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Universitat de Barcelona, Gran Via 585,
08007 Barcelona, Spain

e-mail: carloscurrasbosch@ub.edu

(Received 11 June 2013; accepted 14 January 2014; first published online 18 December 2014)

Abstract. Any singular level of a completely integrable system (c.i.s.) with non-
degenerate singularities has a singular affine structure. We shall show how to construct a
simple c.i.s. around the level, having the above affine structure. The cotangent bundle of
the desingularized level is used to perform the construction, and the c.i.s. obtained looks
like the simplest one associated to the affine structure. This method of construction
is used to provide several examples of c.i.s. with different kinds of non-degenerate
singularities.

Mathematics Subject Classification. 53D05, 37J35, 37G05

1. Introduction. Let (M2n, ω, F) be a non-degenerate integrable system. This
means that (M2n, ω) is a symplectic manifold and F = (f1, . . . , fn) is a proper moment
map, which is non-singular almost everywhere, and its singularities are of Morse-Bott
type.

The �n-action generated by the Hamiltonian vector fields Hf1 , . . . , Hfn gives a
singular Lagrangian foliation on (M2n, ω). Any leaf is an orbit of this actions. At the
same time, any connected component of F−1(c) is a level. We know that the regular
levels are n-dimensional tori and the singular levels are finite union of several leaves.

A semilocal classification of such integrable systems is still open. It consists in
finding a complete system of invariants describing symplectically a neighborhood of
a level. Some approaches to solve this question has been currently made, see [4, 13,
15–17]. As the local description of non-degenerate singularities is given in terms of
products of elliptic, hyperbolic and focus-focus components, the number of elliptic,
hyperbolic and focus-focus components at each point of the level will play an essential
role in the classification problem.

As in the regular case, the Hamiltonian vector fields Hf1 , . . . , Hfn endow any leaf
and any level with an affine structure with singularities. In studying the semi-local
classification, we have seen that this affine structure gives strong conditions on the set
of invariants that we have found. Our proposal in this paper is to prove that from this
affine structure we can construct a completely integrable system around a given level
L0 of (M2n, ω, F), such that the induced affine structure on L0 is the given one. This
construction looks like the simplest one with the given affine structure on L0.

As the ‘1-jet’ of the former completely integrable system (c.i.s. from now on) and
the one constructed in this way coincide, it makes sense to denote this c.i.s. as the
linearized c.i.s. of the initial one.
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This process of construction of the linearized c.i.s. indicates us a way to construct
c.i.s. with prescribed non-degenerate singularities along a given singular level. Some
examples of construction are given.

I would like to express my gratitude to Pierre Molino for interesting and fruitful
conversations on this subject.

2. Definition and basic properties.

2.1. Local expressions. Let (M2n, ω, f1, . . . , fn) be an integrable system, i.e.
(M2n, ω) is a symplectic manifold. The functions f1, . . . , fn are Poisson commuting
(first integrals of a given Hamiltonian system), such that df1 ∧ · · · ∧ dfn �= 0 on a dense
subset of M2n, and the moment map F : M2n −→ �n, F = (f1, . . . , fn), is proper.

Such an integrable system is said to be non-degenerate if, in a neighborhood of
each point p0 ∈ M2n, there exist canonical coordinates (x1, y1, . . . , xn, yn), and n local
functions h1, . . . , hn, which have one of the following expressions:

hi = yi (regular terms),

hi = (xi)2 + (yi)2 (elliptic terms),

hi = xiyi (hyperbolic terms),{
hi = xiyi + xi+1yi+1

hi+1 = xiyi+1 − yixi+1
(focus-focus terms),

such that:

(1) f1, . . . , fn Poisson commute with h1, . . . , hn.
(2) {j2

p0
f1, . . . , j2

p0
fn} and {j2

p0
h1, . . . , j2

p0
hn} generate the same space of 2-jets at p0.

This notion of non-degeneracy implies obvious conditions on the space of 2-
jets generated at each point by f1, . . . , fn. Conversely, assuming these infinitesimal
conditions, the existence of such adapted coordinates is an important result, due
to H. Eliasson [9]. The demonstration has been completed by E. Miranda [13] and
E. Miranda & V. N. San [14]. Adapted coordinates will be referred to as Eliasson
coordinates, or simply E-coordinates.

We denote as L the Lagrangian singular foliation associated to this c.i.s., i.e. the
leaves of L are the orbits of the �n-action generated by Hf1 , . . . , Hfn .

From a practical point of view, one can locally look at (M2n, ω,L) as (�2n, ω0,L0),
where ω0 is the standard symplectic two-form on �2n and L0 is given by dhi = 0,
i = 1, . . . , n.

Let L0 be a singular level, and p0 a point of L0. By taking E-coordinates around
p0 we have the following characteristic numbers of the point p0: the numbers ke, kh

and kf correspond to the number of elliptic, hyperbolic and focus-focus terms of the
set (h1, . . . , hn). The leaf through p0 is �c × �o, and the numbers c and o are called the
degrees of closedness and openness of the leaf, respectively.

