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Optimal quadrature

S. Elhay

Certain Hirbert spaces of functions with known smoothness are

considered. The weights and mesh of the quadrature formulae

which have least estimate of error with respect to the norm for

functions in these spaces are found and their properties are

discussed.

1. Introduction

In the problem of quadrature we are concerned with the approximation

of the integral

(1.1) Kf) = | 2 f(x)dx

by the sum

n N ..
(1.2) Q (f) = I I A .•f%'1)(x.) .

n 3=1 i=l 3 °

The accuracy of a quadrature depends on n , A . . and the x. , and is

measured in terms of the error

(1.3) E(f) = Kf) - Qn(f) .

Suppose that we are given a class B of functions / and that we

characterize the accuracy of a quadrature formula for these functions by the

real number

(1.4) C = sup|jr/; - Q (f)\ .
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82 S. El hay

The question that suggests itself is, can we for fixed n select the A..
1-3

and x . so that they define a quadrature which minimizes this number £
3

for the class B ?

For an introduction to this type of quadrature with least estimate of

the remainder, sometimes called "best" or "optimal" quadrature, see e.g.

Krylov [2] (Chap. 8, p. 133) or Sard [3].

In [7] Kautsky characterizes this quadrature for the class of functions

with bounded L norm and shows that the formula of order of precision

N - 1 involving the derivative of order N - 1 does not use the N-lst

derivative if N is even. In this paper we consider the Hilbert spaces

!!„ in which the norm ||/|| involves the function / , the derivative

f''N) and may involve the derivatives /(JZ) up to f'-N~1) . Using the

usual techniques of functional analysis we find some properties of the

quadrature which minimizes Z, and explicitly derive the formulae for the

cases N = 1 , 2 . Extending the results of [J] we show that for N = 2

the optimal formula does not involve values of the derivatives /' (x)

and we give the error bound £ .

2. Definitions and notation

(1) Let P be the set of all partitions p = (x\ , X2 , • • • > x ) which

divide the finite interval (t\ , #2^ into n + 1 subintervals

I; = (x- , XJ.T) for 3 = 0 j ... , n and where

(2.1) t: = xQ <Xl <x2 < ... < xn< x^+1 = t2 .

(2) Let If be a positive integer and let a . a.\ , <Xi i • • • i <*„ be a

real sequence such that aQ =f 0 , a^ % 0 . We shall then deal with the

following Hilbert spaces:-

(i) For each fixed partition, p e. P , let M be the space of real

(N)
functions f(x) such that the tfth derivative / (x) has

bounded norm in £2^1 , t2) 1 f (x) is absolutely continuous

on each subinterval I. of (t\ , t2) > and the inner product is
3
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N f*2 (') (')
(f > 9)n = 1 a7

<2 f (x) g (x) dx .
3=o 11

(ii) Let Hj. be the subspace of A/« , independent of p , defined by

= if ; f GMn , and f(N~2) (x) is absolutely

continuous on the whole interval (t\ ,

(3) We shall call Q(n , M) the set of all n-point quadrature formulae

Q of the type (1.2) with the A. . real and the x. given by p 6 P .

(4) For peP we define i? as the collection of all error functionals

of the type

E(f) = I(f) - Qn(f) .

where Q e Q(n , N) and has its mesh points x. given by p .
ft 3

(5) Let Q' be a subset of Q(n } N) . The quadrature formula Q* C Q'

will be said to be optimal in Q' over ff when ||J - Q* \\ < \\I - Q \

for all Qn£Q'

(6) We will call the function g defined on (t\ , t^) an exponential

spline or e-spline1' of degree N with n knots if for some partition

p e P , g satisfies

N
(2.2) I (-)ila.2g<-2^)(x) = 1 for x e. I. , i = 0 , ... , n ,

3=0 C

and

(2.3) I (-)3'-ma2g
{2;1'-m)(x) = 0 , for m = 1 , ... M N ,

3=m °

at x = t\ if ii | 4 , and at x = t^ it x
n 4 *2 •

It is convenient to denote

1 The relation between best quadrature and polynomial spline functions
[4] has been pointed out by Schoenberg [6] and more recently Karl in and
Ziegler [7] have shown the relation between best quadrature and generalized
splines [5].
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(2.4) g{k)(x.-) - g{k)(x^+) = Rjk , 3 = I3...,n ; k = 0,...,2N-l .

