Y. MiyataNagoya Math. J.Vol. 111 (1988), 165-171

ON THE ISOMORPHISM CLASS OF THE RING OF ALL INTEGERS OF A CYCLIC WILDLY RAMIFIED EXTENSION OF DEGREE p II

YOSHIMASA MIYATA

Let k be an algebraic number field with the ring of integers $o_k = 0$ and let G be a cyclic group of order p, an odd prime. Let K/k be a cyclic extension of degree p with the ring of integers \mathfrak{O}_K . Then, \mathfrak{O}_K is an \mathfrak{O}_K -module. In the case that K/k is tamely ramified, L. McCulloh [3] proved that the subset $R(\mathfrak{o}G)$ of the classes $\operatorname{cl}(\mathfrak{O})$ of the rings \mathfrak{O} in the class group $\operatorname{Cl}^{\mathfrak{o}}(\mathfrak{o}G)$ is equal to the subgroup $\operatorname{Cl}^{\mathfrak{o}}(\mathfrak{o}G)^J$ generated by all c^a , $c \in \operatorname{Cl}^{\mathfrak{o}}(\mathfrak{o}G)$, $a \in J$, where J denotes the Stickelberger ideal (for the definitions, see below).

Now, in the previous paper [4], we studied the case that K/k is wildly ramified. Let $\Gamma(\mathfrak{Q})$ be the genus containing \mathfrak{Q} . From H. Jacobinski's results [2], we know that there exists a one-to-one corresponding between the isomorphism classes in $\Gamma(\mathfrak{Q})$ and the elements of the class group M (for the definition, see also below). The group Δ of automorphisms of G acts on M and so M^J can be defined as in the group $\mathrm{Cl}^0(\mathfrak{o}G)$. In [4], we defined the invariant $N(\mathfrak{Q})$ which is an element of M, and showed that $N(\mathfrak{Q}) \in M^J$ (cf. [4, Theorem 4]). The purpose of this paper is to prove that the subset $R_w(\mathfrak{o}G)$ of invariants $N(\mathfrak{Q})$ of the rings \mathfrak{Q} in the wildly ramified extensions K/k of degree p is equal to M^J (Theorem 3).

Let g be a fixed generator of G and ζ be a primitive p-th root of unity. Throughout this paper, we assume that k contains ζ . In Section 1, we shall recall the definitions given in [4], and prove Theorem 1 which is the modification of Theorem 4 of [4]. In Section 2, we shall recall L. McCulloh's results [3] and define a Δ -homomorphism ψ from $\mathrm{Cl}^o(\mathfrak{o}G)$ onto M. This homomorphism ψ plays the important role in the proof of Theorem 3 that $R_w(\mathfrak{o}G) = M^J$, which is proved in Section 3.

Received February 16, 1987.

§ 1.

Let K/k be a cyclic wildly ramified extension of degree p and let G be a cyclic group of order p. We can view G as Galois group G(K/k) of K/k. In this section, we call definitions and Theorem 4 of [4]. For a prime ideal \mathfrak{p} of \mathfrak{o} , let $k_{\mathfrak{p}}$ be the \mathfrak{p} -adic completion of k with the valuation ring $\mathfrak{o}_{\mathfrak{p}}$, and let $K_{\mathfrak{p}} = k_{\mathfrak{p}} \otimes_{k} K$ and $\mathfrak{O}_{\mathfrak{p}} = \mathfrak{o}_{\mathfrak{p}} \otimes_{\mathfrak{o}} \mathfrak{D}$. Denote by $\pi(\mathfrak{p}) (=\pi)$ and $e(\mathfrak{p}) (=e)$ a prime element and the absolute ramification index of $k_{\mathfrak{p}}$, respectively. We denote by $c(\mathfrak{p})$ the ramification number of $K_{\mathfrak{p}}/k_{\mathfrak{p}}$. Then, it is well known that $-1 \leq c(\mathfrak{p}) \leq pe(\mathfrak{p})/(p-1)$. Let $P_1 = P_1(K)$ $(P_0 = P_0(K))$ be a product $f(\mathfrak{p})$ of \mathfrak{p} such that $\mathfrak{p}|(p)$ and $0 < c(\mathfrak{p}) < pe(\mathfrak{p})/(p-1) - 1$ $(c(\mathfrak{p}) = -1)$, respectively, and let $P = P_0 P_1$. As in [4], define integers $d(\mathfrak{p})$ by

$$d(\mathfrak{p}) = egin{cases} pe(\mathfrak{p})/(p-1) - c(\mathfrak{p}) & ext{ for } \mathfrak{p}|P_1 \ pe(\mathfrak{p})/(p-1) & ext{ for } \mathfrak{p}|P_0 \ , \end{cases}$$

Moreover, for $0 \le i < p$, integers $m_i(\mathfrak{p})$ are defined by

$$m_i(\mathfrak{p}) = [id(\mathfrak{p})/p],$$

where [x] denotes an integer with $[x] \le x < [x] + 1$.