Following Zung (see [20]), the 5-tuple (ke, kh, kf , c, o) is called the leaf-type and
(ke, kh, kf ) the Williamson type of p0. In general one has ke + kh + 2kf + c + o = n. In
[20] it is proved that the three numbers ke, kf + c, kh + kk + o, are invariants of each
level. These numbers are known as the degrees of ellipticity, closedness and openness
of the level.
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Summarizing, one can say that a singular level L0 is a compact (n − ke)-manifold,
with self-intersections provided with a manifold structure of dimension less than (n −
ke). This level is endowed with a non-degenerate �n−ke -action. Non-degenerate action
means that the isotropy of this action at each point is linearizable.

Let L0 be a singular level of a c.i.s. (M2n, ω, F); it is known that the degree of
ellipticity ke is the same at all the points of L0. Associated to this degree of ellipticity,
we have a Hamiltonian �ke -action in a neighborhood of L0, such that the isotropy of
this action contains L0. Due to this, one can see, using for instance coordinates adapted
to this �ke -action, that the isotropy subset of this action is a symplectic submanifold
M2(n−ke) ⊂ M2n. This symplectic submanifold is obviously a neighborhood of L0 and
one has an induced c.i.s. on M2(n−ke) such that L0 is a singular level.

From this point, we can regard L0 as a singular level in the c.i.s. defined on M2(n−ke),
The degree of ellipticty in L0 is obviously zero. So, from now on we shall restrict our
attention to the case of singular levels with ke = 0. Once obtained the linearized model
in this case, a simple product with ke copies of the standard model in the unit disk E2

will produce, in general, the model that we are searching for.

2.2. Desingularized level. We assume that on the singular level L0, with singular
affine structure ∇0, the degree of ellipticity vanishes. In order to give a construction
of a ‘standard’ c.i.s., such that L0 is a singular level, and the induced singular affine
structure on it coincides with ∇0, we start by giving the construction of the so called
desingularized level.

As ke = 0 on L0, dim.L0 = n. Let ψ be a differentiable embedding of M2n in an
euclidean space �l. Let Lr

0 ⊂ L0 be the subset of regular points of L0, i.e., a point
p ∈ L0 lies in Lr

0 if and only if the rank of dF is equal to n at p. Note that Lr
0 is not, in

general, a connected submanifold.
Let Gn(�l) be the n-dimensional Grassmann manifold of �l. For any n-dimensional

vector subspace V of �l, let [V ] be corresponding class in Gn(�l).
We consider the following embedding of Lr

0 in M2n × Gn(�l) given by:

ϕ : Lr
0 ↪→ M2n × Gn(�l), p 	→ (p, [Tψ(p)(ψ(L0))]).

We define the desingularized level, L̂0 as the closure of ϕ(Lr
0) in M2n × Gn(�l).

Claim 2.1. L̂0 is a n-dimensional submanifold of M2n × Gn(�l)

Proof. Let q be a point of ϕ(Lr
0). As ϕ is an embedding, we have a n-dimensional

natural chart defined around q.
Let q = (p, [V ]) be a point in Cl(ϕ(Lr

0)) \ ϕ(Lr
0). Obviously p ∈ L0 \ Lr

0. We have
to provide a system of coordinates in a neighborhood of (p, [V ]). Let (kh, kf ) be
the Williamsom type of the point p. We know that there is a chart U in M2n,
with coordinates (x1, y1, . . . , xn, yn), centered at p, and L0 ∩ U is given by hi = 0,
i = 1, . . . , n, where the functions hi are in the form of Section 2.1. Let us have a look
at the tangent space to L0 at a point near to p: from the expressions of the functions
hi, we see

L0 ∩ U =
s∏

j=1

(Lj
0 ∩ Uj),

https://doi.org/10.1017/S001708951400038X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951400038X


418 CARLOS CURRÁS-BOSCH

where each Lj
0 ∩ Uj is of the form

(a) Uj = D2, with coordinates (xj, yj), hj = yj, and Lj
0 ∩ Uj is given by hj = 0. These

are the regular terms, and there are n − kh − 2kf regular terms.
(b) Uj = D2, with coordinates (xj, yj), hj = xjyj, and Lj

0 ∩ Uj is given by hj = 0
(hyperbolic term).

(c) Uj = D2 × D2, with coordinates (xj, yj, xj+1, yj+1), hj = xjyj + xj+1yj+1, hj+1 =
xjyj+1 − xj+1yj, and Lj

0 ∩ Uj is given by hj = hj+1 = 0 (focus-focus term).

According to this, we give a system of coordinates around (p, [V ]), by considering
the above three possibilities:

In the case (a)

T(xj,0)(L
j
0 ∩ Uj) =

〈
∂

∂xj

〉
,

where 〈 ∂
∂xj

〉 means the vector subspace generated by ∂
∂xj

.

In this case Lj
0 ∩ Uj is a regular submanifold,

T(0,0)(L
j
0 ∩ Uj) =

〈
∂

∂xj

〉

so, 〈 ∂
∂xj

〉 ⊂ V and we take the function xj as the coordinate, coming from the regular
term, in a neighborhood of (p, [V ]).

In the case (b)

T(0,yj)(L
j
0 ∩ Uj) =

〈
∂

∂yj

〉

or

T(xj,0)(L
j
0 ∩ Uj) =

〈
∂

∂xj

〉
.

