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Abstract
The paper develops a methodology to enable microscopic models of transportation systems to be accessible for a
statistical study of traffic accidents. Our approach is intended to permit an understanding not only of historical losses
but also of incidents that may occur in altered, potential future systems. Through such a counterfactual analysis,
it is possible, from an insurance, but also from an engineering perspective, to assess the impact of changes in the
design of vehicles and transport systems in terms of their impact on road safety and functionality.

Structurally, we characterize the total loss distribution approximatively as a mean-variance mixture. This also
yields valuation procedures that can be used instead of Monte Carlo simulation. Specifically, we construct an
implementation based on the open-source traffic simulator SUMO and illustrate the potential of the approach in
counterfactual case studies.

1. Introduction
Every year, traffic accidents cause substantial damage, both property damage and injuries and deaths.
For example, nearly 43,000 people died in road traffic accidents in the USA in 2021 (NHTSA, 2022).
The frequency and severity of these accidents depend on the driving behavior of vehicles, on the one
hand, and on the characteristics of traffic systems themselves, on the other. Improvements in road safety
are achieved, for example, by reducing serious injuries in accidents through the design of vehicles, by car
body design, airbags, seatbelts, etc. However, the frequency and type of accidents can also be influenced
by modifying the transportation system itself and by changes in driving behavior. From a higher-level
perspective, at least two dimensions are central, and we will examine them in this paper:

(i) Engineering. From an engineering perspective, the focus is on the good design of vehicles and
traffic systems, combining functionality and safety. Instruments in this respect include traffic
rules and their implementation, the layout of streets, and innovation in vehicle technology such
as advanced driver assistance systems or autonomous driving software. Improvements of this
type may reduce the number of accidents and their severity but cannot completely prevent
accidents.

(ii) Insurance. Residual risks remain, and accidents cannot be completely prevented. However,
at least in financial terms, the associated losses can be covered by insurance contracts. The
role of actuaries is to develop adequate contract structures, calculate correct premiums, and
implement quantitative risk management in insurance firms. These tasks require the modeling
and analysis of probability distributions of accident frequencies, corresponding damages, and
insurance losses.
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The objective of this paper is to develop a methodology to enable microscopic models of transporta-
tion systems to be accessible for a statistical study of traffic accidents. Our approach is intended to
permit an understanding not only of historical losses but also of incidents that may occur in altered,
potential future systems. Through this, it is possible, from both an engineering and insurance perspec-
tive, to assess changes in the design of vehicles (e.g., the driving behavior of autonomous vehicles)
and transport systems in terms of their impact on functionality and road safety. This is in stark contrast
to simply considering aggregate data, as is typical in auto insurance. Instead our model can simulate
traffic in counterfactual situations that mimic modified or future scenarios, and losses can be generated
conditionally on local traffic conditions.

The conventional approach is as follows: to understand current traffic events or structural relationships
in the past, historical data are used. Historical data can also be applied to test whether a model framework
is appropriate in principle to describe traffic systems realistically. These data also constitute the essential
basis for the specific pricing of insurance contracts in practice.

But how can we examine risks associated with new technologies and with novel future strategies for
traffic systems? Consider autonomous vehicles, for example: due to their altered driving behavior, these
will reshape existing traffic patterns, and in turn, accident occurrences and associated losses. Insurance
companies presumably will have to adapt their business models as well; in the future, premiums for auto
insurance may depend on the driving configuration of the vehicle rather than the risk profile of the driver.
Real-time insurance rates for individual trips could also become important, with prices depending on
the current traffic situation.

In order to investigate future developments, we are suggesting to devise simulation tools in analogy
to digital twins of real transport systems, which allow counterfactual case studies of possible future
transport systems. The digital twin paradigm refers to the triad of a “physical entity, a virtual counterpart,
and the data connections in between” (Jones et al., 2020). In our application, the physical entity is
the (future) real-world transportation system for which data on losses are not yet available. Its virtual
counterpart is the model we are building. Counterfactual case studies can be used to generate data and
evaluate future driving technologies and their impact on accident losses. Based on the results, newly
developed concepts (e.g., modified traffic rules, novel insurance coverage and their insurance premiums,
etc.) can be adapted in the real world. The concept of the digital twin makes it possible to experiment
with technologies and policies, and their effects on accident damage without having to implement risky
tests in reality.

Methodologically, this paper combines existing microscopic traffic models with probabilistic tools
from actuarial science and quantitative risk management to study accident damage and insurance losses
in the context of simulations. In contrast to standard insurance practice, we model losses conditionally
on specific traffic situations. These traffic situations are generated within a flexible micro-simulation
model. As a specific example, we use the well-established traffic simulator SUMO (Lopez et al., 2018)
to illustrate how traffic systems could be realistically modeled.

We extend microscopic traffic models to include random accidents and corresponding losses. The
losses are modeled as random variables whose distributions depend on microscopic data. Since insur-
ance contracts typically cover annual periods, we set up a model for aggregate losses over a 1-year
time horizon. We also show that aggregate losses can be approximated by a mean-variance mixture of
Gaussian distributions. This provides an alternative perspective on the distribution of the aggregate loss
and a second method of evaluation besides crude Monte Carlo sampling. For certain insurance con-
tracts, we improve the accuracy of the approximation-based valuation by using a correction term. This
was originally developed by El Karoui and Jiao (2009) for the efficient pricing of complex financial
instruments, there in the context of a classical Gaussian approximation.

Our digital twin approach enables a comprehensive analysis of risk in transportation systems: we
study the impact of fleet sizes and their driving configurations on system efficiency and insurance prices.
System efficiency is measured using traditional traffic statistics based on local traffic counts such as traffic
flow, average speed, and density. Insurance claims are examined in terms of their probability distributions
and selected statistical functionals. The innovation of our approach lies in the fact that counterfactual
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traffic scenarios can be considered which allow to test insurance solutions beyond historical data. This
could also include online insurance products that depend on specific traffic situations.

The main contributions of this paper are as follows:

(i) We develop a powerful methodological framework to generate accident data based on micro-
scopic traffic models in analogy to the concept of digital twins.

(ii) Specifically, we construct an implementation based on the state-of-the-art open-source traffic
simulator SUMO and illustrate the potential of the approach in comprehensive case studies.

(iii) Structurally, we characterize the total loss distribution approximatively as a mean-variance
mixture. This also yields alternative valuation procedures. These results hold for general
microscopic traffic models; SUMO is used in case studies to illustrate the findings.

(iv) Based on Stein’s method, we obtain a correction term in the valuation, derived from the
results of El Karoui and Jiao (2009), which enables surprisingly accurate pricing of insurance
contracts.

1.1. Outline
The paper is organized as follows. Section 1.2 discusses related contributions in the literature. Section 2
presents the microscopic traffic model that captures also accidents. Section 3 discusses the evaluation of
the losses. Case studies are presented in Section 4. Section 5 concludes and discusses further research
challenges. The Supplementary Material contains in Appendix E details on the implemented sampling
procedure; further simulation results, not presented in Section 4, are documented in Appendix F.

1.2. Literature
Our paper combines microscopic traffic models with probabilistic tools from actuarial science and quan-
titative risk management to study risks in traffic systems. The literature can be classified along two
dimensions: the engineering perspective and the actuarial perspective.

The Engineering Perspective. An important field of operations research is the analysis and opti-
mization of road traffic systems (see, e.g., Gazis, 2002) with respect to their efficiency. Traffic models
are indispensable tools for this purpose: Macroscopic models are based on the functional relationships
between macroscopic features such as traffic flow, traffic density, and average speed. These models
allow the study of issues such as the efficient routing of vehicles under different constraints (see, e.g.,
Acemoglu et al., 2018; Colini-Baldeschi et al., 2020). Stochastics can be used to extend such risk con-
siderations in terms of uncertain travel times (e.g., Nikolova and Stier-Moses, 2014). In the context
of various applications of transportation systems, tailored stochastic models provide suitable analytical
tools; the extensive literature includes, for example, the efficient routing of ambulances (Maxwell et al.,
2010) or the allocation of capacity in bike-sharing systems (Freund et al., 2022).

