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Abstract
Being able to characterise objects at low frequencies, but in situations where the modelling error in the eddy current
approximation of the Maxwell system becomes large, is important for improving current metal detection technolo-
gies. Importantly, the modelling error becomes large as the frequency increases, but the accuracy of the eddy current
model also depends on the object topology and on its materials, with the error being much larger for certain geome-
tries compared to others of the same size and materials. Additionally, the eddy current model breaks down at much
smaller frequencies for highly magnetic conducting materials compared to non-permeable objects (with similar
conductivities, sizes and shapes) and, hence, characterising small magnetic objects made of permeable materials
using the eddy current at typical frequencies of operation for a metal detector is not always possible. To address this,
we derive a new asymptotic expansion for permeable highly conducting objects that is valid for small objects and
holds not only for frequencies where the eddy current model is valid but also for situations where the eddy current
modelling error becomes large and applying the eddy approximation would be invalid. The leading-order term we
derive leads to new forms of object characterisations in terms of polarizability tensor object descriptions where the
coefficients can be obtained from solving vectorial transmission problems. We expect these new characterisations
to be important when considering objects at greater stand-off distance from the coils, which is important for safety
critical applications, such as the identification of landmines, unexploded ordnance and concealed weapons. We
also expect our results to be important when characterising artefacts of archaeological and forensic significance at
greater depths than the eddy current model allows and to have further applications parking sensors and improving
the detection of hidden, out-of-sight, metallic objects.

1. Introduction

Improving the characterisation of metal objects from electromagnetic field perturbations, when their
location is not in the immediate proximity of the exciting and sensing coils, is important for a range
of applications. For example, while traditional walk-through metal detectors are used in transport hubs,
court rooms, museums, galleries and at concerts and public events for identifying potential threat objects
in close proximity (typically much less than a metre) of the coils, there is also considerable interest
from security and police forces in being able to identify potential terrorist threat objects, including
guns, knives and improvised weapons, at greater stand-off distances (in the order of several metres).
The ability to characterise objects at greater stand-off distances could also bring benefits to other metal
detection applications including improving safety for anti-personal landmine disposal teams, by identi-
fying unexploded ordnance and landmines at greater distances, improving the detection of smaller, and
deeper buried artefacts of archaeological significance and improving the detection of items in forensic
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searches, which are beyond the reach of current metal detection technologies. There are further applica-
tions in parking sensors and in the detection of out-of-vision objects, such as cyclists, for large vehicles,
such as lorries and buses.

The metal detection problem is usually described by the eddy current approximation of the Maxwell
system, since the conductivities of the objects of interest are high and the frequencies of approximation
are low. The eddy current approximation neglects the displacement currents in the Maxwell system,
which is responsible for wave propagation and is often applied if the wavelength is large compared to
the object size. Ammari, Buffa and Nédélec [1] show, depending on the topology of the object and its
materials, that the eddy current approximation is either first- or second-order accurate when consid-
ering an asymptotic expansion of the electric and magnetic fields as the excitation frequency tends to
zero. In practice, this means that the eddy current model will break down at a lower frequency for a
horseshoe-shaped conductor compared to a similar sized solid sphere made of the same material. Since
the wavelength needs to be large compared to the object size, this also means that the eddy current
model breaks down at a lower frequency compared to non-magnetic objects of the same shape, size and
conductivity. The modelling error in the eddy current approximation has been considered by Schmidt,
Hiptmair and Sterz [12] who find that the approximation is accurate provided that

C1ε∗μ∗ω
2α2 � 1, C2

ωε∗
σ∗

� 1, (1.1)

where ε∗, μ∗ and σ∗ denote the conducting object’s permittivity, permeability and conductivity, respec-
tively, ω is the angular frequency and α is a measure of the object size. The constants C1 and C2 depend
on the topology of the object and, if they are of a moderate size, (1.1) reduces approximately down
to the condition that the wavelength needs to be large compared to the object size (quasi-static limit)
and ε∗ω � σ∗ (conductivities are large), respectively. They also provide a procedure for estimating C1

and C2.
For the eddy current problem, Ammari, Chen, Chen, Volkov and Garnier [2] have derived the leading-

order term in an asymptotic expansion for the perturbation of the magnetic field caused by the presence of
a permeable conducting object as it size tends to zero for the eddy current problem. There are conditions
imposed on the material parameters, which allows this result to be applied to the case of constant σ∗ and
μ∗ as α → 0. We have shown, [5], that the leading-order term they have been derived can be simplified
and provides an object characterisation, in terms of a rank 2 magnetic polarizability tensor (MPT) that
depends on the object shape, object size, its material parameters and the frequency of excitation but
is independent of its position. The object location is separated from the other object characterisation
information with the background field being evaluated at the object position. In [8], we have extended the
leading-order term obtained by Ammari et al. in [2] to a complete expansion of the perturbed magnetic
field and introduced the concept of generalised MPTs, which provide improved object characterisation.
We have derived alternative forms of the MPT and considered spectral behaviour in [9]. Together with
Wilson, we have proposed an efficient computational procedure for the computation of the MPT spectral
signatures [14] and shown how it can be used to characterise threat and non-threat objects of relevance
to security screening [10] and proposed an approach to classification using machine learning [15].

For the full Maxwell system, Ammari, Vogelius and Volkov [3] have derived the leading-order term
in an asymptotic expansion of the perturbed electric and magnetic fields caused by the presence of an
object as its size tends to zero. In this case, there is no simplification in the Maxwell system and wave
propagation effects are included. The resulting expansions shows that leading-order provides an object
characterisation in terms of the simpler Póyla–Szegö tensor parameterised by contrasts in (complex)
permittivity and permeability, which can be computed from a scalar transmission problem. Unlike the
eddy current case, conditions are not imposed on the material parameters and, hence, ε∗, σ∗ and μ∗
are allowed to change as α → 0. In the limiting case of magnetostatics, it can be shown that the MPT
simplifies to the simpler Póyla–Szegö tensor description [9], whose coefficients are obtained by solving
scalar transmission problems, but, in the eddy current regime, the calculation of the MPT coefficients
requires the solution of vectorial curl–curl transmission problems. However, it was not clear what form
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the characterisation takes as the modelling error in the eddy current model becomes large and wave
propagation effects become important.

Our present work contributes to understanding the regime where frequencies are small, but the
displacement currents remain important through the following novelties:

1. We derive a new asymptotic formula for the magnetic field perturbation caused by the presence
of a conducting permeable object as its size tends to zero. We establish the leading order for the
full Maxwell system with specific constraints applied to the object’s materials and the frequency
of excitation.

2. We obtain new forms of polarizability tensors for characterising objects, whose coefficients are
obtained by post-processing solutions to vectorial transmission problems.

3. We show that our expansion reduces to the result obtained by Ammari et al. [2] if the eddy current
approximation is made. Our new polarizability tensors reduce to an object characterisation using
the MPT in this case.

4. Additionally, we obtain an expansion of the form obtained by Ammari et al. [3] if the conditions
we impose are relaxed.

The material proceeds as follows: In Section 2, we introduce some notation that will aid the presenta-
tion of the material. Then, in Section 3, we introduce the mathematical model that will be of interest in
this work. Section 4 presents our main result, the proof of which will be established subsequent sections.
Section 5 establishes some energy estimates, Section 6 establishes an integral representation formula
and Section 7 the remaining parts of the proof. Then, Section 8 presents alternative forms of our main
result and presents simplifications and relaxation of assumptions that make comparisons with previous
object characterisations possible.

2. Notation

For what follows it is beneficial to introduce the following notation: we will use boldface for vector
quantities (e.g. u) and denote by ej, j = 1, 2, 3 the units vectors associated with an orthonormal coordinate
system. We denote the j-th component of a vector u in this coordinate system by (u)j = u · ej = uj. We
will use calligraphic symbols to denote rank 2 tensors, for example, N =Nijei ⊗ ej, where Einstein
summation convention is implied, and denote their coefficients by Nij.

We recall that for 0 � � < ∞, 0 � p < ∞,

‖u‖W�,p(Bα ) :=
(

�∑
j=0

∫
Bα

|Dj(u(x))|pdx

)1/p

,

where the derivatives are defined in a weak sense and

‖u‖W�,∞(Bα ) := ess sup
x∈Bα

�∑
j=0

|Dj(u(x))|.