At the point (0, 0) ∈ (Lj
0 ∩ Uj) we have

〈
∂

∂yj

〉 ⊂ V or
〈

∂
∂xj

〉 ⊂ V , so yj or xj will be used
as the coordinate, coming from the hyperbolic term, in a neighborhood of (p, [V ]). In
the case (c)

T(0,yj,0,yj+1)(L
j
0 ∩ Uj) =

〈
∂

∂yj
,

∂

∂yj+1

〉
,

or T(xj,0,xj+1,0)(L
j
0 ∩ Uj) =

〈
∂

∂xj
,

∂

∂xj+1

〉
,

at the point (0, 0, 0, 0) ∈ (Lj
0 ∩ Uj) we have

〈
∂

∂yj
, ∂

∂yj+1

〉 ⊂ V or〈
∂

∂xj
, ∂

∂xj+1

〉 ⊂ V , so (yj, yj+1) or (xj, xj+1) will be used as the coordinates, coming from
the focus-focus term, in a neighborhood of (p, [V ]).

The system of coordinates around (p, [V ]) is the result of summing up the above
coordinates, and it is quite obvious the compatibility of the charts defined in this form.
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The above considerations show us the C∞-structure of L̂0, and provide us good
systems of coordinates to use in the sequel. �

The map j : L̂0 −→ M2n given by j(p, [V ]) = p is differentiable, and we see that
j(L̂0) = L0. The preimage of any singular point on L0 consists of 2kh+kf points on L̂0.
This map is a Lagrangian immersion in (M2n, ω)

3. The singular cotangent model.

3.1. Affine structure on the desingularized level. The Poisson action of the local F-
basic functions defines a singular affine structure ∇0 on L0. On each leaf of the level, the
affine structure is defined by considering the infinitesimal generators of the �n-action as
parallel vector fields. This �n-action can be lifted in a natural way to L̂0. Note that this
lift is possible because the map j : L̂0 −→ M2n is an immersion. As the affine structure
on L0 is provided by the Hamiltonian vector fields Hf1 |L0 = X1, . . . , Hfn |L0 = Xn it
seems natural to write as X̂i, i = 1, . . . , n, the vector fields on L̂0 induced through the
immersion j, and ∇̂0 this affine structure.

By using the affine structure on L̂0 we are going to construct a completely integrable
system on (T∗L̂0, ω̂0), where ω̂0 is the standard symplectic two-form on T∗L̂0, and such
that the affine structure on L̂0, induced by this c.i.s. is ∇̂0.

In an ultimate step, by a process of gluing, using natural local identifications, we will
obtain a c.i.s., such that L0 is one level, and the affine structure on L0 will be ∇0.

3.2. A completely integrable system on T∗L̂0. We define n differentiable functions
g1,. . . ,gn on T∗L̂0 by

gi((p, [V ]), w) := 〈X̂i(p, [V ]), w〉

and we will prove that (T∗L̂0, ω̂0, (g1, . . . , gn)) is completely integrable. To do it, we
need only prove that {gi, gj}|0 = 0, where {., .}|0 means the standard Poisson bracket
in T∗L̂0. By a continuity argument, it will be sufficient to prove it at the points
((p, [V ]),−) ∈ T∗L̂0, where p is a regular point. We can take Eliasson coordinates
(x1, y1, . . . , xn, yn) around the point p, and as any basic function only depends on
(y1, . . . , yn) in a neighborhood of p, the expression of Hfi in this neighborhood will be
of the form

∑n
j=1

∂fi
∂yj

(0, . . . , 0) ∂
∂xj

, i.e. is a vector fields with constant coefficients (which
is obvious because the vector field is affine parallel).

Let α be the Liouville form on T∗L̂0. In this neighborhood, α = ∑n
i=1 x∗

i dxi,
gi = ∑n

k=1 x∗
k

∂fi
∂yk

(0, . . . , 0), so dgi = ∑n
k=1

∂fi
∂yk

(0, . . . ., 0)dx∗
k, and obviously

�0(dgi, dgj) = 0.

Once we know that (T∗L̂0, ω̂0, (g1, . . . , gn)) is completely integrable, we remark
that, in general, is not proper: let us assume, for instance that dim.L0 = 1, and let p be
a hyperbolic point, we can write ω0 = dx ∧ dy, and h = xy, then {x = 0} is a leaf.

For further considerations it seems suitable to look at the local expressions of the
above functions gi (i = 1, . . . , n): let (p, [V ]) be a point in L̂0, where p is a point of L0

of Williamson type (kh, kf ), and let r be the number of regular terms at p. This means
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that in a system of E-coordinates (x1, . . . , yn) around p, we have

hi = yi, i = 1, . . . , r (regular terms),

hi = xiyi, i = r + 1, .., r + kh (hyperbolic terms),

{
hi = xiyi + xi+1yi+1

hi+1 = xiyi+1 − xi+1yi
i = r + kh + 1, . . . , r + kh + 2kf − 1 (focus-focus terms).

According to the proof of Claim 2.1, we can assume, without loss of generality,
that

V =
r⊕

i=1

〈
∂

∂xi

〉 r+kh⊕
i=r+1

〈
∂

∂xi

〉 r+kh+2kf⊕
i=r+kh+1

〈
∂

∂xi
,

∂

∂xi+1

〉

So, the system of coordinates that we consider around (p, [V ]) is

(x1, . . . , xr; xr+1, . . . , xr+kh ; xr+kh+1, . . . , xr+kh+2kf ).