Now, we define $\mathfrak{o}_{\mathfrak{p}}G$ -modules $L_{\mathfrak{p}}$ and an $\mathfrak{o}G$ -module L. Let E_i be an primitive idempotent of kG with $gE_i = \zeta^i E_i$ for $0 \le i < p$. For 0 < i < p and $\mathfrak{p}|P_i$, let

$$a_i(\mathfrak{p}) = \pi(\mathfrak{p})^{-m_i} \left(\sum_{j=0}^i \binom{i}{j} (-1)^{i-j} E_j \right)$$

and $a_0(\mathfrak{p}) = 1$. We define $\mathfrak{o}_{\mathfrak{p}}G$ -modules $L_{\mathfrak{p}}$ as follows:

- (a) For $\mathfrak{p} \nmid P$, $L_{\mathfrak{p}} = \mathfrak{o}_{\mathfrak{p}} \otimes (\sum \mathfrak{o} E_{i})$.
- (b) For $\mathfrak{p}|P_1$, $L_{\mathfrak{p}} = \sum \mathfrak{o}_{\mathfrak{p}} a_i(\mathfrak{p})$.
- (c) For $\mathfrak{p}|P_0$, $L_{\mathfrak{p}}=(1/p)\mathfrak{o}_{\mathfrak{p}}G$.

Then, it is easily known that there exists an $\circ G$ -module L in kG such that $\circ_{\flat} \otimes_{\circ} L = L_{\flat}$ for each \flat (for example, see [5, p. 70 (5.3) Theorem]). Denote by $\Gamma(L)$ a genus including L. By the definition of L, we have $\mathfrak{O} \in \Gamma$ (cf. [4, Lemma 7]).

Next, we define a class group M. Let χ be a character of G with $\chi(g) = \zeta$ and $X = \{\chi, \chi^2, \dots, \chi^{p-1}\}$. Let I be the group of fractional ideals of k relatively prime to P and let $\operatorname{Map}(X, I)$ be the group of functions from X into I. As in [3], an automorphism δ in Δ (= Aut G) acts on X and $\operatorname{Map}(X, I)$ as follows:

(1)
$$\chi^{i\delta}(g) = \chi^{i}(g^{\delta-1}) \quad \text{and} \quad n^{\delta}(\chi^{i}) = n(\chi^{i\delta-1}), \ n \in \text{Map}(X, I).$$

Let $Z\Delta$ be the group ring over the ring of integers Z and an element θ of $Z\Delta$ be

$$\theta = \sum_{\delta \in \Delta} t(\delta) \delta^{-1}$$
,

where $g^{\delta} = g^{\iota(\delta)}$ with $1 \leq \iota(\delta) < p$. Let the Stickelberger ideal J of $Z\Delta$ be

$$J = (p^{-1}\theta \cdot Z\Delta) \cap Z\Delta$$
.

An element a of kG is written in the form;

$$a = a_0 E_0 + a_1 E_1 + \cdots + a_{n-1} E_{n-1}$$
.

From [4, Lemmas 4 and 5], we have

LEMMA 1. Let Aut L_p be the group of \mathfrak{o}_pG -automorphisms of L_p . Then, if $a \in \operatorname{Aut} L_p$ for each $\mathfrak{p}|P, a_0, \dots, a_{p-1}$ are P-units.

Let H be defined by

$$H = \{a \in kG | a \in \text{Aut } L_{\mathfrak{p}} \text{ for } \mathfrak{p} | P \text{ and } a_{\mathfrak{p}} = 1\},$$

and so by [4, Corollary 2], H is Δ -invariant. Then, we can define a Δ -homomorphism f from H into Map(X, I) such that

$$f(a)(\chi^i) = a_i o$$
.

The class group M is defined by

$$M = \operatorname{Map}(X, I)/f(H)$$
.

LEMMA 2. For $n \in \operatorname{Map}(X, I)$, let cl n denote a natural image of n in M. Then, there exists an element m of $\operatorname{Map}(X, I)$ such that $(m(X^i), (p)) = 1$ and cl $m = \operatorname{cl} n$.