3. Mathematical model
3.1 Governing equations

For linear materials, the time harmonic Maxwell equations are as follows:

∇ × E = iωμ0H, (3.1a)
∇ ×H= σE +J 0 − iωεE , (3.1b)

∇ · (εE) = 1

iω
∇ · (σE), (3.1c)

∇ · (μH) = 0, (3.1d)
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where E and H denote the complex amplitudes of the electric and magnetic field intensity vectors,
respectively, for an assumed e−iωt time variation with angular frequency ω > 0 and i := √−1. In addi-
tion, J 0 denotes the complex amplitude of an external solenoidal current source, and the parameters
ε, μ and σ denote the permittivity, permeability and conductivity, respectively, and satisfy

0 < εmin � ε � εmax < ∞, 0 < μmin �μ�μmax < ∞, 0 � σ � σ max < ∞. (3.2)

As standard (e.g. Monk [11]), the scaled fields are introduced as Eα = ε
1/2
0 E , Hα = μ

1/2
0 H and

J0 = μ
1/2
0 J 0, where ε0 = 8.854 × 10−12 F/m and μ0 = 4π × 10−7 H/m are the free space values of the

permittivity and permeability, respectively, leading to

∇ × Eα = ikμ̃rHα, (3.3a)
∇ × Hα = J0 − ikε̃rEα, (3.3b)

∇ · (ε̃rEα) = 0, (3.3c)
∇ · (μ̃rHα) = 0, (3.3d)

where

ε̃r := 1

ε0

(
ε + iσ

ω

)
, μ̃r := μ

μ0

, k := ω(ε0μ0)1/2,

and ε̃r, μ̃r are, in general, functions of position.

3.2 Perturbed field formulation

We describe a single connected inclusion by Bα := αB + z, which means that it could be thought of
a unit-sized object B located at the origin, scaled by α and translated by z. Its boundary, �α := ∂Bα,
is equipped with unit outward normal n, and we assume that the object is homogeneous with material
coefficients ε∗, μ∗ and σ∗. The object is surrounded by an unbounded region of free space Bc

α
:= R

3 \ Bα

with material coefficients ε0, μ0 and σ = 0 so that, henceforth,

ε̃r(x) :=
⎧⎨
⎩ εr := 1

ε0

(
ε∗ + iσ∗

ω

)
x ∈ Bα

1 x ∈ Bc
α

, μ̃r :=
{

μr := μ∗
μ0

x ∈ Bα

1 x ∈ Bc
α

.

Furthermore, we assume that J0 has support only in Bc
α

and for it to be located away from Bα. The electric
and magnetic fields obey the standard transmission conditions:

[n × Eα]�α
= 0, (3.4a)

[n × Hα]�α
= 0, (3.4b)

[n · ε̃rEα]�α
= 0, (3.4c)

[n · μ̃rHα]�α
= 0, (3.4d)

on �α where [·]�α
= ·|+ − ·|− denotes the jump and subscript +/− denotes the evaluation just out-

side/inside of Bα, respectively. By n+ and n−, we denote the unit outward normal pointing from the
+/− side of �α into Bα and Bc

α
, respectively, and with similar meanings on other interfaces. In absence

of Bα, the background (incident) fields E0 and H0 satisfy (3.3) with ε̃r = μ̃r = 1 in R
3. The fields

E
 := Eα − E0 and H
 := Hα − H0, which represent the perturbation in the electric and magnetic fields
due to the presence of Bα, respectively, satisfy the radiation conditions:

lim
x→∞

x
(
(∇ × E
) × x̂ − ikE


)= 0,

lim
x→∞

x
(
(∇ × H
) × x̂ − ikH


)= 0,
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where x = |x| and x̂ = x/x. By eliminating Hα, we arrive at the following transmission problem for E
:

∇ × μ−1
r ∇ × E
 − k2εrE
 = ∇ × (1 − μ−1

r )∇ × E0 − k2(1 − εr)E0 in Bα, (3.5a)
∇ × ∇ × E
 − k2E
 = 0 in Bc

α
, (3.5b)

∇ · (ε̃rE
) = 0 in R
3, (3.5c)

[n × E
]�α
= 0 on �α, (3.5d)

[n × μ̃−1
r ∇ × E
]�α

= −[μ̃−1
r ]�α

n × ∇ × E0 on �α, (3.5e)
lim
x→∞

x
(
(∇ × E
) × x̂ − ikE


)= 0, (3.5f)

for E
, while an analogous transmission problem could also be derived for H
. Given the solenoidal
behaviour of E0, the condition ∇ · (ε̃rE
) = 0 in R

3 can be disregarded provided that k2 > 0 is not an
eigenvalue of (3.5), which we shall assume throughout.

The system (3.5) is set on an unbounded domain, and we follow the approach of Monk [11, Chapter
10, Chapter 11] to reduce this to a problem on a bounded domain. Compared to the static decay of
the fields considered for the eddy current problem in [2], a different treatment is required before the
weak variational statement can be introduced due to the presence of the radiation condition in (3.5f).
We assume that there is a radius R0, centred on the origin, such that Bα ⊂ SR0 with SR0 being a solid
sphere of radius R0. Next, we introduce a solid sphere SR, with radius R > R0, and let � := SR, which
is a bounded domain. We denote the boundary of � by � and note that �α

⋂
� = ∅. This leads to the

alternative transmission problem for E
:

∇ × μ−1
r ∇ × E
 − k2εrE
 = ∇ × (1 − μ−1

r )∇ × E0 − k2(1 − εr)E0 in Bα, (3.6a)
∇ × ∇ × E
 − k2E
 = 0 in � \ Bα, (3.6b)
∇ × ∇ × E
 − k2E
 = 0 in R

3 \ �, (3.6c)
[n × E
]�α

= 0 on �α, (3.6d)
[n × μ̃−1

r ∇ × E
]�α
= −[μ̃−1

r ]�α
n × ∇ × E0 on �α, (3.6e)

[n × E
]� = 0 on �, (3.6f)
[n × ∇ × E
]� = 0 on �, (3.6g)

lim
x→∞

x
(
(∇ × E
) × x̂ − ikE


)= 0. (3.6h)

By integrating over �, we have∫
�\Bα

(∇ × E
 · ∇ × v − k2E
 · v
)
dx +

∫
Bα

(
μ−1

r ∇ × E
 · ∇ × v − k2εrE
 · v
)
dx

+
∫

�

n− × ∇ × E
 · (n− × v) × n−dx

=
∫

Bα

(
(1 − μ−1

r )∇ × E0 · ∇ × v − k2(1 − εr)E0 · v
)
dx,

and, by applying the transmission condition in (3.6e), followed by the Dirichlet to Neumann map
(k)

e (n × E
) := n × 1
ik
∇ × E
, in a similar manner to Monk [11, Equation (10.2), see also Chapter

11] (who instead of (k)
e denotes the map by Ge), leads to the weak statement. Find E
 ∈ H(curl)∫

�\Bα

(∇ × E
 · ∇ × v − k2E
 · v
)
dx +

∫
Bα

(
μ−1

r ∇ × E
 · ∇ × v − k2εrE
 · v
)
dx

+ ik
∫

�

(k)
e (n− × E
) · (n− × v) × n−dx

=
∫

Bα

(
(1 − μ−1

r )∇ × E0 · ∇ × v − k2(1 − εr)E0 · v
)
dx, (3.7)

for all v ∈ H(curl).
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We also recall that

Gk(x, y) := eik|x−y|

4π |x − y| ,

is the Helmholtz’s free space Green’s function, which becomes the Laplace free space Green’s function
if k = 0.

4. Main result

As mentioned in the introduction, Ammari, Buffa and Nédélec [1] have established that the eddy cur-
rent model is a low-frequency approximation to the Maxwell system, which is first- or second-order
accurate depending on the topology of the object and its materials. Furthermore, the conditions stated
in (1.1) for the validity of the eddy current model depend on the Bα topology-dependent constants C1

and C2, and Schmidt, Hiptmair and Sterz [12] have proposed a methodology for estimating their values.
Nonetheless, the modelling error in the eddy current model increases as ω increases and will be large,
and the eddy current model is invalid, as C1ε∗μ∗ω2α2 → 1. In this case, the formulae for computing the
MPT coefficients [2, 5, 8], which is based on the eddy current model, will also need to be replaced.

Our goal is to derive an asymptotic formula for H
(x) = (Hα − H0)(x) for x away from Bα as
α → 0 leading to a characterisation of Bα, which includes the situation where the modelling error in
the eddy current model becomes large. To investigate this, we will require that C(B)ε∗μ∗ω2α

2 < 1 and
C(�)ε0μ0ω

2R2 < 1, but, importantly, we will retain displacement current terms in order to investigate
the form the characterisation takes when the eddy current model becomes invalid. Additionally, we
introduce ν = O(1) as α → 0 where

ν = α2k2(εr − 1) = νr + iνi, νr = (ε∗ − ε0)μ0ω
2α2, νi = σ∗μ0ωα2,

and μr = O(1). Our treatment will allow an extension of the results described in [2, 5, 8], which con-
sidered the eddy current model, where the quasi-static assumption (i.e. α � λ0 = 2π/k) and large
conductivities (σ∗ � ε∗ω) were assumed, and, instead, considered the regime where νi = O(1) and
μr = O(1) as α → 0. Fixing ν = O(1), rather than νi = O(1), means that, in addition to including the
case where σ∗ and ω are constant, we include the situation where ε∗ is constant. These quantities are
also allowed to decrease with α, but not faster than 1/α2.