In the above neighborhood of p ∈ M, any function fi can be expressed as

fi = fi(h1, . . . , hn),

so the expression of dfi is

dfi =
n∑

j=1

Djfi · dhj

and as the coefficients of this last expression are constant on each level, we have that
in L0

Hfi |L0 =
n∑

j=1

a(i)
j · Hhj |L0 , a(i)

j ∈ �.

The determinant of the matrix (a(i)
j ) being non zero.

Finally, in the cotangent space of the above neighborhood of (p, [V ]), endowed
with canonical coordinates

(x1, x∗
1, . . . , xr, x∗

r ; xr+1, x∗
r+1, . . . ; xr+kh+1, x∗

r+kh+1, xr+kh+2, x∗
r+kh+2, . . .)

the expression of gi is

gi = a(i)
1 x∗

1 + · · · + a(i)
r+1xr+1x∗

r+1 + · · · + a(i)
r+kh+1(xr+kh+1x∗

r+kh+1 + xr+kh+2x∗
r+kh+2)

+ a(i)
r+kh+2(xr+kh+1x∗

r+kh+2 − xr+kh+2x∗
r+kh+1). (1)
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3.3. The singular cotangent model. In order to have a proper completely
integrable system around the level L0 we have to define appropriate identifications
between the germs of T∗L̂0 at the different preimages j−1(p) for any singular point
p ∈ L0, and we will obtain a germ of c.i.s. around L0. To do it, we start by describing a
neighborhood in L0 of any singular point. We shall see that such a neighborhood admits
a canonical decomposition as product of three terms, one corresponding to the regular
part, one corresponding to the hyperbolic terms and the third one corresponding to
the focus-focus terms.

Let p be a singular point of rank r = n − (kh + 2kf ). We know that there is a system
of E-coordinates around p, and centered at p,

(x1, . . . , xr, y1, . . . , yr; xr+1, yr+1, . . . .; xr+kh+1, xr+kh+2, yr+kh+1, yr+kh+2, . . .)

such that (x1, . . . , xr, y1, . . . , yr) corresponds to the regular part, (xr+1, yr+1),
. . . , (xr+kh , yr+kh ) are associated to the hyperbolic branches, and
(xr+kh+1, xr+kh+2, yr+kh+1, yr+kh+2), . . . , (xr+kh+2kf −1, xr+kh+2kf , yr+kh+2kf −1, yr+kh+2kf )
correspond to the focus-focus branches.

We point out the following important remark: for any two systems of E-coordinates
around the same point p, one can see that the axes through p, given by the following
expressions, do not depend on the chosen system of E-coordinates around p. These axes
are given by

{(0, . . . , 0, xr+1, 0, . . . , 0)} ∪ {(0, . . . , 0, 0, yr+1, 0, . . . , 0)}
. . . . . .

{(0, . . . , 0, xr+kh , 0, . . . , 0)} ∪ {(0, . . . , 0, yr+kh , 0, . . . , 0)}

these pairs of axes correspond to the hyperbolic components.
To see it one can observe that if {x′

1, y′
1, . . .} is another system of E-coordinates

around p. We can assume that a local affine parallel vector field like

X ′ = x′
r+1

∂

∂x′
r+1

− y′
r+1

∂

∂y′
r+1

restricted to the level through p is expressed by a linear combination with more than
one hyperbolic or focus-focus affine parallel vector field, let us assume, for instance,
that its expression on the level is

X ′ = a
(

xi
∂

∂xi
− yi

∂

∂yi

)
+ b

(
xj

∂

∂xj
− yj

∂

∂yj

)
, i, j = r + 1, . . . , r + kh

for some non-zero constants a and b. By considering the locus of points where the
vector field vanishes we see that necessarily a or b must be zero. A similar argument
will exclude expressions of the type focus-focus in a decomposition like the above one.
So the axes above described, and characterized by the fact that the point p is in the
closure of the orbits of such vector field, so do not depend on the chosen E-coordinates.

We have just seen that any local affine vector field of the form

X ′ = x′
j

∂

∂x′
j
− y′

j
∂

∂y′
j
, j = r + 1, . . . , r + kh
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restricted to L0 verifies

X ′ = al

(
xl

∂

∂xl
− yl

∂

∂yl

)
(for a constant al), l = r + 1, . . . kh.

Summarizing this information for all the hyperbolic components, we have seen
that on the level L0, and after a reordering of the hyperbolic components, the relation
between the corresponding hyperbolic E-coordinates is

x′
i = bix

1
ai
i , y′

i = ciy
1
ai
i , i = r + 1, . . . , r + kh,

where ai, bi, ci are constants. Looking at the expression of dxi ∧ dyi which must
coincide with dx′

i ∧ dy′
i when xi = yi = x′

i = y′
i = 0, we see that ai = 1 and bi = 1

ci
.

In order to attain the main result, we will use that on L0 the coordinates x′
i, y′

i only
depend on xi, yi, (i = r + 1, . . . , r + kh), respectively.

Now we focus our study on the focus-focus part, and we shall give a similar result.
We shall prove that the pairs of planes

{(0, . . . , 0, xr+kh+1, xr+kh+2, 0, . . . , 0)} ∪ {(0, . . . , 0, yr+kh+1, yr+kh+2, 0 . . . , 0)}
. . .