To model transportation systems at a level of higher granularity, microscopic traffic models are
used (see, e.g., Helbing, 2001). Their simulation, that is, the computation of trajectories from accel-
erations, is computationally more demanding. There are established software solutions that facilitate
the application of microscopic models. In this work, we use in the context of illustrative case studies the
simulation engine SUMO (see the Section 2.3 for an overview). Examples of competing microscopic
traffic simulators include VISSIM (Fellendorf and Vortisch, 2010) and Aimsun (Casas et al., 2010).
While SUMO is open-source software, these competitors are commercial. Software packages such as
SUMO are also important in the context of testing and validating new technological developments such
as autonomous vehicles. This is, for example, discussed in Schwarz and Wang (2022), Szalai et al.
(2020), and Kusari et al. (2022). To deploy autonomous vehicles in the real world, lengthy and expen-
sive testing phases are required. Acceleration strategies are being developed to shorten these times (e.g.,
Zhao et al., 2018). These approaches rely on importance sampling techniques to overcome the rare event
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nature of safety-critical situations. Arief et al. (2018) develop simulation-based testing methodologies
in order to analyze autonomous vehicles in relevant scenarios that are constructed using collected data.
Norden et al. (2019) create a framework for the black-box assessment of the safety of autonomous vehi-
cles. They apply their framework on a commercial autonomous vehicle system. Our work focuses on
aggregate losses over relatively long time horizons. By considering 1-year losses via a conditional loss
modeling approach, we bypass the problem of simulating rare events. Further literature on microscopic
traffic models, their calibration, and applications for traffic safety is reviewed in the online appendix in
Appendix A.

The Actuarial Perspective. The ambitious goal of achieving maximum efficiency and complete
safety through engineering design cannot be realized in reality; accidents can never be completely
excluded, even if residual risks can be kept very small. Insurance is an instrument to deal with the
residual risk of infrequent losses, cf. McNeil et al. (2015) and Wüthrich (2013).

The premiums of motor insurance contracts are traditionally based on historical claims data collected
by insurance companies. Insurance premiums are calculated based on individual characteristics of the
driver (age, driving experience, etc.) and the vehicle (type, location, etc.). These tariffs are often com-
plemented by bonus-malus schemes (see, e.g., Denuit et al., 2007; Lemaire et al., 2015; Afonso et al.,
2017) to incentivize more careful driving and prevent insurance fraud.

Novel pricing approaches use telematics technology (see, e.g., Husnjak et al., 2015 for an overview).
This involves collecting GPS data from vehicles, which can be analyzed and classified. Machine learn-
ing techniques are suitable to process these large amounts of data. We refer to Gao et al. (2022) for a
methodological overview. Verbelen et al. (2018), Corradin et al. (2021), So et al. (2021), and Henckaerts
and Antonio (2022) discuss telematics pricing and usage-based auto insurance products.

Our approach can be understood as complementary to telematics pricing: instead of analyzing driving
data to determine the driving behavior of individuals, we model the behavior of vehicles as a driving
configuration and subsequently generate driving data and insurance claims. Our approach is in particular
suitable, if novel technologies are studied in counterfactual situations, for example, autonomous vehicles.
To our knowledge, there is no other work that develops a microfounded model of traffic accidents that
can be leveraged to study insurance pricing.

2. Model components
Our microfounded simulation model for investigating accident losses is based on two components:

(i) At its core is a deterministic microscopic traffic model that realistically characterizes the
motion of vehicles in a traffic system typically represented by a system of ordinary differential
equations. The particular strength of the simulation-based approach is that also counterfac-
tual situations can be modeled – capturing, for example, the consequences of technological
innovation.

(ii) This microscopic traffic model is extended to include the possibility of random accidents. At
random accident times, local traffic data are observed which characterize the probability dis-
tribution of the occurring losses. In our specific implementation of this general conceptual
approach, the SUMO microscopic traffic simulator is used, but our theoretical results hold for
any microscopic traffic model that satisfies the properties described in the next section.

2.1. Microscopic traffic networks
We consider a road network that is typically embedded into a two-dimensional area A ⊆R

2. The network
may consist of roads, junctions, roundabouts, intersections, highways, etc. on which vehicles move. The
collection of all vehicles in the network is denoted by M. Each vehicle i ∈M is assigned an origin–
destination pair (Oi, Di) ∈ A.
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We consider a fixed time horizon T > 0. Vehicles move over time from their origin to their desti-
nation on a (potentially changing) path. We denote by xi(t) the position of vehicle i at time t ∈ [0, T],
by vi(t) = d

dt
xi(t) their velocity, and by ai(t) = d

dt
vi(t) their acceleration. We make the implicit assump-

tion that vehicles are located in Oi until some release time and remain in Di once reached. Thus, we let
M(t) = {

i ∈M : xi(t) /∈ {Oi, Di}} be those vehicles which are currently inside the network, that is, they
have left their origin but not reached their destination, yet. If we only consider vehicles which belong to
a certain group of vehicles (also called a fleet) �⊆M, we will write M�(t). This could, for example,
be a fleet of vehicles with the same driving characteristics.

At the core of many microscopic traffic models are car-following models. Prominent examples include
the Intelligent Driver Model (Treiber et al., 2000), the Optimal Velocity Model (Bando et al., 1994 and
1995), and the Krauß model (Krauß, 1998). Car-following models determine the acceleration behavior
of an individual vehicle i along its path on the basis of information on the positions and velocities of
the vehicles, typically in a neighborhood of i, and the properties of the system. Often, only the pre-
ceding vehicle on the road is relevant, and the acceleration of i is constructed such that vehicles move
forward while maintaining a minimal distance. Through specific choices more complex traffic scenarios
(e.g., intersections, overtaking) can still be represented in such a manner. Mathematically, car-following
models correspond to systems of coupled ordinary differential equations.

Traffic State. We denote by γ (t) = (
xi(t), vi(t), ai(t)

)
i∈M the state of the traffic system at time t. It

records the position, velocity, and acceleration of any vehicle. The evolution of the traffic system over
time is depicted by the (high-dimensional) trajectory t �→ γ (t).

Macroscopic traffic statistics aggregate these microscopic data. Typical examples include traffic flow
(number of vehicles that pass a certain point per time unit), traffic density (number of vehicles per length
unit), and average speed. These measures quantify the performance of traffic systems.

Local Traffic Conditions. In order to model the occurrence of accidents depending on local traffic
conditions, we partition A in regions. More precisely, we partition A into a finite number of disjoint sets
Ar ⊆ A such that A =⋃R

r=1 Ar and R ∈N. We call the elements Ar of the partition a traffic module.
We let Mr(t) = {

i ∈M(t) : xi(t) ∈ Ar

}⊆M(t) denote those vehicles that are in Ar at time t (with
M�

r (t) defined in analogy). The local traffic state of the module is γr(t) = (xi(t), vi(t), ai(t))i∈Mr(t). Key
local traffic characteristics (density, flow, speed, etc.) can then be expressed as functions of γr(t) and its
evolution over small time windows.

2.2. Microscopic traffic model with accident losses
So far, the evolution of the traffic system is a deterministic function of time. The advantage of micro-
scopic models is that they enable a detailed simulation of traffic systems. The driving behavior of the
vehicles can be varied, likewise their number and paths, road conditions, etc., in order to generate many
different scenarios. Such models provide a detailed picture, similar to digital twins of reality, and can
be used to analyze potential future traffic systems or to understand the impact of new technologies.