We focus on H
(x) = (Hα − H0)(x) to allow ease of comparison with these earlier results. Our main
result is as follows:

Theorem 4.1. For x away from Bα = αB + z, and the conditions stated in Section 4, the following
expansion of H
(x) = (Hα − H0)(x) holds

(H
(x))j = − ik(∇xGk(x, z))pεjpr(Ari(H0(z))i +Bri(E0(z))i)

+ (D2
xGk(x, z))�mεj�sCmsi(H0(z))i

+ ((D2
xGk(x, z))jr + k2δjrGk(x, z))Nri(H0(z))i + (R(x))j, (4.1)

where A, B, C and N are polarizability tensors with coefficients:

Ari := ikα4(εr − 1)

2
er ·

∫
B

(ei × ξ + θ i) dξ , (4.2a)

Bri := α3(εr − 1)er ·
∫

B

(
ei + φ i

)
dξ , (4.2b)

Cmsi := − k2α5(εr − 1)

2
es ·

∫
B

ξm(ei × ξ + θ i) dξ , (4.2c)

Nri := α3(1 − μ−1
r )er ·

∫
B

(
ei + 1

2
∇ × θ i

)
dξ , (4.2d)
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that depend on the solution to the transmission problems:

∇ξ × μ−1
r ∇ξ × θ i − k2α2εrθ i = −k2α2(1 − εr)ei × ξ in B, (4.3a)

∇ξ × ∇ξ × θ i − k2α2θ i = 0 in Bc := R
3 \ B, (4.3b)

∇ξ · θ i = 0 inR3, (4.3c)
[n × θ i]� = 0, [n × μ̃−1

r ∇ξ × θ i]� = −2(1 − μ−1
r )n × ei on � := ∂B, (4.3d)

lim
ξ→∞

ξ
(

(∇ξ × θ i) × ξ̂ − ikαθ i

)
= 0, (4.3e)

and

∇ξ × μ−1
r ∇ξ × φi − k2α2εrφ i = −k2α2(1 − εr)ei in B, (4.4a)

∇ξ × ∇ξ × φ i − k2α2φ i = 0 in Bc, (4.4b)
∇ξ · φ i = 0 inR3, (4.4c)

[n × φi]� = 0, [n × μ̃−1
r ∇ξ × φ i]� = 0 on �, (4.4d)

lim
ξ→∞

ξ
(

(∇ξ × φ i) × ξ̂ − ikαφ i

)
= 0. (4.4e)

The residual R(x) satisfies |R(x)|� C
(
α4‖H0‖W2,∞(Bα ) + α4k

(
|εr − 1| + αk2

∣∣∣1 − 1
εr

∣∣∣) ‖E0‖W1,∞(Bα )

)
.

The proof of this theorem follows in Section 7. Beforehand, we derive results that our proof will
draw on.

5. Energy estimates

To arrive at an energy estimate for an eddy current problem, Ammari, Chen, Chen, Garnier and Volkov
[2] have introduced the following equations:

F(x) := 1

2
(∇z × E0(z)) × (x − z) + 1

3
Dz(∇z × E0(z))(x − z) × (x − z)

= ik

2

3∑
i=1

(H0(z))iei × (x − z) + ik

3

3∑
i,j=1

Dz(H0(z))ij(x − z)jei × (x − z), (5.1)

which has the curl:

∇x × F = ∇z × E0(z) + Dz(∇z × E0(z))(x − z)

= ikH0(z) + ik
3∑

i,j=1

Dz(H0(z))ij(x − z)jei. (5.2)

In the above equation, ∇x × F corresponds to the first two terms in a Taylor’s series expansion of ikH0(x)
about z as |x − z| → 0. We adopt a different form for F as follows:

F(x) := 1

2
(∇z × E0(z)) × (x − z) + 1

3
Dz(∇z × E0(z))(x − z) × (x − z) + E0(z)

= ik

2

3∑
i=1

(H0(z))iei × (x − z) + ik

3

3∑
i,j=1

Dz(H0(z))ij(x − z)jei × (x − z) + E0(z), (5.3)

so that

∇x × F = ikH0(z) + ik
3∑

i,j=1

Dz(H0(z))ij(x − z)jei, (5.4)
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is still the first two terms in a Taylor’s series expansion of ikH0(x) about z as |x − z| → 0. Note that
F(z) = E0(z) and (∇x × F)(z) = ikH0(z). We can also determine

∇x · F = − ik

3

3∑
i=1

(∇z × H0(z))iei · (x − z)

= k2

3

3∑
i=1

(E0(z))iei · (x − z)

= ∇2φ0, (5.5)

where, up to a constant,

φ0 = k2

18

(
(E0(z))1(x1 − z1)

3 + (E0(z))2(x2 − z2)
3 + (E0(z))3(x3 − z3)

3
)

. (5.6)

Related to (3.7) in [2], and following a similar treatment to (3.7), we introduce w as the unique solution
to the weak problem. Find w ∈ H(curl) s.t.∫

�\Bα

(∇ × w · ∇ × v − k2w · v
)
dx +

∫
Bα

(
μ−1

r ∇ × w · ∇ × v − k2εrw · v
)
dx

+ ik
∫

�

(k)
e (n− × w) · (n− × v) × n−dx

=
∫

Bα

(
(1 − μ−1

r )∇ × F · ∇ × v − k2(1 − εr)F · v
)
dx, (5.7)

for all v ∈ H(curl).
The following updated form of Lemma 3.2 from [2] relies on a Friedrichs’ type inequality that will

allow us to estimate a divergence-free field u ∈ H(curl) ∩ H(div) in a bounded Lipschitz domain Bα in
terms of its curl and n · u on �α, for example, [11, Corollary 3.52, pg 72]:

‖u‖L2(Bα ) � C
(‖∇ × u‖L2(Bα ) + ‖n · u‖L2(�α )

)
, (5.8)

which we assume holds with α = 1 while, in general,

‖u‖L2(Bα ) � Cα
(‖∇ × u‖L2(Bα ) + ‖n · u‖L2(�α )

)
, (5.9)

leading to:

Lemma 5.1. Let w be defined by (5.7). For |εr| such that 1
|εr | ‖n · (Eα|+ − E0 − w|+)‖L2(�α ) � ‖∇ × (Eα −

E0 − w)‖L2(Bα ), and the conditions stated in Section 4, there exists a constant C such that

‖∇ × (Eα − E0 − w)‖L2(Bα ) � Cα7/2μr

(|1 − μ−1
r | + |ν|) ‖∇ × E0‖W2,∞(Bα ),∥∥∥∥Eα − E0 − w − εr − 1

εr

∇φ0

∥∥∥∥
L2(Bα )

� Cα9/2μr

(|1 − μ−1
r | + |ν|) ‖∇ × E0‖W2,∞(Bα ).

Proof . For the eddy current model considered by [2], ∇ · Eα = ∇ · E0 = 0 in Bα and n · Eα|− = 0 on �α.
Also, they have ∇ · w = −∇ · F in Bα and n · w|− = −n · F on �α. Our situation is different, however, so
that choosing v = ∇ϑ for some appropriate ϑ in (5.7) we find that

∇ · (εrw) = ∇ · ((1 − εr)F) in Bα, n · w|+ − n · εrw|− = −(1 − εr)n · F on �α.

We also know that for the problem we are considering

∇ · (εrEα) = 0 in Bα, n · Eα|+ − n · εrEα|− = 0 on �α.

We follow [2] and introduce φ0 in a similar way such that ∇ · (E0 + ∇φ0) = ∇ · F in Bα with n · (E0 +
∇φ0)|− = n · F on �α, which is justified based on (5.6) and knowing that ∇ · E0 = 0 in Bα. Since ∇ · (F −
∇φ0) = 0 in Bα, then ∇ · ((1 − εr)(F − ∇φ0)) = ∇ · (εrw − (1 − εr)∇φ0) = 0 and ∇ · (w − 1−εr

εr
∇φ0) = 0
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in Bα. Then,

∇ ·
(

Eα − E0 − w − εr − 1

εr

∇φ0

)
= 0 in Bα, (5.10)

and, by combining the above results, we also have

n ·
(

Eα|− − w|− − E0 − εr − 1

εr

∇φ0

)
− 1

εr

n · (Eα|+ − w|+ − E0) = 0 on �α. (5.11)

For |εr| → ∞, then 1
εr

n · (Eα|+ − w|+ − E0) = 1
εr

n · (E
|+ − w|+) → 0 on �α and, the presence of this
term, means that rather than

∥∥∥∥Eα − E0 − w − εr − 1

εr

∇φ0

∥∥∥∥
L2(Bα )

� Cα‖∇ × (Eα − E0 − w)‖L2(Bα ), (5.12)

we should use (5.8) leading to an estimate of the form:

∥∥∥∥Eα − E0 − w − εr − 1

εr

∇φ0

∥∥∥∥
L2(Bα )

� Cα
(‖∇ × (Eα − E0 − w)‖L2(Bα )

+ 1

|εr| ‖n · (Eα|+ − E0 − w|+)‖L2(�α )

)
. (5.13)