{0, . . . , 0, xr+kh+2kf −1, 0, xr+kh+2kf , 0)} ∪ {(0, . . . , 0, yr+kh+2kf −1, 0, yr+kh+2kf )}

do not depend on the chosen E-coordinates. The proof is quite similar to the above
one. We just point out the main steps of the proof: recall that for each component of
the focus-focus part given by

{(0, . . . , 0, xl, xl+1, 0, . . . , 0)} ∪ {(0, . . . , 0, yl, yl+1, 0 . . . , 0)},
l = r + kh + 1, . . . , r + kh + 2kf − 1

the corresponding local basic functions are

hl = xlyl + xl+1yl+1, hl+1 = xlyl+1 − ylxl+1.

By using the complex coordinates (zl, zl+1), with zl := xl + ixl+1, zl+1 := yl + iyl+1. We
have

hl + ihl+1 = z̄l · zl+1.

The term of the canonical symplectic two-form is written as

dxl ∧ dyl + dxl+1 ∧ dyl+1 = Re (dz̄l ∧ dzl+1).

The Lagrangian foliation is obtained by considering the level surfaces of the function
z̄l · zl+1.

Using this complex coordinates (zl, zl+1), the level through the point (0, 0) is the
union of the planes {zl = 0} and {zl+1 = 0}.

The Hamiltonian vector field Hhl is

Hhl = zl
∂

∂zl
+ z̄l

∂

∂ z̄l
− zl+1

∂

∂zl+1
− z̄l+1

∂

∂ z̄l+1
,
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its flow is

ϕt(zl, zl+1) = (etzl, e−tzl+1).

With respect to hl+1, we see

Hhl+1 = izl
∂

∂zl
− iz̄l

∂

∂ z̄l
+ izl+1

∂

∂zl+1
− iz̄l+1

∂

∂ z̄l+1

Thus, its flow is

ψs(zl, zl+1) = (eiszl, eiszl+1).

Now, by considering a new system of E-coordinates, we can refer any focus-focus
component for these new E-coordinates, in complex notation, as (z′

l, z′
l+1), and then

look at the expressions of the local Hamiltonian vector fields corresponding to h′
l

and h′
l+1. A similar argument referred to the locus of points where such vector fields

vanish shows the coincidence up to order of the pair of planes (transverse planes)
corresponding to both systems of E-coordinates.

With this argument we have seen that on the level L0, and for any two pairs of
‘focus-focus’ functions corresponding to two systems of E-coordinates around the
point p, and after reordering it is verified

Hhl = aHh′
l
+ bHh′

l+1
, Hhl+1 = cHh′

l
+ dHh′

l+1
, l = r + 2kh + 1, . . .

for some constants a, b, c, d.
As the vector fields H ′

l+1 and Hl+1 are associated to a Hamiltonian S1-action, we
have c = 0, d = ±1, we may assume d = 1.

This means, by using inner contraction with the symplectic two-form, that
Im(d(z̄lzl+1))= Im(d(z̄′

lz
′
l+1)).

By using once more the inner contraction of Hhl = aHh′
l
+ bHh′

l+1
with the

symplectic two-form we have

Re(d(z̄lzl+1)) = a · Im(d(z̄′
lz

′
l+1)) + b · Re(d(z̄′

lz
′
l+1))

In the plane zl = 0 we have

Im(zl+1dz̄l) = Im(z′
l+1dz̄′

l)

Re(zl+1dz̄l) = a · Im(z′
l+1dz̄′

l) + b · Re(z′
l+1dz̄′

l)

In the plane zl+1 = 0 we have

Im(zldz̄l+1) = Im(z′
ldz̄′

l+1)

Re(zldz̄l+1) = a · Im(z′
ldz̄′

l+1) + b · Re(z′
ldz̄′

l+1)

By considering, for instance, the above equations corresponding to the plane
zl = 0, we obtain

Re(zldz̄l+1) = a · Im(zldz̄l+1) + b · Re(z′
ldz̄′

l+1) = a · Im(zldz̄l+1) + b · Re(zldz̄l+1)

because Re(zldz̄l+1) = Re(z′
ldz̄′

l+1), thus, we obtain

(1 − b) · Re(zldz̄l+1) = a · Im(zldz̄l+1)

so, necessarily a = 0 and b = 1.
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We have proved that on the union of planes {zl = 0} ∪ {zl+1 = 0} it is verified:

Hhl = Hh′
l

and Hhl+1 = Hh′
l+1

.

On {zl = 0 = z′
l}, this gives

izl+1
∂

∂zl+1
− iz̄l+1

∂

∂ z̄l+1
= iz′

l+1
∂

∂z′
l+1

− iz̄′
l+1

∂

∂ z̄′
l+1

zl+1
∂

∂zl+1
+ z̄l+1

∂

∂ z̄l+1
= z′

l+1
∂

∂z′
l+1

+ z̄′
l+1

∂

∂ z̄′
l+1

,

by taking the inner contraction of the above two terms with the symplectic two form
we see

zl+1dz̄l = z′
l+1dz̄′

l, on {zl = 0}.

In a similar way, we see that on {zl+1 = z′
l+1 = 0} we have

izl
∂

∂zl
− iz̄l

∂

∂ z̄l
= iz′

l
∂

∂z′
l
− iz̄′

l
∂

∂ z̄′
l

which gives

z̄ldzl+1 = z̄′
ldz′

l+1, on {zl+1 = 0}.