Proof. Let Λ be a left order of L:

$$\Lambda = \{a \in kG | aL \subseteq L\}.$$

Let an ideal \mathfrak{f} of \mathfrak{o} be the order ideal of the factor module $(\sum \mathfrak{o} E_i)/\Lambda$ (for the definition, see [5, p. 49]). By the definition of L, the set of prime divisors of \mathfrak{f} is the set of prime divisors of P. Let S be

$$S = \{a \in kG | aE_i \equiv 1(\mathfrak{f}) \text{ for } 0 < i < p\}.$$

Then, by H. Jacobinski's results [2, p. 8], we have $H \supseteq S$. Every coset of

the ray $R(\mathfrak{f})$ mod \mathfrak{f} in I contains infinite many primes (for example, see [4, p. 215]). Thus, we can choose ideals $m(\mathfrak{X}^i)$ such that $m(\mathfrak{X}^i)$ and $n(\mathfrak{X}^i)$ be in the same coset of $R(\mathfrak{f})$ in I and $(m(\mathfrak{X}^i),(p)) = 1$. Since $H \supseteq S$, cl $n = \operatorname{cl} m$, which completes the proof of Lemma 2.

Finally, we remember the definition of $N(\mathfrak{Q})$. From [4, Lemma 1], there exists an element α of \mathfrak{Q} such that $\alpha^p \in \mathfrak{Q}$ and for $\mathfrak{p}|P$,

$$\alpha^p \equiv 1 \left(\pi(\mathfrak{p})^{d(\mathfrak{p})} \right).$$

Then, for $1 \leq i < p$,

$$(3) (\alpha^{ip}) = \mathfrak{b}_i \mathfrak{c}_i^{-p},$$

where \mathfrak{b}_i is a p-power free integral ideal and \mathfrak{c}_i is a fractional ideal. By (2), $(\mathfrak{c}_i, P) = 1$ and so an element $n(\mathfrak{D})$ of $\operatorname{Map}(X, I)$ is defined by $n(\mathfrak{D})(\chi^i) = \mathfrak{c}_i$. Let $N(\mathfrak{D})$ be the natural image $\operatorname{cl}(n(\mathfrak{D}))$ of $n(\mathfrak{D})$ in M.

From [4, Theorem 4], we have the following theorem.

THEOREM 1. Let K/k be a wildly ramified extension of degree p with the discriminant dis (K/k). Let L and M be as above, and let J be the Stickelberger ideal in $Z\Delta$. Then,

- (i) $N(\mathfrak{O}) \in M^J$ and
- (ii) for given ideal α of 0 with $(\alpha, (p)) = 1$, there exists a wildly ramified extension K'/k of degree p such that $\mathfrak{D}' \in \Gamma(L) = \Gamma(\mathfrak{D})$ and $(\operatorname{dis}(K'/k), \alpha) = 1$.

Proof. (i) of Theorem 1 is Theorem 4 of [4] and hence its proof is done. Next, we prove (ii). Taking sufficiently large integers $n(\mathfrak{p})$ for $\mathfrak{p}|\mathfrak{a}(p)$, we choose an element b of \mathfrak{o} such that for $\mathfrak{p}|(p)$, $b \equiv \alpha^p(\pi(\mathfrak{p})^{n(p)})$ and for $\mathfrak{p}|\mathfrak{a}$,

$$b \equiv 1(\pi(\mathfrak{p})^{n(\mathfrak{p})}).$$

Let $\beta = \sqrt[p]{b}$ and $K' = k(\beta)$. Then, we see that for $\mathfrak{p}|(p)$, the ramification number of K'/k is equal to the ramification number of K/k. Thus, by [4, Corollary 1], $\mathfrak{D}' \in \Gamma(L)$. As in (3), let $(\beta^p) = \mathfrak{b}\mathfrak{c}^{-p}$. Then, if $\mathfrak{p}|\operatorname{dis}(K'/k)$ and $(\mathfrak{p},(p)) = 1$, \mathfrak{p} is a prime divisor of \mathfrak{b} (for example, see [1, p. 91 Lemma 5]). By (4), $(\mathfrak{b}, \mathfrak{a}) = 1$ and so $(\operatorname{dis}(K'/k), \mathfrak{a}) = 1$, which completes the proof of Theorem 1.

§ 2.