Next, we construct

∫
�\Bα

(∇ × (Eα − E0 − w) · ∇ × v − k2(Eα − E0 − w) · v
)
dx

+
∫

Bα

(
μ−1

r ∇ × (Eα − E0 − w) · ∇ × v − k2εr

(
Eα − E0 − w − εr − 1

εr

∇φ0

)
· v
)

dx

+ ik
∫

�

(k)
e (n− × (Eα − E0 − w)) · (n− × v) × n−dx

=
∫

Bα

(
(1 − μ−1

r )∇ × (E0 − F) · ∇ × v − k2(1 − εr)(E0 + ∇φ0 − F) · v
)
dx. (5.14)

By noting the curl of the gradient of a scalar vanishes, we can write

∫
�\Bα

(∇ × (Eα − E0 − w) · ∇ × v − k2(Eα − E0 − w) · v
)
dx

+
∫

Bα

(
μ−1

r ∇ ×
(

Eα − E0 − w − εr − 1

εr

∇φ0

)
· ∇ × v − k2εr

(
Eα − E0 − w − εr − 1

εr

∇φ0

)
· v
)

dx

+ ik
∫

�

(k)
e (n− × (Eα − E0 − w)) · (n− × v) × n−dx

=
∫

Bα

(
(1 − μ−1

r )∇ × (E0 − F) · ∇ × v − k2(1 − εr)(E0 + ∇φ0 − F) · v
)
dx. (5.15)
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Choosing v =
{

Eα − E0 − w − εr−1
εr

∇φ0 in Bα

Eα − E0 − w in � \ Bα

and taking modulus of both sides of (5.15), we

observe that the resulting left-hand side has the form |Z| = (Z2
r + Z2

i )1/2 where

Zr := ‖∇ × (Eα − E0 − w)‖2
L2(�\Bα ) − k2‖Eα − E0 − w‖2

L2(�\Bα )

+ μ−1
r

∥∥∥∥∇ ×
(

Eα − E0 − w − εr − 1

εr

∇φ0

)∥∥∥∥
2

L2(Bα )

− k2 ε∗
ε0

∥∥∥∥Eα − E0 − w − εr − 1

εr

∇φ0

∥∥∥∥
2

L2(Bα )

+ kIm
(∫

�

(k)
e (n− × (Eα − E0 − w)) · (n− × v) × n−dx

)
,

Zi := − k2 σ∗
ωε0

∥∥∥∥Eα − E0 − w − εr − 1

εr

∇φ0

∥∥∥∥
2

L2(Bα )

+ kRe
(∫

�

(k)
e (n− × (Eα − E0 − w)) · (n− × v) × n−dx

)
,

and clearly |Zr| < |Z|. Considering the conditions needed for

‖∇ × (Eα − E0 − w)‖2
L2(�\Bα ) − k2‖Eα − E0 − w‖2

L2(�\Bα ) > 0,

μ−1
r

∥∥∥∥∇ ×
(

Eα − E0 − w − εr − 1

εr

∇φ0

)∥∥∥∥
2

L2(Bα )

− k2 ε∗
ε0

∥∥∥∥Eα − E0 − w − εr − 1

εr

∇φ0

∥∥∥∥
2

L2(Bα )

> 0,

leads to C(�)ε0μ0ω
2R2 < 1 and C(B)ε∗μ∗ω2α2 < 1 (assuming boundary terms can be absorbed) and,

hence, the criteria in Section 4. In this case, we have

μ−1
r

∥∥∥∥∇ ×
(

Eα − E0 − w − εr − 1

εr

∇φ0

)∥∥∥∥
L2(Bα )

� |Z| =
∣∣∣∣
∫

Bα

(
(1 − μ−1

r )∇ × (E0 − F) · ∇ × v − k2(1 − εr)(E0 + ∇φ0 − F) · v
)
dx
∣∣∣∣ . (5.16)

Also,∣∣∣∣
∫

Bα

(1 − μ−1
r )(∇ × (E0 − F) · ∇ × v)dx

∣∣∣∣� C|1 − μ−1
r |α7/2‖∇ × E0‖W2,∞(Bα )‖∇ × v‖L2(Bα ), (5.17)

and∣∣∣∣k2

∫
Bα

(1 − εr)(E0 + ∇φ0 − F) · vdx
∣∣∣∣� k2|1 − εr|‖E0 + ∇φ0 − F‖L2(Bα )‖v‖L2(Bα )

� Cα2k2|1 − εr|‖∇ × (E0 − F)‖L2(Bα )(‖∇ × v‖L2(Bα ) + ‖n · v‖L2(�α ))

� Cα7/2|ν|‖∇ × E0‖W2,∞(Bα )(‖∇ × v‖L2(Bα ) + ‖n · v‖L2(�α )),
(5.18)

which follows since E0 + ∇φ0 − F is divergence-free in Bα and has vanishing n · (E0 + ∇φ0 − F) on �α

and so

‖E0 + ∇φ0 − F‖L2(Bα ) � Cα‖∇ × (E0 − F)‖L2(Bα ) � Cαα3/2α2‖∇ × E0‖W2,∞(Bα )

= Cα9/2‖∇ × E0‖W2,∞(Bα ). (5.19)
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Also, since v is divergence-free, ‖v‖L2(Bα ) � Cα
(‖∇ × v‖L2(Bα ) + ‖n · v‖L2(�α )

)
. Using (5.17) and (5.18) in

(5.16), then

μ−1
r

∥∥∥∥∇ ×
(

Eα − E0 − εr − 1

εr

∇φ0 − w
)∥∥∥∥

2

L2(Bα )

� C|1 − μ−1
r |α7/2‖∇ × E0‖W2,∞(Bα )‖∇ × v‖L2(Bα )

+ Cα7/2|ν|‖∇ × E0‖W2,∞(Bα )(‖∇ × v‖L2(Bα ) + ‖n · v‖L2(�α )),
(5.20)

and for |εr| such that ‖n · v‖L2(�α ) = 1
|εr | ‖n · (E
|+ − w|+)‖L2(�α ) � ‖∇ × (Eα − E0 − w)‖L2(Bα ), then

‖∇ × (Eα − E0 − w)‖L2(Bα ) � Cμrα
7/2
(|1 − μ−1

r | + |ν|) ‖∇ × E0‖W2,∞(Bα ). (5.21)

By additionally combining this with (5.13) completes the proof.

Unlike the eddy current problem considered in [2], we are not guaranteed to have ∇x × H0(x) = 0 in
Bα and so an integration by parts yields∫

Bα

(1 − μ−1
r )∇ × F · ∇ × vdx =

∫
�α

[μ̃−1
r ∇ × F × n−]�α

· vdx +
∫

Bα

(1 − μ−1
r )v · ∇ × ∇ × Fdx

(5.22)

and, hence, the weak problem for w becomes. Find w ∈ H(curl) such that∫
�\Bα

(∇ × w · ∇ × v − k2w · v
)
dx +

∫
Bα

(
μ−1

r ∇ × w · ∇ × v − k2εrw · v
)
dx

+ ik
∫

�

(k)
e (n− × w) · (n− × v) × n−dx

=
∫

�α

[μ̃−1
r ∇ × F × n−]�α

· vdx − k2

∫
Bα

((1 − εr)F · v)dx

+
∫

Bα

(1 − μ−1
r )v · ∇ × ∇ × Fdx, (5.23)

for all v ∈ H(curl). This, in turn, motivates the strong form for w as:

∇ × μ−1
r ∇ × w − k2εrw = (1 − μ−1

r )∇ × ∇ × F − k2(1 − εr)F in Bα, (5.24a)
∇ × ∇ × w − k2w = 0 in � \ Bα, (5.24b)

∇ · w = 0 in �, (5.24c)
∇ × ∇ × w − k2w = 0 in R

3 \ �, (5.24d)
∇ · w = 0 in R

3 \ �, (5.24e)
[n × w]�α

= 0, [n × μ̃r
−1∇ × w]�α

= −(1 − μ−1
r )n × ∇ × F on �α, (5.24f)

[n × w]� = 0, [n × ∇ × w]� = 0 on �, (5.24g)
lim
x→∞

x
(
(∇ × w) × x̂ − ikw

)= 0. (5.24h)

which can also be expressed as:

∇ × μ−1
r ∇ × w − k2εrw = (1 − μ−1

r )∇ × ∇ × F − k2(1 − εr)F in Bα, (5.25a)
∇ × ∇ × w − k2w = 0 in Bc

α
, (5.25b)

∇ · w = 0 in R
3, (5.25c)

[n × w]�α
= 0, [n × μ̃r

−1∇ × w]�α
= −(1 − μ−1

r )n × ∇ × F on �α, (5.25d)
lim
x→∞

x
(
(∇ × w) × x̂ − ikw

)= 0. (5.25e)
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By introducing w(x) = αw0

( x−z
α

)= αw0(ξ ), we see w0(ξ ) satisfies

∇ξ × μ−1
r ∇ξ × w0 − k2εrα

2w0 = (1 − μ−1
r )∇ × ∇ × [αF] − k2α2(1 − εr)[α

−1F] in B,

(5.26a)
∇ξ × ∇ξ × w0 − k2α2w0 = 0 in Bc,

(5.26b)
∇ξ · w0 = 0 in R

3,
(5.26c)

[n × w0]� = 0, [n × μ̃−1
r ∇ξ × w0]� = −(1 − μ−1

r )n × ∇ × [α−1F] on �,
(5.26d)

lim
ξ→∞

ξ
(

(∇ξ × w0) × ξ̂ − ikαw0

)
= 0, (5.26e)

and, by introducing a bounded domain �0 with boundary �0 := ∂�0 the weak solution of (5.26) can be
expressed in a similar way to (5.7).

