Y. Miyata
Nagoya Math, J.
Vol. 111 (1988), 165-171

ON THE ISOMORPHISM CLASS OF THE RING OF
ALL INTEGERS OF A CYCLIC WILDLY RAMIFIED
EXTENSION OF DEGREE p II

YOSHIMASA MIYATA

Let & be an algebraic number field with the ring of integers o, =0
and let G be a cyclic group of order p, an odd prime. Let K/k be a cyclic
extension of degree p with the ring of integers O,. Then, O, is an oG-
module. In the case that K/k is tamely ramified, L. McCulloh [3] proved
that the subset R(0G) of the classes cl () of the rings © in the class
group CI°(0G) is equal to the subgroup CI°(0G)” generated by all ¢ ce
CI’(0G), a €, where J denotes the Stickelberger ideal (for the definitions,
see below).

Now, in the previous paper [4], we studied the case that K/k is
wildly ramified. Let I'(©) be the genus containing ©. From H. Jacobinski’s
results [2], we know that there exists a one-to-one corresponding between
the isomorphism classes in () and the elements of the class group M
(for the definition, see also below). The group 4 of automorphisms of G
acts on M and so M’ can be defined as in the group Cl%(0G). In [4], we
defined the invariant N(O) which is an element of M, and showed that
N(Q) ¢ M’ (cf. [4, Theorem 4]). The purpose of this paper is to prove that
the subset R,(0G) of invariants N(O) of the rings O in the wildly ramified
extensions K/k of degree p is equal to M’ (Theorem 3).

Let g be a fixed generator of G and { be a primitive p-th root of
unity. Throughout this paper, we assume that k contains {. In Section
1, we shall recall the definitions given in [4], and prove Theorem 1 which
is the modification of Theorem 4 of [4]. In Section 2, we shall recall
L. McCulloh’s results [3] and define a 4-homomorphism + from Cl°(0G)
onto M. This homomorphism + plays the important role in the proof of
Theorem 3 that R, (0G) = MY, which is proved in Section 3.
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§1.

Let K/k be a cyclic wildly ramified extension of degree p and let G
be a cyclic group of order p. We can view G as Galois group G(K/k) of
K/k. In this section, we call definitions and Theorem 4 of [4]. For a
prime ideal p of o, let %, be the p-adic completion of 2 with the valuation
ring 0,, and let K, = k£, ®, K and O, = 0,®,90. Denote by =(p) (=) and
e(p) (= e) a prime element and the absolute ramification index of %, re-
spectively. We denote by c(p) the ramification number of K,/k,. Then, it is
well known that — 1 < c(p) < pe(p)/(p — 1). Let P, = P(K) (P, = P(K))
be a product [[p of p such that p|(p) and 0 < c(p) < pe(p)/(p — 1) — 1

(c(p) = — 1), respectively, and let P = P,P,. As in [4], define integers
d(p) by
d(o) = {pe(p)/(p —1) —c(p  for p|P,
pe(®)/(p — 1) for p| Py,

Moreover, for 0 < i < p, integers m,(p) are defined by
my(p) = [id (p)/p],

where [x] denotes an integer with [x] < x < [x] + 1.

Now, we define 0,G-modules L, and an oG-module L. Let E, be an
primitive idempotent of kG with gE;, = {'E, for0 < i <p. For 0<i<p
and p|P,, let

at) = =~ (35 (5)— v,

and a(p) = 1. We define 0,G-modules L, as follows:

(a) For pfP, L, = 0,® (3 0E).

() For p|P, L, = 3 0,ap).

(¢) For p|P, L, = (1/p)o,G.

Then, it is easily known that there exists an 0G-module L in kG such
that 0,®,L =L, for each p (for example, see [5, p. 70 (5.3) Theorem]).
Denote by I'(L) a genus including L. By the definition of L, we have
el (cf. [4, Lemma T7]).

Next, we define a class group M. Let X be a character of G with
Xg)=¢ and X = {X, %% ---,x*""}. Let I be the group of fractional ideals
of k relatively prime to P and let Map (X, I) be the group of functions
from X into I. As in [3], an automorphism ¢ in 4 (= Aut G) acts on X
and Map (X, I) as follows:
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(1) 1%(g) = x(g’") and nr’(X") = n(X*""), neMap(X, I).