By a standard process of integration, one can see that the relations of the above
two systems of complex coordinates on {zl = z′

l = 0} ∪ {zl+1 = z′
l+1 = 0} is

z·l = eα+iβ · zl, for some constants α and β, on zl+1 = 0

z′
l+1 = eγ+iδ · z′

l+1, for some constants γ and δ, on zl = 0.

Finally, we remark that as the 1-forms z̄ldzl+1 and z̄′
ldz′

l+1 coincide on {zl+1 = 0}, we
have that dz̄l ∧ dzl+1 = dz̄′

l ∧ dz′
l+1 at the point zl = zl+1 = 0, so necessarily α + γ = 0

and β = δ.
So, for each focus-focus component, we have seen that the relation, on the level,

of two systems of E-coordinates is, up to order, given by

z′
l = eα+iβzl, z′

l+1 = e−α+iβzl+1.

So, for any two systems of E-coordinates, we know the coincidence of the pairs
of axes corresponding to the hyperbolic components, and the coincidence of the pairs
of planes corresponding to the focus-focus components; we are going to see that the
regular parts also coincide. To prove it we have to recall that on the level L0, the relations
between the corresponding hyperbolic and focus-focus components are given, as we
have just seen, by

x′
i = bixi, y′

i = 1
bi

yi, bi constant, i = r + 1, . . . , r + kh

https://doi.org/10.1017/S001708951400038X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951400038X


SINGULAR COTANGENT MODEL 425

for each hyperbolic component, and

z′
l = eαl+iβl zl, z′

l+1 = e−αl+iβl zl+1, αl and βl constants, l = r + 2kh + 1, . . .

for each focus-focus component.
As a direct consequence of this fact, we have that the regular parts of the level,

for both systems of E-coordinates are just the same. Of course, we can use the same
functions y1, . . . , yr for both systems of E-coordinates.

As the singular composition of each point is, in fact, a product of regular,
hyperbolic and focus-focus components, and we know the uniqueness up to order of
this decomposition, we have to show now how this identification is done in hyperbolic
and focus-focus cases. In the regular case the identification used will be trivial. To
explain it in a detailed form, we start by considering two simple type of singularities,
the hyperbolic and focus-focus cases, and finally we consider the general case.

3.3.1. Hyperbolic identification. Let (p, [V1]), (p, [V2]) ∈ L̂0, where p ∈ L0 is a
purely hyperbolic point (degree of hyperbolicity equal to one). Then in Eliasson
coordinates (x, y) around the point p in M, we may assume [V1] = [

〈
∂
∂x

〉
] and

[V2] = [
〈

∂
∂y

〉
]. Recalling Claim 2.1, we shall use x and y as a system of coordinates

in the chosen neighborhoods of (p, [V1]) and (p, [V2]) in L̂0.
We take the corresponding canonical coordinates in T∗L̂0 in two neighborhoods

U1 of ((p, [V1]), 0), U2 of ((p, [V2]), 0), and we denote them by (x, x∗) and (y, y∗),
respectively. Looking at the local expressions, that we have found previously for each
function gi, the basic functions will depend on xx∗ and yy∗, respectively, and the
canonical symplectic two forms are dx ∧ dx∗ and dy ∧ dy∗, respectively.

So, the symplectomorphism from U1 onto U2, we are searching for, is expressed
in these coordinates by

{
y = −x∗

y∗ = x
.

Note that this identification is determined by the fact that ω0( ∂
∂x , ∂

∂y ) > 0.
We have to check that this identification does not depend on the system of Eliasson

coordinates that we have chosen. At this point, we observe that two systems of E-
coordinates (x, y) and (x′, y′) around p, and restricted to the axes {x = 0} ∪ {y = 0} are
related unless a rotation of angle nπ

2 , by a change of the form

{
x′ = b · x
y′ = 1

b · y

and one can check easily that the above gluing is well defined, i.e. it is independent on
the E-coordinates that we have chosen.

3.3.2. Focus-focus identification. We can proceed in a similar way for two points
(p, [V1]), (p, [V2]), in the preimage of a focus-focus point p ∈ L0. Regarding to the proof
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of Claim 2.1 one can consider

[V1] =
[〈

∂

∂x1
,

∂

∂x2

〉]
, [V2] =

[〈
∂

∂y1
,

∂

∂y2

〉]
.

We take canonical coordinates in T∗L̂0 in two neighborhoods U1 of (p, [V1]) and U2

of (p, [V2]), and we denote them by (x1, x2, x∗
1, x∗

2) and (y1, y2, y∗
1, y∗

2), respectively. As
in the hyperbolic case, and attending to the local expressions of the functions gi, the
basic functions depend on x1x∗

1 + x2x∗
2,−x∗

1x2 + x1x∗
2 and y1y∗

1 + y2y∗
2,−y∗

1y2 + y1y∗
2,

respectively. So, the symplectomorphism from U1 to U2 we need is given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y1 = −x∗
1

y2 = −x∗
2

y∗
1 = x1

y∗
2 = x2

.

By using complex notation, as we made in the above considerations, we can take
z1 = x1 + ix2, z2 = y1 + iy2. We know that

h1 + ih2 = z̄1 · z2

ω0 = Re dz̄1 ∧ dz2

The Lagrangian foliation is given by the level surfaces of

z̄1 · z2.