In this section, we recall L. McCulloh's results [3], Let $X' = \{\chi^0\} \cup X$,

and I' be the group of fractional ideals of \mathfrak{o} relatively prime to (p). Let \mathfrak{o}_P be the semilocalisation of \mathfrak{o} at p, and denote by $u(\mathfrak{o}_P G)$ the group of units of the ring $\mathfrak{o}_{\mathfrak{o}}G$. We define a homomorphism f from $u(\mathfrak{o}_p G)$ into Map (X', I') by

$$f(a)(\chi^i) = \chi^i(a) o$$
.

Then, the class group $\operatorname{Cl}(\mathfrak{o}G)$ of $\mathfrak{o}G$ is isomorphic to the factor group $\operatorname{Map}(X',I')/f(u(\mathfrak{o}_pG))$. We extend an element n of $\operatorname{Map}(X,I')$ to an element of $\operatorname{Map}(X',I')$ by setting $n(\chi^0)=\mathfrak{o}$, and hence we can view $\operatorname{Map}(X,I')$ as a subgroup of $\operatorname{Map}(X',I')$. Let ϕ be the natural homomorphism from $\operatorname{Map}(X,I')$ into $\operatorname{Map}(X',I')/f(u(\mathfrak{o}_pG))$. Then,

$$\operatorname{Ker} \phi = \{ f(a) \mid a \in u(\mathfrak{o}_p G) \text{ and } aE_0 \text{ is a unit of } \mathfrak{o} \}.$$

By [3, (2.3.2) Proposition], we have ϕ (Map (X, I')) = Cl⁰ (0G). Let T be a subgroup of $u(\mathfrak{o}_p G)$ consisting of elements a in $u(\mathfrak{o}_p G)$ with $aE_0 = 1$. Then, clearly, $f(T) = \text{Ker } \phi$.

LEMMA 3. Let T be as above and H be as in Section 1. Then, $T \subseteq H$.

Proof. An element of T is clearly an automorphism of L_p for each $\mathfrak{p}|P$, and so $T\subseteq H$ by the definition of H.

Now, noting $I' \subseteq I$, we have a Δ -homomorphism ψ' from Map (X, I') into Map (X, I). Then, it follows that ψ' induces a Δ -homomorphism ψ from Cl⁰ (0G) into M since T and H are Δ -groups. Then, we have

LEMMA 4.
$$\psi(\operatorname{Cl}^{\circ}(\mathfrak{o}G)) = M$$
.

Proof. By Lemma 2, for cl $n \in M$, there exists an element m of Map (X, I) such that $(m(X^i), (p)) = 1$ and cl n = cl m in M. Then, $m \in \text{Map }(X, I')$ and so cl $n = \psi(\text{cl } m) \in \psi(\text{Cl}^0(\mathfrak{o}G))$.

Since ψ is a Δ -homomorphism, we have

COROLLARY 1.
$$\psi(\operatorname{Cl}^0(\mathfrak{o}G)^J)=M^J$$
.

We conclude this section with stating L. McCulloh's Theorem [3, (1.3.1) Theorem].

Theorem 2. Let G be a cyclic group of order p, and J be the Stick-elberger ideal. Define a subset $R(\circ G)$ of $Cl^{\circ}(\circ G)$ by

 $R(\mathfrak{o}G) = \{\operatorname{cl}(\mathfrak{O}_{\kappa}) | K \text{ runs over the set of tame extensions of degree } p\}.$

Then, $R(\circ G) = \operatorname{Cl}^{\circ}(\circ G)^{J}$. Moreover, given $m \in \operatorname{Cl}^{\circ}(\circ G)^{J}$ and an ideal α of α , there exists a tame extension K/k such that $(\operatorname{dis}(K/k), \alpha) = 1$ and $\operatorname{cl}(\mathfrak{Q}) = m$.

§ 3.

In this section, we prove Theorem 3, which is the aim of this paper.

Theorem 3. Let G be a cyclic group of order p and K be a wildly ramified extension of degree p. Let L and $\Gamma(L)(=\Gamma(\mathfrak{Q}))$ be as in Section 1. Define a subset $R_w(\mathfrak{o}G)$ of M by

 $R_w(\circ G) = \{N(\mathfrak{D}') | \mathfrak{D}' \text{ is the ring of a wildly ramified extension } K' | k \text{ of degree } p \text{ with } \mathfrak{D}' \in \Gamma(L) \}.$

Then, $R_w(\circ G) = M^J$. Moreover, given $m \in M^J$ and an ideal α of \circ with $(\alpha, (p)) = 1$, there exists a wildly ramified extension K/k such that $(\operatorname{dis}(K/k), \alpha) = 1$ and $N(\mathfrak{Q}) = m$.