Let Z4 be the group ring over the ring of integers Z and an element 4
of Z4 be

0 =73 o),

fe1
where g° = g‘® with 1 < #(6) < p. Let the Stickelberger ideal J of Z4 be
J=(p0-ZA) N Z4.
An element @ of kG is written in the form;
a=aFE +ak + --- +a, E,_,.
From [4, Lemmas 4 and 5], we have

Lemma 1. Let Aut L, be the group of 0,G-automorphisms of L,. Then,
if a e AutL, for each p|P, ay, ---,a,., are P-units.

Let H be defined by
H = {a ekGla e Aut L, for p|P and a, = 1},

and so by [4, Corollary 2], H is 4d-invariant. Then, we can define a 4-
homomorphism f from H into Map (X, I) such that

f(@X) = a0.
The class group M is defined by
M = Map (X, DIf(H) .

Lemma 2. For neMap (X, I), let cln denote a natural image of n in
M. Then, there exists an element m of Map (X, I) such that (m(X*),(p)) =1
and clm = cln.

Proof. Let A be a left order of L:
A={eeckGleL S L}.

Let an ideal § of o be the order ideal of the factor module (3] oE;)/4 (for
the definition, see [5, p.49]). By the definition of L, the set of prime di-
visors of f is the set of prime divisors of P. Let S be

S = {a e kG|aE,; = 1(f) for 0 < i < p}.
Then, by H. Jacobinski’s results {2, p. 8], we have H 2 S. Every coset of
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the ray R(f) mod f in I contains infinite many primes (for example, see
[4, p. 215]). Thus, we can choose ideals m(X*) such that m(x’) and n(x*) be
in the same coset of R(f) in I and (m(*),(p)) = 1. Since H2 S, cln =
cl m, which completes the proof of Lemma 2.

Finally, we remember the definition of N(D). From [4, Lemma 1],
there exists an element « of O such that «” €0 and for p|P,

(2) a” = 1 (z(p)*?).
Then, for 1 < i <p,
(3) (a'?) = bye;?,

where b, is a p-power free integral ideal and ¢, is a fractional ideal. By
(2), (c;, P) =1 and so an element n(O) of Map(X, I) is defined by n()(x%)
=¢;. Let N(©O) be the natural image cl(n(D)) of n(O) in M.

From [4, Theorem 4], we have the following theorem.

TuHEOREM 1. Let K|k be a wildly ramified extension of degree p with
the discriminant dis (K/k). Let L and M be as above, and let J be the
Stickelberger ideal in Z4. Then,

(i) NO)e M’ and

(ii) for given ideal a of o with (a, (p)) = 1, there exists a wildly ramified
extension K'|k of degree p such that &' e I'(L) = I'(9) and (dis (K'/k), a) = 1.

Proof. (i) of Theorem 1 is Theorem 4 of [4] and hence its proof is
done. Next, we prove (ii). Taking sufficiently large integers n(p) for
pla(p), we choose an element b of o such that for p|(p), b= a®(a(p)*®)
and for pla,

(4) b = 1x(p)"®) .

Let =2y b and K’ = k(). Then, we see that for p|(p), the ramification
number of K’/k is equal to the ramification number of K/k. Thus, by [4,
Corollary 1], &' eI'(L). As in (8), let (8?) = bc=?* Then, if p|dis (K'[k)
and (p, (p)) = 1, p is a prime divisor of b (for example, see [1, p. 91 Lemma
5]). By (4), (6,a) = 1 and so (dis(K'[k), a) = 1, which completes the proof
of Theorem 1.

§2.
In this section, we recall L. McCulloh’s results [3], Let X' = (X"} U X,
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and I’ be the group of fractional ideals of o relatively prime to (p). Let
0, be the semilocalisation of o at p, and denote by w(0,G) the group of
units of the ring 0,G. We define a homomorphism f from u(o,G) into
Map (X', I') by

(@) = 2a)o .

Then, the class group Cl(vG) of oG is isomorphic to the factor group
Map (X, I)/f (w(0,G)). We extend an element n of Map (X, I’) to an element
of Map (X, I’) by setting n(X") = o0, and hence we can view Map (X, I') as
a subgroup of Map(X’,I’). Let ¢ be the natural homomorphism from
Map (X, I’) into Map (X’, I')/f(u(0,G)). Then,

Ker ¢ = {f(a)|a € w(0,G) and ek, is a unit of o}.