Hence, Theorem 3.1 in [2], which follows directly from Lemma 5.1, is replaced by:

Theorem 5.2. For |εr| such that 1
|εr | ‖n · (E
|+ − w|+)‖L2(�α ) � ‖∇ × (Eα − E0 − w)‖L2(Bα ), and the con-

ditions stated in Section 4, there exists a constant C such that∥∥∥∥∇ ×
(

Eα − E0 − αw0

(
x − z

α

))∥∥∥∥
L2(Bα )

� Cα7/2μr

(|1 − μ−1
r | + |ν|) ‖∇ × E0‖W2,∞(Bα ),

∥∥∥∥Eα − E0 − αw0

(
x − z

α

)
− εr − 1

εr

∇φ0

∥∥∥∥
L2(Bα )

� Cα9/2μr

(|1 − μ−1
r | + |ν|) ‖∇ × E0‖W2,∞(Bα ).

From (5.3), we have

α−1F(αξ + z) = ik

2

3∑
i=1

(H0(z))iei × ξ + ikα

3

3∑
i,j=1

(DzH0(z))ijξjei × ξ + α−1

3∑
i=1

(E0(z))iei,

and similarly

w0(ξ ) = ik

2

3∑
i=1

(H0(z))iθ i(ξ ) + ikα

3

3∑
i=1,j

(DzH0(z))ijψ ij(ξ ) + α−1

3∑
i=1

(E0(z))iφ i(ξ ). (5.27)

In the above equation, θ i(ξ ) solves

∇ξ × μ−1
r ∇ξ × θ i − k2α2εrθ i = −k2α2(1 − εr)ei × ξ in B, (5.28a)

∇ξ × ∇ξ × θ i − k2α2θ i = 0 in Bc, (5.28b)
∇ξ · θ i = 0 in R

3, (5.28c)
[n × θ i]� = 0, [n × μ̃−1

r ∇ξ × θ i]� = −2(1 − μ−1
r )n × ei on �, (5.28d)

lim
ξ→∞

ξ
(

(∇ξ × θ i) × ξ̂ − ikαθ i

)
= 0, (5.28e)

ψ ij(ξ ) solves

∇ξ × μ−1
r ∇ξ ×ψ ij − k2α2εrψ ij = (1 − μ−1

r )ej × ei − k2α2(1 − εr)ξjei × ξ in B, (5.29a)
∇ξ × ∇ξ ×ψ ij − k2α2ψ ij = 0 in Bc, (5.29b)

∇ξ ·ψ ij = 0 in R
3, (5.29c)

[n ×ψ ij]� = 0, [n × μ̃−1
r ∇ξ × θ i]� = −3(1 − μ−1

r )n × ξjei on �, (5.29d)

lim
ξ→∞

ξ
(

(∇ξ ×ψ ij) × ξ̂ − ikαψ ij

)
= 0, (5.29e)
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and φi(ξ ) solves

∇ξ × μ−1
r ∇ξ × φ i − k2α2εrφ i = −k2α2(1 − εr)ei in B, (5.30a)

∇ξ × ∇ξ × φ i − k2α2φ i = 0 in Bc, (5.30b)
∇ξ · φ i = 0 in R

3, (5.30c)
[n × φi]� = 0, [n × μ̃−1

r ∇ξ × φ i]� = 0 on �, (5.30d)

lim
ξ→∞

ξ
(

(∇ξ × φi) × ξ̂ − ikαφ i

)
= 0. (5.30e)

Furthermore, given that the only source term is the gradient of a scalar, the solution to (5.30) can be
expressed in terms of φ i = (εr − 1)∇ϑi where ϑi solves

∇ξ · εr∇ξϑi = 0 in B, (5.31a)
∇ξ · ∇ξϑi = 0 in Bc, (5.31b)

[ϑi]� = 0 n · ∇ξϑi|+ − n · εr∇ξϑi|− = n · ei on �, (5.31c)
ϑi → 0 as |ξ | → ∞. (5.31d)

6. Integral representation formulae

A different integral representation formula for H
(x) = (Hα − H0)(x) for x away from Bα is required
compared to that used in [2], since the eddy current approximation is no longer applied. The following
is appropriate for describing the perturbed magnetic field outside of Bα and is the same as used in [6]:

H
(x) = ∇x ×
(∫

�α

Gk(x, y)n × H
(y)|+dy
)

− i

k
∇x ×

(
∇x ×

∫
�α

Gk(x, y)n × E
(y)|+dy
)

. (6.1)

We transform this result to be expressed in terms of volume integrals over Bα and express the result in
the lemma below.

Lemma 6.1. An integral representation formula for H
(x) = (Hα − H0)(x) for x away from Bα

expressed in terms of volume integrals over Bα is

H
(x) = −ik(εr − 1)
∫

Bα

∇xGk(x, y) × Eα(y)dy + k2(μr − 1)
∫

Bα

Gk(x, y)Hα(y)dy

+ (μr − 1)
∫

Bα

D2
yGk(x, y)Hα(y)dy. (6.2)

Proof . Using the transmission conditions (3.4), transforming the first term of (6.1) to a volume integral
and then applying ∇ × (a × b) = a∇ · b − b∇ · a + (b · ∇)a − (a · ∇)b gives

∇x×
(∫

�α

Gk(x, y)n × H
(y)|+dy
)

= ∇x ×
(∫

Bα

∇y × (Gk(x, y)H
(y))dy
)

= ∇x ×
(∫

Bα

∇yGk(x, y) × H
(y) + Gk(x, y)∇y × H
(y)dy
)

=
∫

Bα

(∇yGk(x, y)(∇x · H
(y)) − H
(y)∇x · ∇yGk(x, y)

+(H
(y) · ∇x)(∇yGk(x, y)) − (∇yGk(x, y) · ∇x)(H
(y)) + ∇xGk(x, y) × ∇y × H
(y)
)
dy

=
∫

Bα

(−k2H
(y)Gk(x, y) − D2
xGk(x, y)(H
(y)) + ∇xGk(x, y) × ∇y × H
(y)

)
dy, (6.3)
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where ∇x · ∇yGk(x, y) = −∇x · ∇xGk(x, y) = k2Gk(x, y) and ∇x∇yGk(x, y) = −D2
xGk(x, y) have been

applied. Considering the second term in (6.1), and applying similar ideas, gives

∇x ×
(
∇x ×

∫
�α

Gk(x, y)n × E
(y)+dy
)

= ∇x ×
(
∇x ×

∫
Bα

∇yGk(x, y) × E
(y) + Gk(x, y)∇y × E
(y)dy
)

= ∇x ×
∫

Bα

−k2E
(y)Gk(x, y) − D2
xGk(x, y)E
(y) + ∇xGk(x, y) × ∇y × E
(y)dy

=
∫

Bα

(−k2∇xGk(x, y) × E
(y) − ∇y × E
(y)(∇x · ∇xGk(x, y)) + (∇y × E
(y) · ∇x)∇xGk(x, y)
)
dy

=
∫

Bα

(−k2∇xGk(x, y) × E
(y) + k2∇y × E
(y)Gk(x, y) + D2
xGk(x, y)(∇y × E
(y))

)
dy. (6.4)

Using (6.3) and (6.4) in (6.1) gives

H
(x) = −k2

∫
Bα

H
(y)Gk(x, y)dy −
∫

Bα

D2
xGk(x, y)(H
(y))dy +

∫
Bα

∇xGk(x, y) × ∇y × H
(y)dy

− ik
∫

Bα

∇xGk(x, y) × E
(y)dy − ik
∫

Bα

∇y × E
(y)Gk(x, y)dy

− i

k

∫
Bα

D2
xGk(x, y)(∇y × E
(y))dy. (6.5)

Then, using (3.3), we have

∇ × E
 = ikμ̃rH
 + ik(μ̃r − 1)H0, (6.6a)

∇ × H
 = −ikε̃rE
 − ik(ε̃r − 1)E0, (6.6b)

and inserting these into (6.5) completes the proof.