Proof. By Theorem 1, we have $R_w(\circ G) \subseteq M'$. In the following, we have the existence of such a extension K/k as above. By (ii) of Theorem 1, there exists a wildly ramified extension K'/k such that $(\operatorname{dis}(K'/k), \alpha) = 1$ and $\mathfrak{D}' \in \Gamma(L)$. Let α' be an element of \mathfrak{D}' satisfying the congruences (2). Then, as in (3), we have

$$(\alpha'^{ip}) = \mathfrak{b}_i' \mathfrak{c}_i'^{-p}$$
 for $1 \leq i < p$.

As shown in the proof of Theorem 1, $(\mathfrak{b}'_i, \mathfrak{a}) = 1$. Let $n = N(\mathfrak{O}')$ and $m' = n^{-1}m$ in M. Since $n \in M^J$ by Theorem 1 (i), we have $m' \in M^J$. Then, by Corollary 1, for some $\operatorname{cl}(\mathfrak{O}'') \in \operatorname{Cl}^0(\mathfrak{o}G)^J \psi(\operatorname{cl}(\mathfrak{O}'')) = m'$. By Theorem 2, \mathfrak{O}'' can be chosen so that the discriminant of $k\mathfrak{O}''$ is relatively prime to the product \mathfrak{b} of $\mathfrak{a}, \mathfrak{b}'_1, \dots, \mathfrak{b}_{p-1}'$. Moreover, as shown in the proof of [3, (4.2.1) Theorem], there exists an element β of \mathfrak{O}'' such that $\beta^p \equiv 1$ ($(\zeta - 1)^p$). Let

$$(\beta^{ip}) = \mathfrak{b}_i \mathfrak{c}_i^{-p},$$

where \mathfrak{b}_i is *p*-power free, and so $(\mathfrak{b}_i, \mathfrak{b}) = 1$ because $(\operatorname{dis}(k\mathfrak{D}''/k), \mathfrak{b}) = 1$. Ideals \mathfrak{c}_i define an element c of Map (X, I') by $c(\mathfrak{X}^i) = \mathfrak{c}_i$. By [3, (3.2.2) Theorem 3], $\operatorname{cl}(\mathfrak{D}'') = \operatorname{cl} c$, and hence

$$(5) m = \psi(\operatorname{cl} c)N(\mathfrak{O}').$$

Now, let $F = k(\alpha'\beta)$, and then F is clearly the extension of degree p over k. The action of g on $\alpha'\beta$ is defined by $g(\alpha'\beta) = \zeta\alpha'\beta$. Since $k(\beta)/k$ is

tamely ramified, the ramification number $c'(\mathfrak{p})$ of F/k is equal to the ramification number $c(\mathfrak{p})$ of K/k for $\mathfrak{p}|(p)$. Therefore, by [4, Corollary 1], the ring \mathfrak{O}_F of all integers in F belongs to the genus $\Gamma(L)$. We have

$$(\alpha'\beta)^{pi} = \mathfrak{b}_i'\mathfrak{b}_i(\mathfrak{c}_i'\mathfrak{c}_i)^{-p}$$

and $\mathfrak{b}_i'\mathfrak{b}_i$ is *p*-power free because \mathfrak{b}_i' and \mathfrak{b} are *p*-power free with $(\mathfrak{b}_i', \mathfrak{b}_i) = 1$. Then, ideals \mathfrak{c}_i' , \mathfrak{c}_i define an element $n(\mathfrak{O}_F)$ of Map (X, I) by $n(\mathfrak{O}_F)(\mathfrak{X}^i) = \mathfrak{c}_i'\mathfrak{c}_i$, and so $n(\mathfrak{O}_F) = c \cdot n(\mathfrak{O}')$. By the definition of $N(\mathfrak{O})$ and (5), we have $m = N(\mathfrak{O}_F)$, which accomplishes the proof of Theorem 3.

References

- J. W. S. Cassels and A. Fröhlich, "Algebraic Number Theory", Academic Press, London/New York, 1967.
- [2] H. Jacobinski, Genera and decompositions of lattices, Acta Math., 121 (1968), 1-29.
- [3] L. R. McCulloh, A Stickelberger condition on Galois module structure for Kummer extensions of prime degree, in "Algebraic number fields", Proc. Durham Symp., Academic Press, London/New York, 1977, 561-588.
- [4] Y. Miyata, On the isomorphism class of the ring of all integers of a cyclic wildly ramified extension of degree p, J. Algebra, to appear.
- [5] I. Reiner, "Maximal orders", Academic Press, London, 1975.

Department of Mathematics Faculty of Education Shizuoka University Shizuoka, 422 Japan