By [3, (2.3.2) Proposition], we have ¢ (Map (X, I’)) = CI°(0G). Let T be a
subgroup of u(0,G) consisting of elements a in u(0,G) with aE, = 1. Then,
clearly, f(T) = Ker ¢.

LemMa 3. Let T be as above and H be as in Section1l. Then, T C H.

Proof. An element of T is clearly an automorphism of L, for each
p|P, and so T C H by the definition of H.

Now, noting I’ € I, we have a 4-homomorphism ' from Map (X, I’) into
Map (X, I). Then, it follows that | induces a 4-homomorphism  from
CI’(0G) into M since T and H are 4-groups. Then, we have

Lemma 4. 4 (CI°0G)) = M.

Proof. By Lemma 2, for clne M, there exists an element m of
Map (X, I) such that (m(x%),(p)) =1 and cln=clm in M. Then, me
Map (X, I’) and so cln = y(cl m) € (C1(0G)).

Since + is a 4-homomorphism, we have
CoroLLARY 1.  (CI'(0G)’) = M”.

We conclude this section with stating L. McCulloh’s Theorem [3,
(1.3.1) Theorem].

TeEOREM 2. Let G be a cyclic group of order p, and J be the Stick-
elberger ideal. Define a subset R(0G) of Cl°(0G) by

R(0G) = {cl(Dx)|K runs over the set of tame extensions of degree p}.
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Then, R(0G) = C1%0G)’. Moreover, given m € Cl° (0G)’ and an ideal a of o,
there exists a tame extension K[k such that (dis (K/k), @) = 1 and cl(D) = m.

§3.

In this section, we prove Theorem 3, which is the aim of this paper.

THEOREM 3. Let G be a cyclic group of order p and K be a wildly
ramified extension of degree p. Let L and I'(L)( = I'(D)) be as in Section
1. Define a subset R, (0G) of M by

R, (0G) = {N(D) | is the ring of a wildly ramified extension K'[k
of degree p with O’ e I'(L)}.

Then, R, (0G) = M’. Moreover, given me M’ and an ideal a of o with
(a, (p)) = 1, there exists a wildly ramified extension K|k such that
(dis (K/k), a) = 1 and N(Q) = m.

Proof. By Theorem 1, we have R, (0G) & M’. In the following, we
have the existence of such a extension K/k as above. By (ii) of Theorem
1, there exists a wildly ramified extension K’[/k such that (dis(K'[k), a)
=1 and & el'(I). Let o’ be an element of O’ satisfying the congruences
(2). Then, as in (3), we have

(a’?) = bic;™? for 1Zi<p.

As shown in thz proof of Theorem 1, (0], a) = 1. Let n = ML) and m’
=n"'min M. Since ne M’ by Theorem 1 (i), we have m’e M’. Then,
by Corollary 1, for some cl (©") € C1°(0G)” (cl(D”)) = m’. By Theorem 2,
&£ can be chosen so that the discriminant of kO is relatively prime to

the product b of a, b}, ---,b,.,/. Moreover, as shown in the proof of [3,
(4.2.1) Theorem], there exists an element § of ©” such that g7 = 1 ((¢ — 1)").
Let

(B'") = bye;?,

where b, is p-power free, and so (b;,b) = 1 because (dis(kQ”/k), b) = 1.
Ideals ¢, define an element ¢ of Map (X, I’) by c(X*) =¢,. By [3, (3.2.2)
Theorem 3], cl (£”) = cl ¢, and hence

(5) m = 4 (cl IN(D) .

Now, let F' = k(«/B), and then F is clearly the extension of degree p over
k. The action of g on «'p is defined by g(a’f) = {a’S. Since k(B)/k is
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tamely ramified, the ramification number c¢'(p) of FJ/k is equal to the
ramification number c(p) of K/k for p|(p). Therefore, by [4, Corollary 1],
the ring O, of all integers in F belongs to the genus I'(L). We have

(a’.@)pi = bib,(cic,)?

and b, is p-power free because b/ and b are p-power free with (b}, b,) = 1.
Then, ideals ¢/, ¢; define an element n(O;) of Map (X, I) by m()(X") = cjc,,
and so m(Op) = ¢-m(L’). By the definition of N(Q) and (5), we have m =
N(Oy), which accomplishes the proof of Theorem 3.
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