We will say the e-spline , g , has order of continuity m when

R .,= 0 for 3 = 1 , . . . j n , and all k = 0 , 1 3 . .. , m . Let Cr be

the set of all e-splines of degree N defined on the partition p €• P .

We define

^M = ig J g G G^ and g has order M} .

Suppose for a moment that t\ 4 ^1 an<^ *2 \ x • ^-n general the

solution of (2.2) depends on 2N(n + 1) constants called spline

coefficients which are uniquely determined by the 2N(n + 1) conditions

(2.3) and (2.4) for given R ., . These conditions are linear equations with

the spline coefficients as unknowns. To show that the spline is uniquely

determined by this system we must show that the system of equations is

non-singular. The conditions (2.3) and (2.1+) with R., = 0 for

3=1, ... j n j and k = 0 ., ... , 2N - 1 , yield the corresponding

system of homogeneous equations because the constant term l/a0
2 J which

is the particular integral of (2.2), vanishes by differentiation from (2.3)

and (2.U), if k ̂  0 , and cancels from (2.1+) if k = 0 , by subtraction.

Then it is sufficient to show that the trivial solution g(x) = I/a 2 ,

is the unique solution to this system.

Let g* be any solution of (2.2). By integrating

(2.5) (f,g*)N= I a - 2 f 2 f{J)(x) g*ij)(x) dx , f & H

N times by parts, and by setting the required conditions of the homogeneous

system on g* , we have

(f , g*)N = Kf) .

Directly expanding the inner product (f , g) „ with g = 2/aQ
2 gives

(2.6) (f , 1/%2)N =

Now by the Holder Inequality

\<f ,
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or

where M = IIJ/ot 2J| . Thus the functional I(f) is bounded with respect

to [I / I in }!„ and so by Riesz1 theorem the function which realizes

I(f) is unique; but R.-, = 0 implies that g* 6 J, . C H„ , so that

g*(x) = l/aQ
2 .

Then the system is non-singular whenever t\ ^ X\ and i2 4 * • ^v similar

argument when t\ = X\ or t2 - x the system can be seen to be non-

singular. Thus any spline of degree N is uniquely determined by the jumps

R-k for 3 = 1 , ••• ,n and k = 0 , ... , 2N - 1 .

The transformation to the new variable h given by

Xi + Xi+1
- J

 2 ^
L , for x G I. , j = 1 , . . . , n - 1 ,

\(x - ti) = \(x - xQ) , for x € IQ if xQ + tx ,

\(x - t2) = \(x - xn+1) , for x e. In if xn + t2 ,

h =

is useful as it transforms the subintervals, I. , as follows
3

I =

(X3

h
xn+l} " (~ T ' 0) > w h e r e hj = XJ+1 " XJ • '

We will consider e-splines to be functions of a; or h as is

necessary.

For convenience we shall denote

n
Q (f) = I C -f(x-) , for the case N = 1 ,
n j=l 3 °

and
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Qn<*> - 1 cf(xj>+ V (XJ} -for N = 2 •

3. Discussion and method

(1) From the absolute continuity of the functions in H~. and their

derivatives of order N - 1 it can be seen that I(f) - Q (f) forms a

linear and bounded functional over H.. . Then if we choose the set, B ,

as the subset of HN which contains functions with norm || /|| = 1 » 'the

definition (1.4) becomes

-r,K"f"-v"i.
sup _ \E(f)\ ,

and this supremum exists and is just \\E\\ * . Then
II II n , 7

\E(f) | < || E

and so, by minimizing £ we are reducing the size of the bound on \E(f) \

in the sense of the norm for functionals defined on H~ .

(2) In practical cases the choice of the metric for our set of functions

and so in a sense the definition of #„ will be left open. This choice

should seek to give the best measure of the particular properties of

interest of the functions in the space. For our case we have chosen an

inner product which measures the smoothness of / and its derivatives by

integrating them in the square and summing their integrals. The integrals

in the sum are weighted by the sequence of a.'s so that for a particular
3

problem this sequence can be chosen to minimize the product II B II II f

The choice of these a.'s is independent of the topology of HH and only

affects our estimates of error.