The level through the point (0, 0) is the union of the planes {z1 = 0} and {z2 = 0}. The
neighborhoods U1 and U2 are neighborhoods of the origin at the planes {z2 = 0} and
{z1 = 0}, respectively. The identification map we consider is given by{

z2 = −z∗
1

z∗
2 = z1

.

Note that, as in the hyperbolic case, this identification is determined by the fact that
ω0( ∂

∂ z̄1
, ∂

∂z2
) > 0.

As in the hyperbolic case, we have to check that this identification does not depend
on the chosen system of E-coordinates.

We recall that the relations of the E-coordinates on the level in this case is given by

z′
1 = eα+iβzl, z′

2 = e−α+iβz2, α and β constants,

and one can check easily that the above gluing is well defined, i.e. it is independent on
the E-coordinates that we have chosen.

3.3.3. General identification. Let p be a point of L0 of Williamson type (kh, kf ).
Any system of E-coordinates around this point consists of r regular terms; following
the notation introduced in Section 2.1, there are r functions hi = yi, defined in a regular
block described by the coordinates (x1, y1, . . . , xr, yr). There are kh hyperbolic function
hi = xi · yi, this gives kh hyperbolic blocks, described by the coordinates (xi, yi). Finally,
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there are 2kf functions of the form hi = xiyi + xi+1yi+1, hi+1 = xiyi+1 − yixi+1, this
gives kf focus-focus blocks described by the coordinates (xi, xi+1, yi, yi+1).

According to this, we have a local description (in a neighborhood of p) of the affine
structure on a neighborhood of p in L0, by considering the restriction to L0 of the local
Hamiltonian vector fields corresponding to the functions hi. These Hamiltonian vector
fields are

∂

∂xi
in the regular case,

xi
∂

∂xi
− yi

∂

∂yi
in the hyperbolic case,

and the pair of vector fields xi
∂

∂xi
+ xi+1

∂

∂xi+1
− yi

∂

∂yi
− yi+1

∂

∂yi+1

−xi+1
∂

∂xi
+ xi

∂

∂xi+1
− yi+1

∂

∂yi
+ yi

∂

∂yi+1
in the focus-focus case.

Now let p̂ be a point of j−1(p). Recall that j−1(p) contains 2kh+kf points, and we
have a branch of L̂0 through any one of these points. Following Section 2.2 we can
express any point p̂ ∈ j−1(p) as p̂ = (p, [V ]),

V =
r⊕

i=1

〈
∂

∂xi

〉 r+kh⊕
i=r+1

〈
∂

∂αi

〉 r+kh+2kf −1⊕
i=r+kh+1

〈
∂

∂βi
,

∂

∂βi+1

〉
.

Any term ∂
∂αi

in a hyperbolic element means either ∂
∂xi

or ∂
∂yi

. By a similar convention,

any pair ∂
∂βi

, ∂
∂βi+1

is either ∂
∂xi

, ∂
∂xi+1

or ∂
∂yi

, ∂
∂yi+1

.

The system of coordinates to take in the branch of L̂0 through p̂ is

(x1, . . . , xr; αr+1, . . . , αr+kh ; βr+kh+1, . . . , βr+kh+2kk ).

REMARK 3.1. The branch through p̂ is the product of an open neighborhood of 0
in �r (the regular part of the branch) with kh copies of an open interval of �, which
are the hyperbolic elements, and finally kf copies of an open neighborhood of 0 in �2,
which are the focus-focus elements.

Note that the affine structure of the branch is described by the vector fields

∂

∂xi
, i = 1, . . . , r the regular part

xi
∂

∂xi
or − yi

∂

∂yi
, i = r + 1, . . . , r + kh the hyperbolic part.

And corresponding to the focus-focus part, we have one of the two pairs of vector
fields

xi
∂

∂xi
+ xi+1

∂

∂xi+1
, −xi+1

∂

∂xi
+ xi

∂

∂xi+1
or

−yi
∂

∂yi
− yi+1

∂

∂yi+1
, −yi+1

∂

∂yi
+ yi

∂

∂yi+1
, i = r + kh + 1, . . . , r + kh + 2kf − 1.
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Let us define now the local identification between two branches of L̂0 corresponding
to two points p̂1, p̂2 ∈ j−1(p). Each one of these branches is a product of regular,
hyperbolic and focus-focus components. The identification that we are searching for
will act trivially on the regular component. For the common hyperbolic elements, the
mapping to consider is obviously trivial, and if not the map is given by yi = −x∗

i , y∗
i =

xi. For the focus-focus elements we proceed in a similar form: we take the identity if
they coincide and if not we take the map given by

yi = −x∗
i , yi+1 = −x∗

i+1, y∗
i = xi, y∗

i+1 = xi+1.

REMARK 3.2. Note that the regular part and each one of the hyperbolic and
focus-focus elements are completely determined by the affine structure on L0.

Note that this last remark ensures the compatibility of the local identifications
defined.

At this point, we remark that the local expressions of the functions gi (look at (1)
in Section 3.2), are preserved by these gluings.

Summarizing, the gluing is well defined, and we remark that the local expressions
of the functions gi (look at (1) in Section 3.2), are preserved by these gluings.