7. Proof of Theorem 4.1

We write (6.2) as the sum:

H
(x) = −ik(εr − 1)
∫

Bα

∇xGk(x, y) × Eα(y)dy + (μr − 1)
∫

Bα

(D2
yGk(x, y) + k2Gk(x, y)I)Hα(y)dy

= T1 + T2. (7.1)

Approximation of T1

Let T1 = Ta
1 + Tb

1 + Tc
1 + Td

1 where

Ta
1 := −ik(εr − 1)

∫
Bα

∇xGk(x, y) ×
(

Eα(y) − E0(y) − αw0

(
y − z

α

)
− εr − 1

εr

∇φ0

)
dy,

Tb
1 := −ik(εr − 1)

∫
Bα

∇xGk(x, y) × (E0(y) + ∇φ0 − F(y))dy − ik
(εr − 1)

εr

∫
Bα

∇xGk(x, y) × ∇φ0dy,

Tc
1 := −ik(εr − 1)

∫
Bα

(∇xGk(x, y) − ∇xGk(x, z) + D2
xGk(x, z)(y − z)

)×
(

F(y) + αw0

(
y − z

α

))
dy,

Td
1 := −ik(εr − 1)

∫
Bα

(∇xGk(x, z) − D2
xGk(x, z)(y − z)

)×
(

F(y) + αw0

(
y − z

α

))
dy.
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Using Theorem 5.2, we estimate

|Ta
1|� Ck|εr − 1|α3/2α9/2‖∇ × E0‖W2,∞(Bα )μr

(|1 − μ−1
r | + |ν|)

� Cα4‖H0‖W2,∞(Bα ).

Next, using (5.19) and (5.6) we estimate

|Tb
1|�Ck|εr − 1|α3/2α9/2‖∇ × E0‖W2,∞(Bα ) + Ck3

∣∣∣∣1 − 1

εr

∣∣∣∣ α3/2α3/2α2‖E0‖W1,∞(Bα )

�C

(
α4‖H0‖W2,∞(Bα ) + k3α5

∣∣∣∣1 − 1

εr

∣∣∣∣ ‖E0‖W1,∞(Bα )

)
.

Then, using (5.3) and (5.27),

|Tc
1|�Ck|εr − 1|α3/2α2α3/2α‖∇ × E0‖W2,∞(Bα )

�Cα4‖H0‖W2,∞(Bα ).

Similarly, Td
1 = Td,1

1 + Td,2
1 + Td,3

1 + Td,4
1 + Td,5

1 + Td,6
1 where

Td,1
1 := − ikα4(εr − 1)

2

3∑
i=1

∇xGk(x, z) ×
∫

B

(ei × ξ + θ i) dξ (ikH0(z))i,

Td,2
1 := −ikα3(εr − 1)

3∑
i=1

∇xGk(x, z) ×
∫

B

(
ei + φ i

)
dξ (E0(z))i,

Td,3
1 := − ikα5(εr − 1)

3

3∑
i,j=1

∇xGk(x, z) ×
∫

B

(
ξjei × ξ +ψ ij

)
dξ (Dz(ikH0(z)))ij,

Td,4
1 := ikα5(εr − 1)

2

3∑
i=1

∫
B

D2
xGk(x, z)ξ × (ei × ξ + θ i) dξ (ikH0(z))i,

Td,5
1 := −ikα4(εr − 1)

3∑
i=1

∫
B

D2
xGk(x, z)ξ × (

ei + φ i

)
dξ (E0(z))i,

Td,6
1 := − ikα6(εr − 1)

3

3∑
i,j=1

∫
B

D2
xGk(x, z)ξ × (

ξjei × ξ +ψ ij

)
dξ (Dz(ikH0(z)))ij,

Defining R(x) such that |R(x)|� C
(
α4‖H0‖W2,∞(Bα ) + α4k

(
|εr − 1| + k2α

∣∣∣1 − 1
εr

∣∣∣) ‖E0‖W1,∞(Bα )

)
, we see

that Ta
1, Tb

1, Tc
1 and Td,5

1 are elements of R(x) and, since Dz(ikH0(z)) is related to E0, Td,3
1 and Td,6

1 are also
elements of R(x).

Remark 7.1. In the case of the eddy current regime, where (5.28) and (5.30) simplify to

∇ξ × μ−1
r ∇ξ × θ i − νiθ i = νiei × ξ in B, (7.2a)

∇ξ × ∇ξ × θ i = 0 in Bc, (7.2b)
∇ξ · θ i = 0 in R

3, (7.2c)
[n × θ i]� = 0, [n × μ̃−1

r ∇ξ × θ i]� = −2(1 − μ−1
r )n × ei on �, (7.2d)

θ i = O(|ξ |−1) as |ξ | → ∞, (7.2e)
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and

∇ξ × μ−1
r ∇ξ × φ i − νiφi = νiei in B, (7.3a)

∇ξ × ∇ξ × φi = 0 in Bc (7.3b)
∇ξ · φi = 0 in R

3, (7.3c)
[n × φi]� = 0, [n × μ̃−1

r ∇ξ × φi]� = 0 on �, (7.3d)
φi = O(|ξ |−1) as |ξ | → ∞, (7.3e)

respectively, we find that Td,1
1 = Td,2

1 = 0 by using the above transmission problems and integration by
parts. Similarly, it can be shown that Td,3

1 = 0 by simplifying the transmission problem forψ ij in a similar
way to the above.

In general, we write

T1 = −ikej(∇xGk(x, z))pεjpr(Ari(H0(z))i +Bri(E0(z))i)

+ ej((D2
xGk(x, z))�mP�mji(H0(z))i + R(x), (7.4)

where

Ari := ikα4(εr − 1)

2
er ·

∫
B

(ei × ξ + θ i) dξ , (7.5a)

Bri := α3(εr − 1)er ·
∫

B

(
ei + φi

)
dξ , (7.5b)

P�mji := −k2α5(εr − 1)

2
ej ·
∫

B

e� × (ξm(ei × ξ + θ i) )dξ

= εj�sCmsi, (7.5c)

Cmsi := 1

2
εsj�P�mji = −k2α5(εr − 1)

2
es ·

∫
B

ξm(ei × ξ + θ i) dξ , (7.5d)

and the latter follows by considering the skew symmetry of P w.r.t indices j and � and applying similar
arguments to [5]. Further simplifications are also possible if the eddy current approximation applies [5],
and we shall consider these later in Section 8.
Approximation of T2

Let T2 = (μr − 1)(Ta
2 + Tb

2 + Tc
2 + Td

2) where

Ta
2 :=

∫
Bα

(D2
xGk(x, y) + k2Gk(x, y)I)

(
Hα(y) − μ−1

r H0(y) − μ−1
r H0

∗
(

y − z
α

))
dy,

Tb
2 := μ−1

r

∫
Bα

(D2
xGk(x, y) − D2

xGk(x, z) + k2(Gk(x, y) − Gk(x, z))I)

(
H0(y) + H0

∗
(

y − z
α

))
dy,

Tc
2 := μ−1

r

∫
Bα

(D2
xGk(x, z) + k2Gk(v, z)I)(H0(y) − H0(z))dy,

Td
2 := μ−1

r

∫
Bα

(D2
xGk(x, z) + k2Gk(x, z)I)

(
H0(z) + H0

∗
(

y − z
α

))
dy,

and H0
∗(ξ ) = 1

ik
∇ × w0. Following similar arguments to the above, and in [2], we have

|Ta
2|� Cα4‖H0‖W2,∞(Bα ),

|Tb
2|� Cα4‖H0‖W2,∞(Bα ),

|Tc
2|� Cα4‖H0‖W2,∞(Bα ),
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and we can express Td
2 as:

Td
2 = μ−1

r α3

(
3∑

i=1

(D2
xGk(x, z) + k2Gk(x, z)I)

∫
B

(
ei + 1

2
∇ × θ i

)
dξ (H0(z))i

)

+ μ−1
r α4

(
3∑

i,j=1

(D2
xGk(x, z) + k2Gk(x, z)I)

∫
B

(
ξjei + 1

3
∇ ×ψ ij

)
dξ (Dz(H0(z)))ij

)

= μ−1
r α3

3∑
i=1

(D2
xGk(x, z) + k2Gk(x, z)I)

∫
B

(
ei + 1

2
∇ × θ i

)
dξ (H0(z))i + R(x).

So that

T2 = (D2
xGk(x, z) + k2Gk(x, z)I)ejNji(H0(z))i + R(x), (7.6)

where

Nji := α3(1 − μ−1
r )ej ·

∫
B

(
ei + 1

2
∇ × θ i

)
dξ . (7.7)

8. Simplifications and alternative forms

Lemma 8.1. Using φi = (εr − 1)∇ϑi where ϑi solves (5.31) then Bri becomes

Bri = α3

(
(εr − 1)|B|δri + (εr − 1)2

∫
B

er · ∇ϑidξ

)
, (8.1)

which are also the coefficients of the symmetric Póyla–Szegö tensor T [αB, εr] of an object Bα for a
contrast εr.

Proof . The proof directly follows from (7.5b) and (5.31).

Lemma 8.2. Up to a residual term, Cmsi is skew-symmetric w.r.t. m and i and hence

Cmsi = εmsrČri + Rmsi, Čri := −να3

4
er ·

∫
B

ξ × (θ i + ei × ξ )dξ , (8.2)

where Rmsi = O(α4) for fixed k as α → 0.