In this paper we will consider only those sequences of a's such that
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the polynomial,

f r-;J'a.vtf = o
3=0 3

in m , which is the auxiliary equation to (2.2), has 2N real and

distinct roots

In the case that the roots are multiple or complex the approach we

have used, with slight modification, will lead to the corresponding optimal

formula.

(3) For every bounded functional, F , defined on a Hilbert space, U ,

there exists a unique element, g , in that space which realizes F by the

relation

(3.1) (f , g) = F(f) for any / e H ,

and

(3-2) II a l l = || F

Consequently for every error functional, E , on B there is a function,

g , which lies in #„ and which satisfies (3.1) and (3.2). This relation

between a Hilbert space and its dual enables us to find a particular

element of the dual without dealing directly with the functionals. By

finding the set of functions in #„ which realize the errors, E , defined

on some partition p G. P and isolating that one, (g*) , which has smallest

norm we can construct the error which defines the optimal formula on that

partition. This set is in fact u . and the following lemma summarises

the relation between dL - and the set, i> , of error functionals on a

given partition.

LEMMA 1. Suppose p is a partition from P . There exists a

one-to-one oorrespondenae between the elements E of & and g of (ft. ̂

such that

(3.3) (f , g)N = E(f) for any f e H^ .
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Proof. (i) We note first that (T., . C #,, • Let g be from G^ „
N-l N N-l

and / from H .

(f , g)H = j a^ j fU)(x) gU)(x) dx ,

n N .

3=0 i=o 3

Integrating by parts N times and using the conditions (2.2), (2.3)

and

(3.4) R.k = 0 , 3 = 1 , ... , n and k = 0 , .. . , N - 1 ,

gives

n N-l
(f , g) = I(f) - I I

3=1 i=o

Therefore if we choose

(3-6) Aii= I ' - ^ akRi 2kil>
3 k=i+l 3,2k-i-l

for all i=0,...,N-ls and j = 1 3 ... , n , then we have

(f , g)N = Iff) - Qn(f)

= E(f) as required.

(ii) Suppose now that E is from S^ . With the A. . 's given by E
P I'd

and nN of the R ., given by (3.^), the relations (3.6) considered as a
3K-

system of equations in the remaining -R-T/S is in fact a triangular system.

Then the 2nN real numbers R., defined by (3.h) and (3.6) uniquely define
3 K

spline g . By (3.it) g belongs to G^_1

The elements of 5^ are bounded linear functionals and so by Riesz'
P

theorem, g is the unique element in #„ which realizes E . This

completes the proof of the lemma.
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Consider the set u defined on the partition p 6 P . All the

elements of <J realize quadrature formulae and of the subcollection in <j

which realize one quadrature formula, the single spline with smallest norm

has a continuous derivative of order N - 1 . This subcollection is

JQ = ig S g £ C " such that for Qn e Q(n , N) defined

on p & P , the R ., satisfy (3.6) where the A . .

are given as the weights of Q }

N
and the continuity property of the spline, in JQ , with smallest norm

derives from the following lemma.

LEMMA 2. Let gQ & JQ he such that jj ffJ tf < || ff|| / for any

g e JQ
B . Then gQ e H^ .
n

Proof. Since J is the set of all splines in <T which realize the
n

N
the single quadrature formula Q (f) , the set JQ f) fl contains only one

n

element. This is because any function in this intersection will satisfy

(3.6) from the definition of J_ and further it will have order of

continuity N - 1 because it belongs to H~ . Thus it will satisfy

R., = 0 f o r j = 1 , . .. 3 n a n d k = 0t... , N - 1 . A s i n t h e p r o o f

of Lemma 1, this uniquely defines a set of 2nN jumps R., which in turn

define a single spline. Let us call this spline g . Then if g is any

N
element of J' we may write

%

g = g0 + z •
N

But because g and g are both from J they both realize the same
n

quadrature formula, and thus the inner product (g - g , f) vanishes for

any f e. H . Then (f 3 Z) = 0 for any f G. E and g is the

projection of g in /?„ . By applying Pythagoras' theorem

https://doi.org/10.1017/S0004972700041307 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700041307


90 S. El hay

(3.7)

we see that

for all g & Jc Now let g\ € Jn be such that
Sz

any

N
Then 9\ = 13, Further if we write as the sum

91 = 90 + Z >

we see by re la t ion (3.7) that || Z || = 0 . Whence \\ g - g1 || = 0 and so

g - g\ and the lemma i s proved.