We consider a finite collection of different traffic scenarios γ k := (γ k(t))t∈[0,T] with k ∈ {1, 2, . . . , K}
for a short time horizon T > 0. The aim is to analyze characteristics of traffic over the long time horizon
N T , for example, 1 year, for some large N ∈N; this is modeled by a finite sequence of traffic scenarios
(k1, k2, . . . , kN) ∈ {1, 2, . . . , K}N . The N subintervals of length T are called time buckets. We will be
interested in quantities aggregated or averaged over the whole time horizon NT . Examples include the
average traffic flow, the total number of accidents, the aggregate losses due to accidents, etc. These
quantities depend not only on the order of the traffic scenarios during this time period but also on their
number of occurrences.

We denote byμk the number of occurrences of scenario k divided by N , that is, the relative frequency
of this traffic scenario over the considered time horizon N T . The vectorμ= (μ1,μ2, . . . ,μK)� lies in the
simplex �K−1 = {x ∈R

K
+:
∑K

k=1 xk = 1}. We assume that μ is not deterministic, but a random variable.
This is to account for the fact that the relative frequencies of traffic scenarios fluctuate over different
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years due to varying weather conditions, random changes in traffic demand, or other factors. From a
mathematical point of view, this construction leads to a mixture model with exogenous factor μ.

Accident Occurences. We now introduce our traffic accident model that will permit an analysis of
aggregate losses and corresponding insurance contracts. The likelihood of the occurrence of an accident
is modeled as a function of the traffic scenario. We consider two specifications: a binomial and a Poisson
model.

(i) Binomial Model. Accidents are rare events. For a given traffic scenario k, we assume that the
probability pk of an accident is close to zero. This probability may, of course, depend on the
evolution of the traffic scenario, that is, on the path t �→ γ k(t), and we will discuss concrete
specifications later. Given a realization of μ, accidents are assumed to be independent across
time buckets. This implies that traffic scenario k occurs for Nμk time buckets corresponding
to a duration of NTμk, and the number of accidents Ck during this period has a conditional
binomial distribution with parameters pk and Nμk:

Ck |μ∼ Bin
(
pk, Nμk

)
.

(ii) Poisson Model. An alternative model assumes that accidents occur at random times with a
distribution governed by an intensity λk/T that depends on the traffic scenario k. More specif-
ically, the number of accidents Ck during the period governed by scenario k of duration NTμk

is conditionally Poisson distributed with parameter λkNμk:

Ck |μ∼ Poiss
(
λkNμk

)
.

Accident Losses. Loss sizes conditional on the occurrence of accidents are assumed to be indepen-
dent across traffic scenarios and across time buckets. We assume that the conditional loss distribution
with conditional distribution function Fk depends only on the traffic scenario k. We will discuss examples
below. Random total losses over the considered time horizon NT are equal to

L =
K∑

k=1

Ck∑
c=1

Xk
c

where the random variables Xk
c , k = 1, 2, . . . , K, c ∈N, are independent and Xk

c ∼ Fk, c ∈N, for any k.
Concrete Specifications. Microscopic traffic models are experimental environments that allow to

simulate the behavior of systems where no real data are yet available. Traffic planning can be supported
by such models, and the impact of new technologies can be tested in a counterfactual analysis. Here, we
specify the general principles how accident occurrences and losses can be based on microscopic traffic
models. An implementation will in this paper be based on SUMO, see Section 2.3, but could also rely
on any other suitable traffic model.

Initially, K traffic scenarios need to be selected as a basis for the model. While running any determin-
istic traffic scenario k over the time window [0, T ], information can be extracted about the traffic states γ k

r

in each module r ∈ {1, 2, . . . , R}. In SUMO typically not complete data on the whole paths are extracted,
but only selected information at loop detectors in the network that are part of the implementation.

In reality, the likelihood of accidents typically increases with higher traffic density and higher veloc-
ities, ceteris paribus. Also the distribution of losses is influenced by quantities of this type. Examples
are described in Section 4. This allows a computation of pk and λk as a function of the data. Using the
data associated with the modules, we may specify probabilities and intensities for the modules such that
pk =∑R

r=1 pk
r and λk =∑R

r=1 λ
k
r . In the binomial model, pk

r/p
k is the conditional probability that the acci-

dent is in module r given that an accident occurs. In the Poisson model, the intensities λk
r , r = 1, 2, . . . , R,

determine the accident times for each module. The resulting sequence of random times in the whole traf-
fic system possesses the intensity λk. Conversely, if we first simulate random times with intensity λk and
then randomly choose a corresponding module with probability λk

r/λ
k in a second step, the random times
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associated with each module r possess intensity λk
r . Both procedures produce a number of accidents Ck

that occur during the period governed by scenario k.
The distributions of losses given a single random event will be chosen as follows. For each traffic

scenario, we consider a collection of distribution functions (Fk,ψ )ψ∈� where ψ corresponds to data that
may be extracted from the traffic simulation. In order to do so, we uniformly simulate a random time in
[0, T ] and extract at this time the data from scenario k that determine ψ . The resulting distribution Fk

is a mixture of the distributions (Fk,ψ )ψ∈� . The mixing distribution is derived on the basis of the traffic
data of scenario k that are generated from our microscopic traffic model.

Insurance Contracts and Statistical Functionals. The microscopic traffic model with accidents
will be the basis for the generation of aggregate losses. We study statistical functionals and insurance
contracts. The analysis will be based on Monte Carlo simulations, but we also compare approximation
techniques that we describe in Section 3.

The focus is on functions of aggregate losses L. Letting h : R→R be an increasing function, we ana-
lyze h(L). In particular, we investigate the following functions corresponding to three types of insurance
coverage: h(x) = x (full coverage), h(x) = max(x − θ , 0), θ ≥ 0 (constant deductible), h(x) = min (x, θ ),
θ ≥ 0 (stop loss). In each case, we evaluate various statistical functionals:

(i) Expectation. E(h(L)),
(ii) Variance. Var(h(L)) =E((h(L))2)) −E(h(L))2,
(iii) Skewness. ςh(L) = E[(h(L)−E(h(L)))3]

(Var(h(L)))3/2 ,
(iv) Value-at-Risk. VaRp(h(L)) = inf{x ∈R : P(h(L) ≤ x) ≥ p},
(v) Expected Shortfall. ESp(h(L)) = 1

1−p

∫ 1

p
VaRq(h(L)) dq.

These functionals allow also the computation of insurance premiums on the basis of premium
principles such as the expectation principle, the variance principle, or the standard deviation principle.

2.3. Traffic scenarios in SUMO
2.3.1. A brief overview
A state-of-the-art open-source software that allows us to generate traffic scenarios is SUMO, “Simulation
of Urban MObility.” A reference publication on SUMO is Lopez et al. (2018); in addition, a detailed
user documentation can be found online (see sumo.dlr.de/docs/index.html). Freely available since 2001,
SUMO was originally developed by the German Aerospace Center and extended by an active research
community. It allows for a plethora of modeling choices at different levels and has been success-
fully applied to tackle many important research questions addressing (see eclipse.org/sumo/about/), for
example, traffic light optimization, routing, traffic forecasting, and autonomous driving.

In the following, we give a short overview. At its core, SUMO is a software which generates a traffic
scenario γ = (γ (t))t∈[0,T] from a given set of input files:

(i) Network File. In SUMO, a traffic network is described by a directed graph whose nodes rep-
resent intersections and edges roads. All nodes and edges have attributes, including positions,
shapes, speed limits, traffic regulation, etc. As an example, the city of Wildau is represented as
a SUMO network in Figure 1.

