · ◦ Mg denotes i iterates of the Hardy–
Littlewood maximal operator. The function Rg satisfies:

(1) |g(x)| ≤ Rg(x) for all x ∈ Rn;
(2) ‖Rg‖(q(·)/q0)′ ≤ C‖g‖(q(·)/q0)′ ;
(3) Rg ∈ A1 and [Rg]A1 ≤ 2‖M‖(q(·)/q0)′ .

By Lemma 2.12 and our assumption on q Rg ∈ RH(q/p0)′ ; by these properties and
since Hp(·),q/p0

fin (Rn) = Hp0,q/p0
fin (Rg) as sets, according to the ideas in [2, Proof of

Theorem 5.28], Proposition 3.3 and taking account that (p(·)/p0)′ = q0/p0(q(·)/q0)′

and q(Aix) = q(x) for each i = 1, . . . ,m

‖Tα,m f ‖Lq(·) ≤ C‖ f ‖Hp(·) ,

for all f ∈ Hp(·),q/p0
fin (Rn), so the theorem follows from the density of Hp(·),q/p0

fin (Rn) in
Hp(·)(Rn). �

Remark 4.1. Observe that Theorem 1.1 still holds for m = 1 and 0 < α < n. In
particular, if A1 = I, then the Riesz potential is bounded from Hp(·)(Rn) into Lq(·)(Rn).

Proof of Theorem 1.2. The operator Iα is well defined on Hp(·),q/p0
fin (Rn). So given

f ∈ Hp(·),q/p0
fin (Rn), from Lemma 2.2,

‖Iα f ‖q0

Hq(·) ≤C‖MN(Iα f )‖q0

Lq(·) = ‖(MN(Iα f ))q0‖Lq(·)/q0

≤C sup
∫
Rn

(MN(Iα f )(x))q0 |g(x)| dx
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where the supremum is taken over all g ∈ L(q(·)/q0)′ such that ‖g‖(q(·)/q0)′ ≤ 1. From
Proposition 3.7 and proceeding as in the proof of Theorem 1.1 we apply the Rubio
de Francia iteration algorithm with respect to L(q(·)/q0)′ to obtain

‖Iα f ‖Hq(·) ≤ C‖ f ‖Hp(·) ,

for all f ∈ Hp(·),q/p0
fin (Rn), so the theorem follows from the density of Hp(·),q/p0

fin (Rn) in
Hp(·)(Rn). �
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