COROLLARY. Let g* €.(/* be such that l\g*\\ JV < llgfl Jt for any
II | l II M

g e Cr . Then g* e H .

The proof follows immediately from the' fact that

c* = y J!
Qn Q(n,n)

 Qn

This result leads to an essential saving in the minimization process. It

II II J V
means that we can minimize g II over G with respect to the spline

II 'I
coefficients independently on each subinterval and the resulting function

will indeed have the properties of continuity which ensure that it lies in

(?„ 7 . Using this technique we will find this spline g* and use it to

construct the optimal quadrature formula for the mesh p .

It is interesting that for both of the cases N = 1 and N = 2 the

spline with minimal norm has the property

g*(k)(x.) = 0 , 3 = 1 , ... , n and k = 0 , ... , N - 1 ,
0

independently of the partition p . This leads to the simple form

E* g*(x) dx

-1

for the error bound of the approximation. The result comes from the

following lemma:-
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LEMMA 3. Suppose g £ <JN_1 has the property g (x.) = 0

3 = 1 , ... , n , and k = 0 , ... , N - 1 , then II gQ |
 2 = I(gQ) .

Proof. For all / € Sff , g € G*_3 , we have by (3.5)

n N-l . N

9 N o=l £=o X;i k=i+l k J'2*-1--1 '

Putting f = g = g yields

.|

since g (x •) = 0 for each i and j .

This error bound will apply to any mesh distribution and, in particular,

it will apply to the optimal mesh. Now \\g*\\ is a function only of the

mesh intervals h , h\ , ... , h . In order to find the optimal values of

these intervals we must minimize ||<?*|| with respect to

h , h\ , ... , h . For the case N = 1 this is done in one step but when

N = 2 we first consider h and h to be fixed and minimize II g*U

with respect to h\ } 7z2 , • • • } h , thereby getting as an intermediate

result the optimal formula for the case that h and h are prescribed.

The best values of h and h can then be found,o n

4. The case N = 1

The elements of Gl and G1 defined on the partition p & P have the

form

g(x) = I/a 2 - (a. cosh rx + b • sinh rx) ,
o j j

for all x S I. , (j = 0 , 1 , ... , n) where r = a. /aj is the solution

of the quadratic

a 2 - aj2m2 = 0 ,

and a- and b• are the spline coefficients. The results for the optimal
0 0
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formula on a fixed mesh and the description of the optimal mesh can be

summarized as follows.

THEOREM I. (1) Let Q be the subset of Q(n , 1) containing all

the quadrature formulae defined on the partition pj € P . The optimal

quadrature formula Q*(f) in Q over Hi has its weights given by

Cj = -a!2 R^ , j = 1 , ... , n ,

where the e-spline g* is defined by

a6 = ~; 1—^h~ ' b*i = ° ' i = 0 , ... , n ,

and satisfies

g*(x^) = 0 , 3 = 1 , ... , n .

(2) The optimal formula in Q(n , 1) has the weights C • as in (1)
3

and has its mesh defined by

tz-t1
h . ^ — — , 3 = o , ... , n .

Proof. (l) We shall minimize

IUII2 = I f \%292(x) +alZg'*(x)}dx
3=0 'I

with respect to the spline coefficients a. and b. . Denote

d 3

In 1 < j < n - 1 j

b. a 2 4a. rh.
h. - -J- sinh -f ,

is a quadratic function of a- , b. which has a total differential of
tl 3

second order that is strictly positive whenever h . is positive. The
3

normal equations

a 2
 2 rh.