(ii) Route File. Vehicles are generated on the basis of traffic demands between origins and desti-
nations. Routes can either be defined for each vehicle as a trip or as recurring flows along a
specific path. If only origin and destination are provided, the corresponding route is computed
when the vehicle enters the system. The problem of allocating traffic demand to routes in a net-
work is referred to as the traffic assignment problem. A standard reference is Patriksson (2015).
The vehicle type determines the microscopic characteristics of the vehicle such as the gov-
erning car-following model, driving parameters (e.g., maximal speed, maximal acceleration,
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Figure 1. SUMO network of Wildau.

time headway), size, color, etc. By default, vehicles are passenger cars. Other modes, such as
pedestrian, bicycle, or truck can also be selected.

(iii) Additional Files. Further components are specified in additional files. An important example
are induction loop detectors. These collect time series data on aggregate traffic statistics by
counting the vehicles which pass a certain position during a short time interval.

The collection of input files determines the traffic evolution, also called the SUMO scenario. The
computation can be executed either as a command line application or with a GUI that visualizes the
movement of the vehicles through the network over time.

Data Extraction. One particularly appealing extension of SUMO is the “Traffic Control Interface,”
TraCI (see Wegener et al., 2008). TraCI provides online access to the microscopic traffic simulation
and permits, at each time step, through a comprehensive list of commands (a detailed description can
be found at sumo.dlr.de/docs/TraCI.html) to retrieve data and to change the states of objects such as
vehicles, roads, traffic lights, etc. Available in standard programming languages (our case studies are
based on the Python implementation), TraCI yields easy access to SUMO without the need to modify
the underlying code. We use TraCI to extract microscopic data on positions, velocities, and accelerations
of randomly selected vehicles.

2.3.2. Generation of traffic scenarios
To represent traffic in a given area over a longer time horizon (e.g., NT = 1 year), we generate a diverse
collection of traffic scenarios γ 1, . . . , γ K of duration T in SUMO by varying the input files. Traffic over
a longer time horizon is represented by a random composition of these traffic scenarios. Our general
construction has already been discussed in Section 2.2.

SUMO Scenario. We describe the key steps to set up a SUMO scenario and point out specific
references to the SUMO documentation in the online appendix in Section B. SUMO provides tools
that facilitate the creation of input files, for example, the graphical network editor netedit that visu-
alizes a SUMO scenario and allows to modify its properties. In practice, network files are typically
imported from other data sources. For example, one can build a real-world traffic network in SUMO
from OpenStreetMap data by selecting an area from a map. The route file specifies the trips of the vehi-
cles and the definition of the general vehicle types with their microscopic characteristics. First, there
are several options to generate trips in SUMO. These can be obtained from empirical data in the form
of traffic counts, imported to SUMO as origin-destination matrices, or modeled via ad hoc choices, for
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example, using netedit. Second, each vehicle is associated with a vehicle type specified on the basis
of a comprehensive list of attributes. The corresponding values can be set manually in the route file or
accessed and modified via netedit. In the absence of detailed traffic data for calibration, SUMO offers
an activity-based demand generation which deduces traffic demand from general assumptions on the
structure of the population (inhabitants, households, etc.) in the considered area. The tool activitygen
automates the process and produces an artificial route file.

SUMO admits a large variety of modeling choices. Tailored to the needs of the modeler, a highly
detailed SUMO scenario can be constructed. Our case studies will be based on publicly available SUMO
scenarios; these consist of network and route files which are calibrated to real-world cities.

Varying Traffic Conditions. The input files need to be constructed in such a way that they reflect
varying traffic conditions over longer time periods. This includes weather conditions, variation of traffic
demand, and other factors.

Maze et al. (2006) review empirical studies on the impact of adverse weather conditions on traf-
fic. These may induce (i) lower traffic demand, (ii) higher risk of accidents, and (iii) modified driving
behavior. Based on empirical findings, Phanse et al. (2022) implement reduced velocities due to rainfall.
In Weber et al. (2019), the idea of introducing into SUMO a friction parameter per road is discussed.
Traffic scenarios under adverse weather conditions can be captured by suitable driving parameters in the
route file (e.g., by variation of maximal speed, maximal acceleration, etc.), and this may be combined
with a weather-dependent model of the occurrence and the severity of accidents.

Traffic demand is traditionally estimated from traffic counts. We refer to Bera and Rao (2011) for an
overview. With increasing data availability, the estimation can be enhanced by floating car data (cf., e.g.,
Nigro et al., 2018), that is, data generated from vehicles over time as they are driving. Traffic demand
varies over time, but patterns reoccur over longer time horizons (see, e.g., Soriguera, 2012). Demand
depends on the considered traffic network. Weekdays differ from days on the weekend; peaks in demand
occur at common commute times. Rush hours are spatio-temporal phenomena that can be analyzed in
detail (see, e.g., Xia et al., 2018).

To reflect the heterogeneity of traffic scenarios, two options are available in SUMO: (i) a variety
of route files is generated that is consistent with the desired modeling granularity. This process can
be automatized via an additional program, a route file generator, that produces route files with the
desired characteristics. (ii) Another option is to select a medium time horizon (e.g., TSUMO = 24 h) with
a corresponding route file that depicts varying traffic demand over time. From the generated SUMO
scenario, a selection of small time horizon scenarios (e.g., T = 1 min) can be efficiently generated by
utilizing SUMO’s option to save the state of the running simulation at a priori specified times and load
these later.

Besides weather and traffic demand, many other factors influence the traffic dynamics. Wagner (2016)
discusses the representation of autonomous vehicles in SUMO. Lücken et al. (2019) utilize SUMO to
study control transition, that is, selected safety critical situations where the human driver needs to take
over control from an autonomously driving vehicle. Pagany (2020) study the impact of wildlife on traffic,
an issue that is also relevant in the context of traffic accidents.

3. Evaluation methods
The accident losses L can be simulated using Monte Carlo methods. The simulations may be used to
estimate the value of statistical functionals and to price insurance products. We will briefly describe
the Monte Carlo methods. In addition, on the basis of the binomial model, we construct a Gaussian
approximation to E(h(L)) where the function h corresponds to the three types of insurance coverage
that we consider: full coverage, constant deductible, and stop loss. This allows a numerical evaluation
similar to Frey et al. (2008) and El Karoui and Jiao (2009). The latter paper provides a correction term
derived by Stein’s method that we will exploit in our application.
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3.1. Monte Carlo methods
The Monte Carlo simulation of L requires sampling the number of accidents Ck in either the binomial
or Poisson model and sampling the independent conditional losses Xk

c , c ∈N, for each traffic scenario
k = 1, 2, . . . , K from the corresponding distribution Fk. These tasks can be performed separately but
require both a prior evaluation of the microscopic traffic model.

(i) Prior Evaluation of Traffic Model. For each traffic scenario k, a single run delivers data that are
the basis for a computation of, respectively, the accidents probabilities pk and intensities λk as
well as the corresponding values pk

r and λk
r on the level of the modules r = 1, 2, . . . , R.

(ii) Number of Accidents. Sampling from μ and using the results of the prior evaluation allow to
sample the number of accidents Ck for each traffic scenario k in both the binomial and Poisson
model.

(iii) Conditional Accident Losses. Based on the precomputed values of the accident probabilities
and the accident intensities, respectively, we simulate for each traffic scenario k the random
locations and times of accidents. These data can be stored. For these locations and times, traffic
data ψ are extracted from an additional single run of traffic scenario k. Given ψ , the losses are
generated according to conditional loss distributions Fk,ψ as described in Section 2.2. Details
of the implementation are explained in Section 4.

These Monte Carlo methods can be flexibly applied to all considered functionals. In the special cases
of expectation and variance, Wald’s equation can simplify the computation, since the losses L are given
in the form of a collective model.

3.2. Gaussian approximation
Another way to compute E(h(L)) for the considered types of insurance coverage is a Gaussian approx-
imation, possibly improved by a correction term. A Gaussian approximation can easily be motivated
within the binomial model. For N sufficiently large, the distribution of L given μ is approximately nor-
mal, implying that L is a mean-variance mixture of Gaussian distributions. This is an important structural
insight from this approximation.