Proof . We first write the transmission problem for θ i in an alternative form (5.28):

∇ξ × μ−1
r ∇ξ × θ i − k2α2εrθ i = −k2α2(1 − εr)ei × ξ in B, (8.3a)

∇ξ × ∇ξ × θ i − k2α2θ i = 0 in �0 \ B, (8.3b)
∇ξ · θ i = 0 in �0, (8.3c)

∇ξ × ∇ξ × θ i − k2α2θ i = 0 in R
3 \ �0, (8.3d)

∇ξ · θ i = 0 in R
3 \ �0, (8.3e)

[n × θ i]� = 0, [n × μ̃−1
r ∇ξ × θ i]� = −2(1 − μ−1

r )n × ei on �, (8.3f)
[n × θ i]�0 = 0, [n × ∇ξ × θ i]�0 = 0 on �0, (8.3g)

lim
ξ→∞

ξ
(

(∇ξ × θ i) × ξ̂ − ikαθ i

)
= 0, (8.3h)
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where �0 and �0 are introduced in a similar way to � and � in Section 3.2. Then, an integration by
parts can be applied to (7.5) in a similar manner to the proof of Lemma 4.2 in [5] leading to

−2Cmsi

α3
=
∫

B

em × es · μ−1
r ∇ × θ idξ − α2k2

∫
B

θ i · esξmdξ

− 2[μ̃r
−1]�

∫
B

ei · em × esdξ −
∫

�

n+ · ∇ × θ i × (ξmes)|+dξ . (8.4)

Also, ∫
�

n+ · ∇ × θ i × (ξmes)|+dξ = −
∫

�0

(n− × (ξmes)) × n− · n− × ∇ × θ i|−dξ

+
∫

�0\B

(
α2k2θ i · esξm − ∇ × θ i · ∇ × (ξmes)

)
dξ

= −ikα
∫

�0

(n− × (ξmes)) × n− · (αk)
e (n− × θ i)dξ

+
∫

�0\B

(
α2k2θ i · esξmdξ − ∇ × θ i · ∇ × (ξmes)

)
dξ . (8.5)

Thus, we find (8.2) holds with

Rmsi = iα4k

2

∫
�0

(n− × (ξmes)) × n− · (αk)
e (n− × θ i)dξ − α5k2

2
es ·

∫
�0

ξmθ idξ , (8.6)

which is not skew-symmetric with respect to m and i, and consequently we see the estimate holds.

Corollary 8.3. If ν reduces to νi, the transmission problem for θ i(ξ ) provided in (5.28) reduces to (7.2)
and Rmsi = 0, since this is now identical to the case considered in Lemma 4.2 of [5].

By differentiation, it is easily established that

∇xGk(x, z) = (x − z)

4π |x − z|2

(
ik − 1

|x − z|
)

eik|x−z|,

D2
xGk(x, z) = 1

4π

(
1

|x − z|3

(
3(x − z) ⊗ (x − z)

|x − z|2
− I

)
− ik

|x − z|2

(
3(x − z) ⊗ (x − z)

|x − z|2
− I

)

− k2

|x − z|3
(x − z) ⊗ (x − z)

)
eik|x−z|,

and, by introducing r := x − z, r = |r| and r̂ = r/r, these derivatives can be expressed as:

∇xGk(x, z) = r̂
4πr

(
ik − 1

r

)
eikr,

D2
xGk(x, z) = 1

4π

(
1

r3
(3r̂ ⊗ r̂ − I) − ik

r2
(3r̂ ⊗ r̂ − I) − k2

r
r̂ ⊗ r̂

)
eikr.

Noting that Cmsi = εmsrČri + Rmsi by Lemma 8.2, we get

(D2
xGk(x, z))�mεj�sεmsrČri = −(D2

xGk(x, z))�mεsj�εsmrČri

= −(D2
xGk(x, z))�m(δjmδ�r − δjrδ�m)Čri

= ( − (D2
xGk(x, z))rj + (D2

xGk(x, z))mmδjr)Čri

= −((D2
xGk(x, z))jr + k2δjrGk(x, z))Čri.
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Furthermore, we introduce the rank 2 tensor M with coefficients Mri := Nri − Čri, which is symmetric
as the following lemma shows:

Lemma 8.4. The tensor M=N − Č is complex symmetric with coefficients satisfying Mri =Mir.

Proof . By an application of an integration by parts to Čri, we find

−Čri

α3
= 1

4ν

∫
B

∇ × μ−1
r ∇ × θ i · ∇ × μ−1

r ∇ × θ rdξ

− 1

4

(
εr

εr − 1
− 1

)(∫
�0

μ̃−1
r ∇ × θ i · ∇ × θ rdξ −

∫
�0\B

α2k2θ i · θ rdξ − 2[μ̃−1
r ]
∫

B

er · ∇ × θ idξ

−
∫

�0

θ r · n− × ∇ × θ i|−dξ

)

− 1

4

(
εr

εr − 1

)(∫
�0

μ̃−1
r ∇ × θ i · ∇ × θ rdξ −

∫
�0\B

α2k2θ i · θ rdξ − 2[μ̃−1
r ]
∫

B

ei · ∇ × θ rdξ

−
∫

�0

θ i · n− × ∇ × θ r|−dξ

)

+ 1

4

(
εr

εr − 1
− 1

)(∫
B

α2k2εrθ i · θ rdξ

)
,

so that

Nri − Čri

α3
= 1

4ν

∫
B

∇ × μ−1
r ∇ × θ i · ∇ × μ−1

r ∇ × θ rdξ+

1

4

∫
�0

μ̃−1
r ∇ × θ i · ∇ × θ rdξ + [μ̃−1

r ]�

∫
B

δridξ − α2k2

4

∫
�0

ε̃rθ i · θ rdξ − 1

4

∫
�0

θ i · n− × ∇ × θ r|−dξ

− 1

2

(
εr

εr − 1

)(∫
�0

μ̃−1
r ∇ × θ i · ∇ × θ rdξ −

∫
�0\B

α2k2θ i · θ rdξ − [μ̃−1
r ]�

∫
B

(er · ∇ × θ i + ei · ∇ × θ r)dξ

−
∫

�0

θ r · n− × ∇ × θ i|−dξ −
∫

�0

θ i · n− × ∇ × θ r|−dξ

)

+ 1

4

(
εr

εr − 1

)(∫
B

α2k2εrθ i · θ rdξ

)
, (8.7)

and, hence, Nri − Čri is symmetric in r and i up to the term α3

4

∫
�0
θ i · n− × ∇ × θ r|−dξ = iα4k

4

∫
�0

(n− ×
θ i) × n− · (αk)

e (n− × θ r)dξ ; however, we note this remaining term can be absorbed in to Rmsi.
It follows that an alternative form to (4.1) is

(H
(x)) = −ikej(∇xGk(x, z))pεjpr(Ari(H0(z))i +Bri(E0(z))i)

+ ej((D2
xGk(x, z))jr + k2δjrGk(x, z))Mri(H0(z))i + R(x)

= eikr

4π

{
−
(

−k2

r
r̂ × (AH0(z) +BE0(z)) − ik

r2
r̂ × (AH0(z) +BE0(z))

)

+ 1

r3

(
3r̂ · (MH0(z))r̂ −MH0(z)

)− ik

r2

(
3r̂ · (MH0(z))r̂ −MH0(z)

)

−k2

r

(
r̂ ·MH0(z) −MH0(z)

)}+ R(x)
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= eikr

4π

{
1

r3

(
3r̂ · (MH0(z))r̂ −MH0(z)

)

− ik

r2

(
3r̂ · (MH0(z))r̂ −MH0(z) − r̂ × (AH0(z) +BE0(z))

)

−k2

r

(
r̂ × r̂ × (MH0(z)) − r̂ × (AH0(z) +BE0(z))

)}+ R(x), (8.8)

where we have assumed that (D2
xGk(x, z))�mεj�sRmsi(H0(z))i can be grouped with R(x) and have applied

r̂ × (r̂ × a) = r̂(r̂ · a) − a(r̂ · r̂) = r̂(r̂ · a) − a.

Remark 8.5. Expression (8.8) bears close resemblance to the result in Theorem 4.1 of [6], which
describes the field perturbation for wave-dominated problems, where, B is the Póyla–Szegö tensor
parameterised by εr, as expected, but, instead of a Póyla–Szegö tensor parameterised by μr we have the
complex symmetric rank 2 tensor M, which depends on μr and ν. Furthermore, we have the additional
term AH0(z). We explore this connection further in later sections.

8.1 Quasi-static regime

Assuming that α � λ0 and noting that (D2
xGk(x, z))jr + k2δjrGk(x, z) = (D2

xG0(x, z))jr + O(k) and
∇xGk(x, z) = ∇xG0(x, z) + O(k) as k → 0 then expression (8.8) reduces to

(H
(x)) = −ikej(∇xG0(x, z))pεjpr(Ari(H0(z))i +Bri(E0(z))i)

+ ej(D2
xG0(x, z))jrMri(H0(z))i + R(x),

and, in the near field, the dominant response is

(H
(x)) ≈ ej(D2
xG0(x, z))jrMri(H0(z))i, (8.9)

where the coefficients of M=N − Č depend on ε∗, μ∗, σ∗, α and ω and are obtained from Lemma
8.2 and (7.7) using (5.28). The expression (8.9) describes the magnetic field perturbation in terms of a
complex symmetric rank 2 tensor M, extending the MPT characterisation of objects considered in [5,
9] for the eddy current problem, to the regime where α � λ0, but without requiring σ∗ � ε∗ω.