Once we have shown how to identify the neighborhoods of the points in the same
preimage we get a germ of 2n-dimensional symplectic manifold (N, ω0) containing L0

as a singular Lagrangian submanifold. We have just seen that that the functions gi,
i = 1, . . . , n, can be projected to N. Let G1, . . . , Gn be the projected functions.

So, we have proved

THEOREM 3.1. (N, ω0, (G1, . . . , Gn)) is a completely integrable system, having L0 as
a singular level, and such that the singular affine structure on L0 is the initial one. This is
the c.i.s. that we say the linearized c.i.s. of the given (M2n, ω, (f1, . . . .fn)).

3.4. Construction of c.i.s. with prescribed singularities. As a sort of application
of the above considerations, let us point out how to give some c.i.s. with prescribed
singularities, around a singular level.

The intrinsic geometry of the level, i.e. the number and kind of singular points, is
obviously related with the kind of singularities along its singular points.

We show how to obtain a c.i.s. around a 2-dimensional singular level with a focus-
focus point and one circle of hyperbolic points:

Let us consider the 2-sphere S2. This manifold S2 will play the role of the
desingularized level, L̂0, of the above sections. We shall consider T∗S2 and two vector
fields, with singularities, which will be used to define two functions on T∗S2. These
functions have singularities at several points, and by furnishing the local identifications
at the corresponding singular points, we will get the c.i.s. around the singular
level.

Let θ (longitude) and ϕ (latitude) be polar coordinates on S2.The vector fields to
consider are: X = ∂

∂θ
and Y = h(ϕ) ∂

∂ϕ
. We have to give a “good”expression for h(ϕ),

obviously we take h(−π
2 ) = 0, h(π

2 ) = 0, and h(−π
4 ) = h(π

4 ) = 0. We consider four open
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subsets of S2

U1 =
{

(θ, ϕ) | − π

2
≤ ϕ < −π

2
+ ε

}
,

V1 =
{

(θ, ϕ) | − π

4
− ε < ϕ <

π

4
+ ε

}
,

V2 =
{

(θ, ϕ) | π

4
− ε < ϕ <

π

4
+ ε

}
,

U2 =
{

(θ, ϕ) | π

2
− ε < ϕ ≤ π

2

}
,

where ε < π
8 .

On U1 and U2we can take as coordinates the first two cartesian coordinates (x1, x2),
and consider the vector fields:

on U1, x1
∂

∂x1
+ x2

∂
∂x2

= − cos ϕ

sin ϕ
· ∂

∂ϕ
and −x2

∂
∂x1

+ x1
∂

∂x2
= ∂

∂θ
,

on U2, −x1
∂

∂x1
− x2

∂
∂x2

= cos ϕ

sin ϕ
· ∂

∂ϕ
and −x2

∂
∂x1

+ x1
∂

∂x2
= ∂

∂θ
.

On V1 and V2 we can take (θ, ϕ) as coordinates and the following vector fields:

on V1, −(ϕ + π
4 ) ∂

∂ϕ
and ∂

∂θ
,

on V2, (ϕ − π
4 ) ∂

∂ϕ
and ∂

∂θ
.

Now we see that the function h(ϕ) we are searching for can be a differentiable
function of ϕ, such that its values in U1, V1, U2, V2 are the above prescribed and not
vanishing on S2 \ (U1 ∪ V1 ∪ U2 ∪ V2).

Finally, we consider on T∗S2 the pair of functions f, g associated to the
vector fields X, Y , defined as follows: for any point (z, w) ∈ T∗S2, f (z, w) :=
〈X(z), w〉, g(z, w) := 〈Y (z), w〉. The c.i.s. we are searching for is obtained by a
process of gluing from (T∗S2, ω0, (f, g)). This gluing can be easily established by
defining two symplectomorphisms: one of them is a local symplectomorphism
between (T∗U1, (x1 = 0, x2 = 0, 0, 0)) and (T∗U2, (X1 = 0, X2 = 0, 0, 0)). We recall
(see hyperbolic gluing in Section 3.2) that the mapping is given by

(x1, x2, y1, y2) 	−→ (X1 = −y1, X2 = −y2, Y1 = x1, Y2 = x2).

The other symplectomorphism we need to realize the gluing is a semi-
local symplectomorphism from (T∗V1, (θ, ϕ = −π

4 , 0, 0)) in T∗V2, (θ, ϕ = π
4 , 0, 0)),

described as follows: on T∗V1 we take (θ, ϕ + π
4 ,�,�) as canonical coordinates. In

the same form, we take (θ̄ = θ, ϕ̄ − π
4 = ϕ − π

4 , �̄ = �, �̄) as canonical coordinates
in T∗V2. The symplectomorphism we need to define the gluing is

(
θ, ϕ + π

4
,�,�

)
	−→

(
θ̄ = θ, ϕ̄ − π

4
= �, �̄ = �, �̄ = −

(
ϕ + π

4

))
.

Thus, the quotient of a germ of neighborhood of S2 in T∗S2, by using these
identifications provides us a germ of completely integrable system around a level
having one singular point of focus-focus type and one circle of hyperbolic points.

One sees from this construction that the same arguments can serve to give c.i.s.
with several points of focus-focus type; it should be necessary to use different copies of
S2 and define a gluing by using the poles alternatively. The above construction suggests
different ways of having circles of hyperbolic points in the level.
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