In this section, we condition on μ, that is, suppose that μ is fixed and given. The general results for
μ random are then a corollary by considering suitable mixtures according to the distribution of μ. The
total random losses in the binomial model can be rewritten as:

L =
K∑

k=1

Nμk∑
c=1

1k
c · Xk

c

where the random variables 1k
c, Xk

c , k = 1, 2, . . . , K, c ∈N, are independent, Xk
c ∼ Fk, and 1k

c are Bernoulli
random variables taking the value 1 with probability pk and the value 0 otherwise, c ∈N, for any k.
Setting

Yk
c := 1k

c · Xk
c , mk := E

(
Yk

c

)
,

(
σ k
)2

:= E

([
Yk

c − mk
]2
)

,
(
ζ k
)3

:= E

([
Yk

c − mk
]3
)

,

k = 1, 2, . . . , K, c ∈N, a classical normal approximation of L is
∑K

k=1 Nμkmk + Z with

Z ∼ N
(

0,
K∑

k=1

Nμk
(
σ k
)2

)
.

Remark 3.1. The estimation of mk,
(
σ k
)2, and

(
ζ k
)3 requires the simulation of the random variables Xk

c ,
c ∈N. The independent terms 1k

c, c ∈N, factor out, are idempotent and have known expectation pk.
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We focus on three types of insurance coverage, h(x) = x (full coverage), h(x) = max (x − θ , 0), θ ≥ 0
(constant deductible), h = min (x, θ ), θ ≥ 0 (stop loss), and obtain an approximation E(h(Z)) of E(h(L))
in each of these cases.

On the basis of Stein’s method (see Chen et al., 2011 and Ross, 2011 for an overview), El Karoui and
Jiao (2009) suggest correction terms in order to improve the approximation, that is, the approximation
E
(
h
(∑K

k=1 Nμkmk + Z
))

is replaced by the corrected approximation:

E

(
h

(
K∑

k=1

Nμkmk + Z

))
+ Ch.

The correction Ch depends on the degree of smoothness of the derivatives of the function h and thus
differs (see Theorem 3.1 and Proposition 3.6 in El Karoui and Jiao, 2009) for the three types of coverage.
We define

d1 =
K∑

k=1

Nμkmk, d2 =
K∑

k=1

Nμk
(
σ k
)2

, d3 =
K∑

k=1

Nμk
(
ζ k
)3

, h̃(x) = h (x + d1) .

We obtain the following correction terms:

(i) Full Coverage. In the case of full coverage, the correction term of El Karoui and Jiao (2009) dis-
appears. In general, if h is some Lipschitz function with bounded third derivative, the correction

term equals Ch = d3

2d2
2

·E
({

Z2

3d2

− 1

}
Zh̃(Z)

)
.

(ii) Constant Deductible. Ch = (θ − d1)d3

6d2

· 1√
2 · π · d2

· exp

{
− (θ − d1)2

2 · d2

}
(iii) Stop Loss. A stop loss x �→ min(x, θ ) can be written as the difference between full coverage

x �→ x and a constant deductible x �→ max (x − θ , 0). This implies that the correction term for
a constant deductible appears with a negative sign in this case.

The advantage of the (corrected) Gaussian approximation in comparison with pure Monte Carlo is
that, once the numbers mk,

(
σ k
)2, and

(
ζ k
)3 have been computed for each traffic scenario k = 1, 2, . . . , K,

no further data need to be stored or sampled in order to computeE(h(L)). The approximate representation
of the distribution of L as a mean-variance mixture is a considerable simplification.

4. Application
We illustrate the application of our microscopic traffic model with accidents on the basis of a publicly
available SUMO scenario of a real city.

4.1. SUMO scenario and accident data
Wildau is a small German city of approximately 10,000 inhabitants, located around 30 km south-
east of the capital Berlin. A SUMO model of the city was developed within a study project by the
Technical University of Applied Sciences Wildau and is publicly available (see github.com/DLR-TS/
sumo-scenarios/tree/main/Wildau).

SUMO Scenario. The implemented road network is visualized in Figure 1. It is specified using 646
nodes connected by 1426 edges. The city itself is crossed by the railway; the tracks are represented by
the gray line. Vehicles in the present scenario are calibrated from real traffic counts provided by local
authorities, see also Behrisch and Hartwig (2022). Such numbers of vehicles per time unit for certain
positions are then assigned to different routes through the city. The original scenario has a duration of
7010 s. Empty in the beginning, vehicles enter the system with a peak of approximately 240 vehicles
that drive simultaneously. In total, 2502 vehicles are generated.
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In the following section, we describe in detail how we adjust this SUMO scenario to obtain suitable
ingredients for our case studies. This yields a collection of traffic scenarios that allow us to compare the
effects of different driving characteristics and fleet sizes on the total loss and related insurance premiums.

Varying Traffic Conditions. For different collections of model parameters representing different
traffic systems we generate adjusted SUMO scenarios. For each choice of parameters, we proceed
as follows to produce K = 100 traffic scenarios of length T = 60 s. Traffic scenarios k = 1, 2, . . . , 50
correspond to selected time intervals from the SUMO scenario. Traffic scenarios k = 51, 52, . . . , 100
represent higher traffic volumes. They are generated by replacing the original route file by a route file
that consists of two copies of the original route file. This simple procedure generates a larger amount
of vehicles along the original paths. The traffic scenarios are again selected time intervals from the
corresponding SUMO scenario.

To represent the full year, we set N = 365 · 24 · 60 = 525, 600. We need to specify the random vector
μ= (μ1, . . . ,μK)� describing the number of occurrences of the individual traffic scenarios divided by
N . For the purpose of illustration, we specifically assume that two probability measures νg, νb are given
on {1, 2, . . . , K} which approximately correspond to the relative frequencies of traffic scenarios in two
prototypical years y = g, b. In addition, we suppose that the type y of the current year is random where
both values g and b have probability 1/2. Given y, we generate μ= (μ1, . . . ,μK)� from a multinomial
distribution corresponding to νy. That is, for all time buckets n = 1, 2, . . . , N, a traffic scenario k is
chosen independently from the distribution νy on {1, 2, . . . , K}. Dividing the number of occurrences of
a scenario k by N , one obtains its random relative frequency μk for any k = 1, 2, . . . , K. In our case
study, the distribution νg corresponds to lower traffic densities on average, while νb is associated with
higher traffic densities, that is, we set

νg :=
{

1/75, k = 1, 2, . . . , 50,

1/150, k = 51, 52, . . . , 100
, νb :=

{
1/150, k = 1, 2, . . . , 50,

1/75, k = 51, 52, . . . , 100.

Accident Data. The German Accident Atlas provided by Statistical Offices of the Federation and
the Länder (2022) depicts the locations of all police-reported accidents involving personal damage that
occurred within 1 year. In 2020, within the modeled area of Wildau (approximately) 48 accidents were
registered. There are also aggregate statistics for Germany for all police-reported accidents. In 2020,
approximately 11.8 % of all road accidents involved personal damage (see Statistisches Bundesamt,
2023). We use an estimate of c̄year = 48/11.8% ≈ 407 accidents for calibration purposes.

4.2. Model specification
Our goal is to analyze accident losses for a fleet � over the time horizon of 1 year.

Fleet Definition. In the Wildau scenario, vehicles are defined using repeated flows from origins to
destinations. Passenger cars (next to trucks and the train) are defined via 90 different flows. A flow
generates vehicles of a given type at a given position. From this position, they navigate to a specified
destination.