a* —rr sinh rh- = — sinh —f- ,
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and

a 2 rh.
b*. -2- sinh -f-= 0 t

therefore define a minimum at the point

a 2 cosh
O js

Now in the interval I we have only one free spline coefficient because

the end point condition (2.3) with N = 1 has the form g'(0) = 0

implying b* = 0 . Then

2a rh
>h - - 2 . sinh -^2. ,

2aQ

and the normal equation

1

cosh

ao

rhQ

%2

r
• sinh

sinh

r

^ 0

defines a* =

From the symmetry of the situation we can see that a* = a* , b* = - b* ,

and so

9 cosh rh
g*(h) =

From this we have immediately

%2 cosh ~f

(4.0) g*(x.) = 0 , j = 1 , ... , n
d

(2) To find the optimal mesh distribution we use the method of the

Lagrange multipliers. Let us construct a function

0) = u(hQ , hi j ... , hn) ,
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6 real. Recall that g* is expressed in terms of the mesh intervals

h , hi , .. . , h . From the result C*.O) we may apply the Lemma 3 to g*

and we arrive at

n r rh h n-1
(4.1) u) = I \ g*(x) dx - 9 \-2- + -2- + I h. - (t2 - tx)

3=o >Lo L 3=1 3

From the form of u over each interval I • , set t ing ~ = 0 for each j
3 dhj

defines a minimum for ||3*|| 2 under the constraints

h h n-1
(4.2) -f + -f + I h. = t2 - *i , for h- > 0 , each j .

* 2 j ° 3 ~
By substituting for a* and b*. in (U.I) and integrating, we see that

3 3

t2-t\ 7 ( rh rh n-1
co = — - — tanh -—• + tanh - j - + 2 \ tanh

ct 2 a 2r *• 3=1

h^ hn n-1

3=1

Then ^H— = Q implies

i -1cosh2 —*- = —— for each 3 = 0, ... > n .
2 a 29

But for each interval the equation for h. is independent of j and, since
3

all the equations have the same form, we may say that all the h. are equal

and, by relation (U.2),

This completes the proof of Theorem I.

COROLLARY. The optimal formula in Q(n , 1) over Hi approaches the

midpoint rule as the mesh size decreases.

Proof. For the optimal formula in Q(n , 1) the weights are

https://doi.org/10.1017/S0004972700041307 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700041307


Optimal quadrature 95

= - <v
a t2-*i

which is a constant, C > since all the h . are equal. The midpoint rule
0

3=1 3 "

has weights T • = T
J rt

and has the mesh points x . given by (4.3)- If we denote
J

then the ratio

is always less than unity, and

_ tanh —£ _ n_
T B_

n

f = 1

5. The case N = 2

The elements of G2 and G\ defined on the partition p & P have the

form

g(xj = I/a 2 - (a- cosh rx + b . cosh sx + c. sinh rx + d- sinh sx) ,
0 3 3 0 3

for all x e J . (3 = 0 , 1 , ... j MJ where the roots ±r 3 ±s (r , s > 0)
3

of

a 2 - ai2m2 + oi22m4 = 0 ,

are assumed to be d is t inc t and r e a l , and a. , b. , o. and d. are the
3 3 3 3

spline coefficients.
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In each subinterval I. we denote
3

C = cosh rw. j S = sinh ru . ,

^ hn
w h e r e w . = -^- j 0 < j < n - l } and u> = - - 5 - and s i m i l a r l y f o r C

a n d S .
s

5.1 The optimal formula for a fixed mesh

THEOREM I I . Let p2 be a partition from P . Denote by Q
Pi

the subset of Q(n 3 2) containing all the quadrature formulae defined en
the partition p2 . The optimal quadrature formula Q*(f) in Q

n p2
over H2 is given by the weights

0 3 *5 3 3 ̂

where the spline g* is defined by

sS
(1) a*. = -

e*. = d*. = 0 , (3 = 1 , ••• , n - 1) :
3 3

r2Cr~s2Cs r2

(2) a*. = , b* • = - — a*. ,
3 raQ

2T2
 3 s2 3

~r(SASs) s
3 _. 9m ' 3 ~ r 3 '

where

2 i r ^ s r - S2°s) - r(Sr " &> (Sr " i V ' ̂  = ° ard n)'