8.2 Eddy current regime

The eddy current regime is a low-frequency approximation of the Maxwell system where, in addition
to the quasi-static approximation, we have σ∗ � ε∗ω and ε∗ = ε0 so that νi = O(1) and displacement
currents are neglected. Hence, (5.28) reduces to (7.2) and (5.30) to (7.3). Then, by an application of
an integration by parts on Ari and Bri in (7.5a) and (7.5b) gives Ari = 0 and Bri = 0. Furthermore, by
Corollary 8.3, Cmsi = εmsrČri with Rmsi = 0 in this case and M=N − Č becomes the MPT discussed in
[5, 9]. Hence,

(H
(x)) = ej(D2
xG0(x, z))jrMri(H0(z))i + R(x)

= 1

4πr3

(
3r̂ · (MH0(z))r̂ −MH0(z)

)+ R(x), (8.10)

where the coefficients of M no longer depend on ε∗ and are obtained using (7.2) instead of (5.28).

Remark 8.6. In practice, all metals have σ∗ � ε0ω over all the frequencies for which σ∗ can be regarded
as a constant so that εr ≈ εr − 1 ≈ σ∗/(iε0ω) holds over these frequencies and, for sufficiently small
objects, these also extend to all the frequencies for which the quasi-static approximation holds. This
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Figure 1. Comparison of the diagonal coefficients of M for a conducting sphere with μr = 100,
σ∗ = 1 × 106 S/m and radius α = 0.01 m for frequencies 1 × 101 �ω � 1 × 109 rad/s for results obtained
using the quasi-static model and eddy current approximation.

means that the coefficients of M obtained for the eddy current model using (7.2) are almost indistin-
guishable from those obtained using (5.28) provided that σ∗ � ε0ω and the object is sufficiently small.
As an example, we compare the diagonal coefficients of M obtained using the two models using the
analytical solution of Wait [13] in Figure 1. Of course, by making the eddy current approximation, and
using (7.2), then Ari = 0 and, using (7.3), Bri = 0 indicating that (8.9) is indeed the dominant response
for the quasi-static regime for metallic objects, which holds not only in the near field.

8.3 Regime with non-constant parameters

In this regime, we no longer assume that the parameters are constant and relax the assumption of ν =
O(1). First, we consider the case of σ∗ = 0 and require the other parameters (εr = ε∗/ε0, μr) to change so
that k → 0 as α → 0. Second, we require the parameters (εr = 1/ε0(ε∗ + σ∗/(iω)), μr and k) to change
as α → 0.

8.3.1 Small k and σ∗ = 0

We consider small k and σ∗ = 0 so that εr = ε∗/ε0. In this case, we have θ i = θ̃
(0)

i + O(k) as k → 0 where
θ̃

(0)

i solves

∇ξ × μ−1
r ∇ξ × θ̃

(0)

i = 0 in B, (8.11a)

∇ξ × ∇ξ × θ̃
(0)

i = 0 in Bc, (8.11b)

∇ξ · θ̃ (0)

i = 0 in R
3, (8.11c)

[n × θ̃
(0)

i ]� = 0, [n × μ̃−1
r ∇ξ × θ̃

(0)

i ]� = −2(1 − μ−1
r )n × ei on �, (8.11d)

θ̃
(0)

i = O(|ξ |−1|) as |ξ | → ∞, (8.11e)

which allow us to deduce the following about the coefficients of M:

Lemma 8.7. For small k and σ∗ = 0, θ i = θ̃
(0)

i + O(k) as k → 0 and Mri =Nri − Čri reduces to Mri =
N (0)

ri + O(k) where

N (0)
ri = α3

4

∫
B∪Bc

μ̃−1
r ∇ × θ̃

(0)

i · ∇ × θ̃
(0)

r dξ + [μ̃−1
r ]
∫

B

δridξ , (8.12)
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which are also the coefficients of the Póyla–Szegö tensor T [αB, μr] of an object Bα for a contrast μr as
defined, for example, in Lemma 3 of [7].

Proof . For the transmission problem (8.11), we can show that∫
B∪Bc

μ̃−1
r ∇ × θ̃

(0)

i · ∇ × θ̃
(0)

r dξ = [μ̃−1
r ]
∫

B

(er · ∇ × θ̃
(0)

i + ei · ∇ × θ̃
(0)

r )dξ , (8.13)

which is obtained by integrating by parts
∫

B∪Bc

(
∇ × μ̃−1

r ∇ × θ̃
(0)

i · θ̃ (0)

r + ∇ × μ̃−1
r ∇ × θ̃

(0)

r · θ̃ (0)

i

)
dξ = 0.

Then, for small k, we have θ i = θ̃
(0)

i + O(k) and, by letting the solid sphere �0 have radius that tends
towards infinity, considering the far field decay of θ̃

(0)

i and using (8.13) in (8.7), we find that Nri − Čri

reduces to N (0)
ri , and this is also equivalent to the coefficients of the Póyla–Szegö tensor T [αB, μr] of

an object B for a contrast μr, as shown by Theorem 3.2 of [9] and Lemma 3 of [7]. Note that Lemma 3
of [7] considered the question of connectedness of B and showed that this reduction holds independent
of the first Betti number of B.

By an integration by parts and then using θ i = θ̃
(0)

i + O(k), we get

Ari := iα3

2αk
er ·

∫
B

(∇ξ × μ−1
r ∇ξ × θ i − k2α2θ i

)
dξ

= − iα4k

2
er ·

∫
�0

θ idξ − α3

2
er ·

∫
�0

(αk)
e (n− × θ i)dξ = O(k), (8.14)

as k → 0 by letting the solid sphere �0 have radius that tends towards infinity and considering the far
field decay of θ̃

(0)

i .
Using the above results and Lemma 8.1 means that (8.8) now becomes

(H
(x)) = eikr

4π

{
1

r3

(
3r̂ · (T [αB, μr]H0(z))r̂ − T [αB, μr]H0(z)

)

− ik

r2

(
3r̂ · (T [αB, μr]H0(z))r̂ − T [αB, μr]H0(z) − r̂ × (T [αB, εr]E0(z))

)

−k2

r

(
r̂ × r̂ × (T [αB, μr]H0(z)) − r̂ × (T [αB, εr]E0(z))

)}+ R(x), (8.15)

which agrees with the known results for low-frequency scattering from dielectric and permeable bodies
(e.g. [6]).

8.3.2 Small α and small ν

We now consider the case of small α and require k, εr, μr to change with α such that ν is also small. For
small α, ν then θ i = θ̃

(0)

i + O(α) as α → 0 where θ̃
(0)

i solves (8.11), which allow us to show the following
about the coefficients of M:

Lemma 8.8. For small α and ν, θ i = θ
(0)
i + O(α) as α → 0 andMri =Nri − Čri reduces toMri =N (0)

ri +
O(α5) where

N (0)
ri = α3

4

∫
B∪Bc

μ̃−1
r ∇ × θ̃

(0)

i · ∇ × θ̃
(0)

r dξ + [μ̃−1
r ]
∫

B

δridξ , (8.16)

which are also the coefficients of the Póyla–Szegö tensor T [αB, μr] of an object Bα for a contrast μr.
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Proof . The proof is similar to the proof of Lemma (8.7) and again uses (8.13). For small α, ν, we have
θ i = θ̃

(0)

i + O(α) as α → 0 and find that Nri − Čri reduces to N (0)
ri .

Similarly, by an integration by parts and then using θ i = θ̃
(0)

i + O(α), we get

Ari := iα3

2αk
er ·

∫
B

(∇ξ × μ−1
r ∇ξ × θ i − k2α2θ i

)
dξ

= − iα4k

2
er ·

∫
�0

θ idξ − α3

2
er ·

∫
�0

(αk)
e (n− × θ i)dξ = O(α4), (8.17)

as α → 0 by letting the solid sphere �0 have radius that tends towards infinity and considering the far
field decay of θ̃

(0)

i .
Using the above results and Lemma 8.1 means that (8.8) now becomes

(H
(x)) = eikr

4π

{
1

r3

(
3r̂ · (T [αB, μr]H0(z))r̂ − T [αB, μr]H0(z)

)

− ik

r2

(
3r̂ · (T [αB, μr]H0(z))r̂ − T [αB, μr]H0(z) − r̂ × (T [αB, εr]E0(z))

)

−k2

r

(
r̂ × r̂ × (T [αB, μr]H0(z)) − r̂ × (T [αB, εr]E0(z))

)}+ R(x), (8.18)

which agrees with the known results for scattering from small bodies [3, 4].

Remark 8.9. While the forms for H
(x) derived in (8.8) and (8.18) look very similar, the former holds
for small k and requires σ∗ = 0 and the latter is for the case of small α and small ν but does not require
σ∗ = 0.
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