In SUMO, a passenger car represents a certain vehicle type. Initially, all passenger cars belong to
the same vehicle type and, consequently, have the same driving characteristics. To introduce a fleet �
of vehicles whose driving characteristics we can vary, we define a new vehicle type � and construct
corresponding new SUMO scenarios. Fixing a fraction ρ� ∈ [0, 1] of vehicles belonging to�, we retain
approximately 1 − ρ� of the existing flow definitions and modify ρ� of the flow definitions suitably in
order to model the fleet. In our case studies, we consider ρ� = 10%, 50%, 90%.

Driving Configuration. Vehicles in a fleet � are of the same type. Various characteristics can be
varied in SUMO; we focus on maximal speed vmax, maximal acceleration amax > 0, and time headway
ζ > 0. The time headway is the distance which is kept to the preceding vehicle measured in time, that is,
a velocity-weighted safety distance. We refer to a fixed selection of driving characteristics as a driving
configuration.
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In our case studies, we will vary the driving configuration for all vehicles in the fleet � and keep
all other vehicles as originally introduced; we use the implementation of an Intelligent Driver Model
without any speed deviation that does not include further random effects. A driving configuration of
vehicles in fleet � is denoted by ξ = (vmax, amax, ζ ). Specifically, we consider

ξ 1a = (
5 m/s, 0.8 m/s2, 3.0 s

)
, ξ 2a = (

10 m/s, 0.8 m/s2, 2.0 s
)

, ξ 3a = (
15 m/s, 0.8 m/s2, 1.0 s

)
,

ξ 1b = (
5 m/s, 2.6 m/s2, 3.0 s

)
, ξ 2b = (

10 m/s, 2.6 m/s2, 2.0 s
)

, ξ 3b = (
15 m/s, 2.6 m/s2, 1.0 s

)
.

The configurations 1,2,3 increase in terms of “aggressiveness” from driving slowly with a large headway
to fast with a small headway – with two options a and b for the maximal acceleration.

Remark 4.1. The specific choices are inspired by the following considerations: The implemented road
speed limit in Wildau is 50 km/h which is approximately 13.9 m/s. Vehicles in the original Wildau
scenario have a maximal acceleration of 0.8 m/s2, while SUMO’s default value is 2.6 m/s2. Similarly,
SUMO’s default time headway is 1.0 s.

Accident Occurrence. The best estimate for the total number of accidents in Wildau is c̄year ≈ 407.
From this, we derive a uniform and a nonuniform accident occurrence model. In both cases, we specify
accident probabilities p1,k and p2,k for the binomial model as well as accident intensities λ1,k and λ2,k for
the Poisson model.

(i) Uniform Accident Occurrence. Assuming that accidents occur uniformly over the year, we
obtain a probability per time bucket of an accident in the system of p1 = c̄year/N ≈ 7.7 × 10−4.
This is the accident probability that we allocate to each traffic scenario k. We also suppose that
accidents occur uniformly across all vehicles in the system. This implies that the probability
that any accident occurs in scenario k within the fleet � is

p�,1,k = ρ� · p1, k ∈ {1, . . . , K}.
This probability is used in the binomial model. For the Poisson model, we set λ�,1,k = p�,1,k,
k = 1, 2, . . . , K, since the intensity approximately equals the probability of an accident per
time bucket.

In the case of uniform accident occurrence, we do not consider any spatial variations of the
likelihood of accidents due to different traffic conditions. This means that we do not distinguish
any modules, that is, we set R = 1.

(ii) Non-Uniform Accident Occurrence. In reality, the likelihood of accidents depends on external
factors such as weather and local traffic conditions, for example, the velocity of vehicles and
traffic density. The quantities vary spatially and over time.

From SUMO runs, we obtain for each traffic scenario k = 1, 2, . . . , K and each module r =
1, 2, . . . , R pairs (dk

r , v̄k
r) on the average density and velocity. These statistics can be computed

in SUMO, for example, from data that are obtained at induction loop detectors which are placed
within the modules; as a proxy for density, we extract the occupancy of the loop detector, that
is, the fraction of time which it is occupied by a vehicle.

For r = 1, . . . , R, we choose benchmark values d∗
r and v̄∗

r for the density and velocity and
specify occurrence probabilities and intensities that vary spatially and over time:

λ�,2,k
r = p�,2,k

r := p�,1,k

R
· v̄k

r

v̄∗
r

· dk
r

d∗
r

· e−(ζ�−1), k ∈ {1, . . . , K}, r ∈ {1, . . . , R}.

The last term refers to deviations of the time headway from SUMO’s default value of 1.0 s: a
larger time headway is associated with less risky driving. We set p�,2,k =∑R

r=1 p�,2,k
r and λ�,2,k =∑R

r=1 λ
�,2,k
r .
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Figure 2. Partition of Wildau and placement of induction loop detectors.

In our case studies, we will consider a grid of R = 4 modules and compute dk
r and v̄k

r as
averages over measurements from 10 induction loop detectors that are placed in each mod-
ule (see also Figure 2). We use the scenario averages d∗

r = 1
K

∑K
k=1 dk

r and v̄∗
r = 1

K

∑K
k=1 v̄k

r . If∑K
k=1 E(μk)v̄k

r = v̄∗
r ,
∑K

k=1 E(μk)dk
r = d∗

r , and ζ� = 1, then we essentially recover on average the
case of uniform accident occurrence.

Accident Losses. The distributions Fk of accident losses associated with a traffic scenario k =
1, 2, . . . , K are constructed on the basis of traffic data that are extracted from the SUMO runs. The
general procedure was described in Section 2.2; here, we explain the specific implementation that we
use in our case studies.

The likelihood of accident occurrence was discussed in the previous section. Fk is the conditional
distribution of an accident loss in traffic scenario k if an accident occurs. Time in traffic scenario k is
enumerated by t ∈ [0, T], and we assume that the time τ of the accident conditional on its occurrence is
uniformly distributed on [0, T ], that is, τ ∼ Unif[0, T]. We choose a module R at random in which the
accident occurs and assume, respectively, that

P(R= r) = p�,·,k
r

p�,·,k , P(R= r) = λ�,·,k
r

λ�,·,k , r ∈ {1, . . . , R}.

These ratios depend in the case of nonuniform accident occurrence on the specific fleet, since the prop-
erties of the fleet alter the route file that is used to generate the SUMO scenarios; this is true, although
the multiplicative terms ρ� appear in both the numerator and denominator and cancel out.

In the chosen module, we pick one or more vehicles at random and extract from the traffic scenario
data for these vehicles. In our concrete implementation, we simply choose at time τ a single vehicle I
uniformly at random in module R, that is, its conditional distribution is

I | τ , R ∼ Unif
(M�

R(τ )
)

.

For the purpose of illustrating our approach, the only data we extract are the velocities vI of the randomly
chosen vehicles that are involved in accidents. We set ψ = vI and assume that the conditional loss dis-
tribution Fk,ψ is known (we assume that Fk,0 corresponds to a Dirac measure in 0; if M�

R(τ ) = ∅, we set
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ψ = 0, resulting in 0 losses). If we denote the distribution of ψ by Lk, we obtain the distribution Fk as
a mixture:

Fk =
∫

Fk,ψ dLk.

In our case studies, we will assume that Fk,ψ = Fψ for all k; however, the mixing distribution Lk will
depended on the traffic scenario k. We consider the following examples for Fψ :

(i) Gamma Distribution. We define distributions with varying levels of dispersion. A measure
for the dispersion of a random variable X is the coefficient of variation defined by cv =√

Var(X)/E(X). For cv ∈ {1/2, 1, 2}, we choose Fψ = �
(

1
c2

v
, 1

c2
vψ

2

)
. The expectation of this

distribution is ψ2 and increases quadratically with ψ , the velocity of the vehicle involved in an
accident; this is consistent with the fact that losses scale with kinetic energy. The variance of
the distribution Fψ equals c2

vψ
4; hence, the coefficient of variation is indeed cv.