Further g*(x .) = g*' (x .) = 0 3 j = 1 , ... , n .
3 3

Proof. We will minimize

(5.0) || g ||2 = I f \a2g2(x) + ai2g'2(x) + a2
2g"2(x)}dx ,

3=0 > 3 I- '
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with respect to the spline coefficients a. , b. , a. and d • . Denote
3 3 3 3

M- = Jx_
3

and consider first that 1 < 3~ < n - 1 . By expanding directly using the

%2 «12

relations r2s2 = and r2 + s2 = , and integrating, we find that
a 2

2 . a2
2

M. = ^HrCaf + a/)SrCr + s(b.2 + d/jS^}

(sa.b. + rc^JS^}

As for the case N = 1 , M. is a quadratic function of a • , b • , a . ,
3 3 3 3

and d- which has a total differential of second order that is strictly
3

positive whenever h is positive and the roots r and s are distinct

and positive. Thus the extremal defined by the normal equations is a

minimum. The system of normal equations

S W = T- >
s

rSpCs) = 0 ,

j s s o j r s r S r C a ) = ° >

has a non-vanishing determinant, so the unique solution is

sSsa. =
3

(5.1) a*. = —, b*. = -, c*.=d*. =3 ° 3 °
where

This means that, in the inside intervals, the spline defined by the normal

equations is a symmetric function of its argument h . By substitution using

(5•1) we have
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Similarly

b?s}

S

a*.

= 0 .

Then from the symmetry of g* and the anti-symmetry of g*' , i t follows

that

g*(x.) = g*'(x.) = 0 , each j ~ 1 j . . . j n .

This calculation verifies the continuity of g* and g*' for the points
X2 i X3 i • • • i x 7 but, more than that, i t gives an alternative system

for the spline coefficients in the intervals J and I . Of the four

coefficients in I , two are determined by the end point condition (2.3)

with N = 2 and the other two may now be found explicitly from the two

relations just derived. Clearly from the symmetry considerations the

situation is the same for J
n

rSr sSs TC
T

The system in J and J is, in fact,

sC

a •
0

for 3=0 and n and this system has solution
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(5.3) °

where

r

a 2

o

How "because ty* is determined in I and J by the continuity conditions

and normal equations for the intervals I\ up to J , and since these

normal equations define a minimum on each interval, we know that g* does

indeed minimize (5-0).

This completes the proof of Theorem II.

5.2 The optimal mesh distribution

We are now in a position to determine the distribution of mesh points

which will minimize the error of approximation. In part (l) of Theorem III

the mesh is described for the case that h and h are prescribed and in

part (2) the system for the optimal values of h and h is given.

THEOREM III. The quadrature formula Q*(f) which is optimal in

Q(n , 2) over H2 has its weights C • and D . given by Theorem II and
3 3

its mesh given by

'"

= constant , 1 < j < n - 1 .

(2) hQ = hn , and fj dh~9*(x) ^ = $ I dh~9*(x} *** ' where 9*
00 1 '

is the spline defined in Theorem II.

Proof. As for N = 1 we define a function

V-T^T [h -'>) - fr'f]] •
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u = (offt0 , hi , ... , hn)

= \\g* II2 - e r r " + ~ i L + I ^. - ( t 2 - t i ) \ , e r e a l .
12 j=i J

In Theorem II it was shown that

x.) = 0 3 (3 = i , ... , n) ,

and, applying lemma 3 to g* , we have

a) = j <j-*ra;; dx - B\j- + -2- + I h. - (t2 - ti)j .

Once again from the form of to over each subinterval J. , the normal
3

equations -jr— = 0 for each j define a minimum point for \\g*\\ 2 under
dh
0- \\ \\

the constraints

ft_ ft- n-1

( l ) Suppose f i r s t that ftQ and ft are prescribed. Then in

1 < j < n - J the normal equations are

(5.4) •£- p J ff*ra:; dx = 9 .

Now g* , for x e J . , i s a function of the mesh interval ft. only.
3 0

Therefore a l l the equations (5-^) have exactly the same form and each one

i s independent of j and we can say

lhrs+h

= constant for a l l 3 = 1 , . . . , n - 1 .