(ii) Log-Normal Distribution. We consider log-normal distributions with expectation ψ2 and vari-
ance c2

vψ
4, implying that the coefficient of variation is again cv ∈ {1/2, 1, 2}. This log-normal

distribution is obtained as the distribution of exp(Z) for a normal random variable Z with
expectation ln (ψ2/

√
1 + c2

v) and variance ln
(
1 + c2

v

)
, that is,

Fψ = LN
(

ln

(
ψ 2√
1 + c2

v

)
, ln (1 + c2

v)

)
.

Remark 4.2. The conditional frequency and severity given traffic scenarios is an essential ingredient
to our modeling approach. Its flexibility comes from the fact that traffic can be micro-simulated, and
its impact on aggregate losses can be analyzed if conditional loss distributions are available. These
need to be studied in more detail on the basis of empirical data and structural considerations. This
paper focuses on an illustration of the simulation methodology. Reviews on different methodologies for
the assessment of accident frequencies and severities based on underlying covariates are provided by
Lord and Mannering (2010), Savolainen et al. (2011), Mannering and Bhat (2014), and Theofilatos and
Yannis (2014). Lian et al. (2020) reviews the use of big data for the analysis of traffic conditions and their
relationships to accident frequencies and severities. Retallack and Ostendorf (2019) review articles on
the relationship of traffic congestion and accidents. Malin et al. (2019) investigate the relative accident
risk of different road and weather conditions and combinations of conditions using data for major roads
in Finland; their analysis is based on the notion of Palm probability. Using generalized additive models,
Becker et al. (2022) quantify the combined effects of traffic volume and meteorological parameters on
probabilities of 78 different crash types. Comi et al. (2022) investigate the suitability of various data
mining techniques in analyzing the factors underlying accidents and predicting these in case studies
based on data collected in Rome.

4.3. Case studies
4.3.1. Overview
We illustrate our modeling approach in case studies on multiple levels. A selection of case studies is dis-
cussed in detail in Sections 4.3.2 & 4.3.3. All numerical results for the following choices are documented
online in tables in Appendix F:

(i) Fleet Models. We analyze six driving configurations with three different fleet proportions.
(ii) Accident Occurrence. In our traffic system, accidents occur uniformly or nonuniformly in space.

Their number is given by a binomial or a Poisson model with parameters depending on traffic
condition.
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(a) (b)

Figure 3. Impact of fleet size and driving configuration on the total loss L (solid lines represent
normalized values (left y-axis) and dashed lines unnormalized ones (right y-axis)).

(iii) Accident Losses. We study two parametric families of loss distributions with three different
choices for the coefficient of variation.

(iv) Insurance Design. Insurance losses are a function of the total losses; we distinguish three
contract designs.

Denoting aggregate losses by L, we evaluate for each type of insurance coverage h the resulting insur-
ance losses h(L) in terms of their expectation, variance, and skewness, and the monetary risk measures
Value-at-Risk and Average Value-at-Risk, also called Expected Shortfall. To analyze the distributions
in detail, we provide qq-plots and estimates of cumulative distribution functions (CDFs) and densities.
The main tool to access the random variable h(L) is Monte Carlo sampling; we provide a pseudocode
how we obtain samples of L in Algorithm 1 in Appendix E. In Section 4.3.3, we compare this approach
to the normal mean-variance mixture approximation introduced in Section 3.2.

This paper explores the analysis and management of risks that occur in vehicle fleets in traffic systems.
We distinguish to perspectives:

(i) The Engineering Perspective. In these case studies, we fix the accident occurrence and accident
loss distributions and vary the fleet models, that is, driving configurations and fleet proportions.
We focus on E(L), Var(L), and complement these with analyses of the performance of traffic
system.

(ii) The Actuarial Perspective. In these case studies, we fix the fleet model and vary accident occur-
rence and accident loss distributions as well as the insurance design. We study the distribution
of L and the insurance prices E(h(L)).

4.3.2. The engineering perspective
Our micro-modeling approach allows us to study the effects of different traffic-related controls on total
losses L; we investigate the effects of fleet size and traffic configuration. Throughout this section, we con-
sider nonuniform accident occurrence in the binomial model with Gamma-distributed accident losses
and a coefficient of variation cv = 1.

Losses. We evaluate expected loss E(L) and standard deviation std(L) for different fleet models. To
compare losses for different fleet sizes, we normalize losses per 100 expected insured vehicles: for each
traffic scenario k, the number of insured vehicles is the number of vehicles belonging to� as given in the
underlying route file. We refer to Appendix F for more details. The model specification was explained
in Section 4.2 which includes in particular a description of the driving configurations. The results are
documented in Figure 3. The solid lines are the normalized quantities.
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(a) (b)

Figure 4. Impact of fleet size and driving configuration on expectation and standard deviation of
average accident frequency (solid lines represent normalized values (left y-axis) and dashed lines
unnormalized ones (right y-axis)).

In Figure 3(a), we see that increasing the aggressiveness of driving increases both the total and
normalized expected loss. An impact of the maximal acceleration on losses is only substantial for the
most aggressive driving configurations ξ 3·. Increasing the fleet size increases the expected loss which
is primarily due to the fact that we count losses only within the fleet and a higher volume is associated
with higher losses. More interesting is the normalized case: apparently higher speeds also increase the
normalized losses.

In Figure 3(b), we have the corresponding standard deviations. Increasing the aggressiveness of driv-
ing increases the standard deviation of the total loss. The standard deviations of the normalized losses
are decreasing in the fleet size. The main reason is that fluctuations normalized for a fixed volume are
larger for smaller pools than for larger pools; a rational for this is provided by the law of large numbers
and the central limit theorem.

The frequency and severity of accidents are, of course, increasing in the aggressiveness of driving.
To demonstrate this, we evaluate the expectation and the standard deviation of the average accident
frequency

∑K
k=1 μ

kpk (both normalized and unnormalized) and the average accident severity
∑K

k=1 μ
kXk

1,
as displayed in Figures 4 and 5. A larger fleet increases frequency and, in aggressive scenarios, also
the expected accident severity. This is, of course, due to the specific choice of the driving behavior of
the considered fleets in comparison with the driving behavior of the remaining vehicles and does not
necessarily hold for all traffic systems in general. In this section, we discussed losses for selected special
cases. A comprehensive set of tables for all other cases and statistical functionals is provided online in
Appendix F.

Changing the characteristics of the fleet not only affects the losses. At the same time, this has an
impact on the performance of the traffic system. We present further results in Appendix C.

4.3.3. The actuarial perspective
From an actuarial perspective, it is relevant to understand the risk that corresponds to the insurance
losses. This requires a more detailed analysis of the probability distributions. To do this, we pick a
particular fleet model and use probabilistic techniques to evaluate the distribution of h(L). From now
on, we consider ρ� = 0.5 with driving configuration ξ 2a and nonuniform accident occurrence.

Distributional Analysis of Losses. We start our investigations with the total losses L. Table 1 shows
the evaluation of statistical functionals for different accident losses in the case of the binomial model.
These numbers quantify the risk entailed in the total losses. Both the distributional family and the chosen
coefficient of variation for the accident loss model have a substantial effect on the risk.
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Table 1. Statistical Functionals of L for ρ� = 0.5 and ζ 2a.

Binomial model

Gamma Log-normal

cv = 0.5 cv = 1.0 cv = 2.0 cv = 0.5 cv = 1.0 cv = 2.0
E(L) 1577.8 1571.5 1578.4 1581.7 1576.2 1582.7
Var(L) 160,179.5 247,943.9 626,190.6 162,067.5 247,069.8 614,713.4
ςL 0.333 0.561 0.993 0.377 0.660 2.152
VaR0.9(L) 2111.9 2219.1 2634.2 2112.9 2242.4 2526.6
ES0.9(L) 2331.7 2538.8 3233.3 2342.4 2557.5 3280.3
VaR0.95(L) 2275.9 2471.3 3070.5 2288.4 2468.1 2996.2
ES0.95(L) 2468.9 2748.0 3628.9 2491.4 2772.5 3838.4
VaR0.99(L) 2587.3 2891.3 3999.6 2608.8 2943.8 4228.6
ES0.99(L) 2755.9 3188.6 4490.2 2809.0 3234.4 5424.2
The statistical functionals of the total loss are approximated using 10,000 independent samples of L.

(a) (b)

Figure 5. Impact of fleet size and driving configuration on expectation and standard deviation of
average accident severity.

A visual impression of the distributions is provided in Figure 6. We compare different accident loss
models while fixing the coefficient of variation cv = 2. We plot the empirical distribution functions as
estimates of the CDF and a kernel density estimate of the corresponding densities. Moreover, Figure 6(c)
shows qq-plots for the quantiles of standardized values of the losses against quantiles of a standard
normal distribution (samples are standardized by subtracting their sample average and dividing by their
sample standard deviation).

We find that the binomial and the Poisson model do not differ too much. Yet, log-normal accident
losses produce heavier tails than the corresponding Gamma losses. The qq-plots reveal that the right
tails are heavier compared to a normal distribution, while the left tails are lighter. The latter observation
simply relates to the fact that the original losses are nonnegative, while the normal distribution takes
values on the whole real line.

In Figure 7, we analyze the impact of the coefficient of variation while fixing the log-normal distri-
bution for the accident losses. We see again that binomial and Poisson model do not differ substantially.
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(a) (b) (c)

Figure 6. Distribution of the total loss for fixed coefficient of variation cv = 2.

(a) (b) (c)

Figure 7. Distribution of the total loss for log-normal accident losses and varying coefficient of
variation.

However, the effect of the coefficient of variation is clearly visible: increasing cv produces heavier right
tails. Introducing dispersion to accident losses substantially changes the distribution of the total losses.

Comparison of Losses and Normal Mean-Variance Mixture Approximation. In Section 3.2, we
suggested a normal mean-variance mixture approximation for the total loss. To study the quality of this
approximation, we generate 10,000 samples from the approximation; in the following, we focus on the
case of Gamma-distributed accident losses with coefficient of variation cv = 1.

To sample from the approximation, we rely on the following computations of mk and (σ k)2. Using
E(1k

c) = pk and E(Xk
c ) =E(E(Xk

c |ψ)) =E(ψ2) = ∫
ψ 2dLk, we obtain for the Gamma losses mk = pk ·∫

ψ2dLk and (σ k)2 = pk · c4
v · ∫ ψ 4dLk ·

(
1 + 1

c2
v

)
1
c2

v
− (mk)2.

Remark 4.3. For the notation, we refer to Sections 3.2 & 4.2. The computations are valid for any
coefficient of variation cv, but we use only cv = 1 in the numerical case study.

The involved moments of ψ are approximated using 10,000 samples from the traffic simulation, for
each k = 1, . . . , K. A sample from the normal mean-variance mixture approximation is generated by,
first, samplingμ and, second (conditional onμ), sampling the normal random variable

∑K
k=1 Nμkmk + Z

with Z ∼N
(

0,
∑K

k=1 Nμk
(
σ k
)2
)

.

Figure 8 shows the qq-plot comparing quantiles of the crude Monte Carlo simulation with quantiles
of the approximation. This demonstrates the quality of our suggested approximation. It is almost exact
between the 5% and 95% quantile as the values lie on the half-line. It is still very good for the 1–5%
and 95–99% quantiles and is only less accurate in the extreme tails where also in the Monte Carlo
simulation only few data points are available. These analyses, on the one hand, confirm the postulated
structural model insight. On the other hand, they also validate the implementation of our crude Monte
Carlo sampling.
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Figure 8. QQ-Plot of 10,000 Monte Carlo samples (y-axis) versus 10,000 samples of mixture
approximation (x-axis) (the red dots mark the 1%, 5%, 10%, 90%, 95%, 99% quantiles).

Figure 9. Insurance prices.

Pricing and Evaluation Methods. To conclude our case studies, we study prices for various
insurance contracts. We compare E(L) (full coverage), E(max(L − θ , 0)) (constant deductible), and
E( min (L, θ )) (stop loss) for different values of θ . The results are given in Figure 9. We obtain the
typical hockey stick profiles satisfying the parity E(L) =E(max(L − θ , 0)) +E( min (L, θ )). We note
that other insurance contracts can easily be represented in our framework; also deductibles per accident
can be implemented by changing the accident loss distributions accordingly.

Besides Monte Carlo methods, our normal mean-variance mixture approximation, and the correction
suggested in Section 3.2 provide alternative techniques to compute the prices E(h(L)) for the different
types of coverage h. To compute the correction term Ch, we need to compute (ζ k)3 (for the notation we
refer to Sections 3.2 & 4.2). For Gamma-distributed losses, we obtain

(ζ k)3 = pk · c6
v ·
∫
ψ 6dLk ·

(
2 + 1

c2
v

)(
1 + 1

c2
v

)
1

c2
v

− 3mk(σ k)2 − (mk)3.

Since E(h(L)) =E(E(h(L) |μ)), we may generate samples of μ and evaluate the corresponding con-
ditional expectations E(h(L) |μ); in the normal mean-variance mixture approximation, these are
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(a) (b)

Figure 10. Comparison of estimation errors.

expectations of functions of normally distributed random variables. We compute these expectations
numerically as integrals with respect to Lebesgue measure using a normal density.

We compare the estimation errors of the different approaches in Figure 10. We produce 100,000 sam-
ples of L to approximate the “true” value of E(max(L − θ , 0)) of coverage with constant deductible, for
different values of θ . Independently, we generate 10,000 samples and consider Monte Carlo approxima-
tions based on all 10,000 samples and based only on the first 1000 samples. We also study the normal
mean-variance mixture approximation with and without correction using 1000 samples of μ.

While the absolute error generally decreases in the deductible θ for all methods (apart from some
local effects), the relative error increases for larger values of θ which are associated with a lower price of
the contract. At the same time, we observe that, in terms of the relative error, the normal mean-variance
mixture approximation produces reasonable estimation results (compared to 1000 samples) for moderate
values of θ . This is in line with our previous observations on the quality of our normal mean-variance
mixture approximation which becomes worse in the extreme tail of L. Interestingly, the estimation error
can largely be reduced using the correction; with the correction, the estimation becomes quite good even
for large values of θ .

5. Conclusion
This paper developed a methodology to study accident losses based on microscopic traffic simulators.
An adaption of the digital twin paradigm enabled us to test the impact of fleet sizes and their driving
configuration on system efficiency, accident losses, and insurance premiums. It was shown that – on a
1-year horizon – total losses can be approximated by a mean-variance mixture of normal distributions.
This offered an alternative technique to evaluate the model; the numerical efficiency can be increased
adding a correction term that is derived by Stein’s method. The proposed methodology can be extended
and modified, for example, and utilized to study future traffic systems. We illustrated in counterfactual
case studies that were based on the software SUMO how accident risk can be successfully analyzed,
both from an engineering and an actuarial perspective.

Future research should also address the important issues of calibration and validation. While real data
can be used to calibrate models that describe historical and current transportation systems, simulation
models that generate artificial data are essential to evaluate new technologies in future transportation
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systems. An important question is to what extent and how historical data can be methodically used to
calibrate and validate such simulation models. For example, real microscopic traffic data, for example,
on accident patterns, collected by means of telematics technologies, could be applied to optimize models
in the future. The comparison of simulated and real data will also allow to investigate the impact of traffic
conditions on accident occurrence, financial losses, and the probability distributions thereof.

Supplementary material
To view supplementary material for this article, please visit https://doi.org/10.1017/asb.2023.36
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