(2) Suppose then that ft and ft are no longer fixed. We wil l

wri te g*(h. ; x) = g*(x) to indicate that the coefficients of g* are
3

functions of ft. when x e I • • Setting -3=— = •£— = 0 yields
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J°

Differentiating we get

JJ, a I" 3 xj ax

-Hi n
2 n

But in J and I , a*, and i>*. are even functions of their arguments

and a* and d*. are odd functions. Then as
3 3

; f) = 9*(-hn ; - \) = o ,

we may replace the above relation by

and, immediately,

(5.6) \ = \-

Differentiating in (5.U), and noting again that g*(± -jh) = 0 , we find

that the relation

(s-7) f 2 ° r ^ f t o '•x; ̂  = f 2 n ^r^*r ? zi ; x) ** >
which along with (5.5) and (5.6) gives us a complete characterization of

the optimal mesh. This completes the proof of Theorem III.

5.3 The weights to the derivative values

COROLLARY 1. For the optimal formula in Q(n , 2) over H2 the

derivative weights vanish, i.e.
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D- = 0 , 3 = 1 , ... t n ,
u

and an alternative system for the mesh distribution is given by (5.5), (5.6)

and i?i2 = 0 J where g* is the spline defined in Theorem II.

Proof. From re la t ion (3.6) with N = 2

D. = -a\ B* ,

= -a\(g*"(x. - ) - g*"(x.

But in 1 < Q < n - 1

Substituting for a*, and M from (5-1) with a l l the h. equal,
3 3 0

shows that g*" i s continuous at a l l the points i 2 , . . . ., x , , whence

£>2 = D3 = . . . = D 7 = 0 . Because of symmetry i t will suffice to show

that Di = 0 .

From Theorem I I

(5.8) aCv + bCs = l/aQ
2 ,

(5.9) raS •/• sbC = 0

where a = a* , b = b* and, eliminating b* and d* by the conditions

(2.3) with N - 2 ,

(5-10) ao[Cr ~ ~2
 Cs ) + Co(5r " ? Ss

(5.11) raQ[sr - Jfl ) +^r*Cr - **„] - 0 ,
1 o oJ

w h e r e a
0
 = a g > c

0
 = C Q a n d C r = c o s h - ^ — , e t c . ( ( 5 - 8 ) a n d ( 5 . 9 )

0

r e su l t from g*(x\ + ) = g*' (xx + ) = 0 and (5-10), (5-11) from
g*(xi - ) = g*'(xi - ) = 0 ) • We wil l use the above equations to show that

for the optimal values of h and h\ , R\2 - 0 .

The minimum condition (5.1) when integrated becomes
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S S da
(s-w -Tdk + fdh;=dT . , _

- s* o

ffo
dK

If we differentiate (5-8) with respect to h\ we get

c S + c f +
f r + i(raSr + sbv -

hi
and, since g*'(—jr) = 0 ,

Similarly, differentiating (5-9) with respect to h\ , we have

or

Solving (5.13) and (5.11*) for ~ , ||- we find

(

where T\ = sC S - rS C

By differentiating (5.10) and (5.11) with respect to h and solving

the resulting system we get

da

where

*• 0 8 2 0-1 *• 0 0' v 0

Equation (5.12) then becomes

Ctrl cil. o i " J I * « z ~ r t
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7 * "

(5.15)

h±A
rs

vC S -sS C
v s r s

sCrSs-rSrCs

9*"\-t-

By elementary algebra i t can be seen that

(5.16) r _ i r
o s2 o

Cr~Cs
O 0

C -C

r r' r I I r ° S °
o sz oJ

- — s
s s

and so we can replace the term in square brackets on the right side of

(5.15) by the whole of the right hand side of (5.16). But by substitution

of the spline coefficients we see that

and

z sC S -rS C '
a l r s r s

so o

and so (5.15) becomes

whence 0 .

5.4 The optimal closed formula

A quadrature formula in which the values of the function and its

derivatives at the end points of the interval of integration are used is

called a closed formula. The optimal n-point closed formula is easily

obtained from Theorem III where it was shown that if h and h are
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prescribed, the remaining intervals h\ a h2 , . .. 3 h . have equal

length. The closed formula then is the case for which h = hn = 0 .

COROLLARY 2. Let Q be the subset of Q(n , 2) containing those

quadrature formulae whose partitions have x\ = t\ and x = t2 • Then

the quadrature formula Q*(f) which is optimal in Q over H2 ^s

" P3

characterized by

2(r2-s2)tt
(1) 2Cl = 2Cn = C. = rs(rt JS

" S

(2) D. = 0 3 j = 2 , ... , n - 1

1 n rs [sts-rtr

and

(3) h- = n_1 , j = 0 , ... , n ,

where we have denoted

ty = 7~ and *s = 7~ •
r s

Proof. From Theorem III part (l) we have, putting h = h^ = 0 ,

As before Z?. = 0 , 2 < 3 < n - 1 3
3

and C. = a2
2R* ,

3 d»
= -2a2

2(r3a-S^ + s3b.SJ , 2 < j <n - 1 ,
0 J? J o — —

rs(rtr-sts)

From Theorem II part (2) we can see that, since the spline coefficients in

J and J are continuous functions of the mesh lengths h and h ,
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lim g*nl [-2- -
h +0 ^o

whence

lim -g*"'
h +0n

a2
2R*l3 ,

- -S. +\ = 0 ,
2

2 < j < n - 1 ,

since all the h- are equal.

Similarly

lim g*•ff-]-
and so

- f +J ,

t -s*s r
st -rt

S ¥•

6. Concluding remarks

For N = 1 j 2 we have explicitly derived the weights and mesh which

define the quadrature formula that has least estimate of error \E(f)\ with

respect to the norm / I for functions in S . For N = 2 we have

obtained as intermediate results the optimal formulae when

(a) the mesh is prescribed, and

(b) only the two end intervals h and h of the mesh are

prescribed.

The optimal closed formula has been found as a special case of (b) and

two interesting points have emerged.
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Firstly, the optimal formula for N = 2 does not involve the

derivatives of the integrated function. This seems to indicate that there

exists a generalization to higher N which would in some way correspond to

the results obtained in [/]•

The second point of interest concerns the spline g* and its

derivatives at the mesh points. The property

(6.1) g*(k)(x.) = 0 j = 1 , ... , n
3

k = o a ... , n - i

is established for both cases N = 1 and 2 . Together with the knowledge

that the spline with minimal norm on a fixed partition is an even function

in each interval I\ i ... j I _•, , the conditions (6.1) completely define

g*(x) and further they give a simple form for the multiplier II E*n in the

error bound E*l\ . \\f\\ on \E*(f) \ . Thus while (6.1) is a necessary

condition for the minimum it may also be a sufficient condition and a

necessary and sufficent condition for larger values of N . Further results

on these investigations will be made known as they become available.

This work was supported by a Control Data Australia Pty. Ltd. research

scholarship at the Department of Computing Science, University of Adelaide,

South Australia. I should also like to thank Professor J.A. Ovenstone and

Dr J. Kautsky for their assistance and encouragement in this work.

References

[J] J. Kautsky, "Optimal quadrature formulae and minimal polynomials in

L ", J. Austral. Math. Soo. (to appear).

[2] V.I. Krylov, Approximate calculation of integrals , (Macmillan, New

York, 1962).

[3] Arthur Sard, "Best approximate integration formulas; best approximation

formulas", Amer. J. Math. 71 (191*9), 80-91.

[4] J.H. Ahlberg, E.N. Nilson and J.L. Walsh, Theory of splines and their

applications (Academic Press, New York, 1967)-

[5] J.H. Ahlberg, E.N. Nilson and J.L. Walsh, "Fundamental properties of

https://doi.org/10.1017/S0004972700041307 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700041307


108 S. Elhay

generalized sp l ines" , Proa. Nat. Aaad. Sci. U.S.A., 52 (1961+),

lUl2-lltl9.

[6] I . J . Schoenberg, "On monosplines of least deviation and t e s t quadrature

formulae", J. Soo. Indust. Appl. Math. Ser. B Nwner. Anal. 2

(1965), 1M+-170.

[7] Samuel Karl in and Zoi Ziegler, "Chebyshevian spline functions",

SIAM J. Numer. Anal. 3 (1966), 51I+-5U3.

DepartmenT of Computing Science,

The University of Adelaide.

https://doi.org/10.1017/S0004972700041307 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700041307

