Bull. Austral. Math. Soc. Vol. 40 (1989) [487-487]

A MODIFIED PROJECTION METHOD FOR EQUATIONS OF THE SECOND KIND: CORRIGENDUM AND ADDENDUM

M. THAMBAN NAIR

The author would like to correct an error in the statement of a result [in Bull. Aust. Math. Soc. 36 (1987) 485-492] and also to incorporate an additional result.

In Theorem 2.2(3) it is stated that if T is a compact self adjoint operator on a Hilbert space and π_n 's are orthogonal projections, then the Kantorovich approximation x_n^K , Sloan approximation x_n^S and the modified projection approximation x_n^M are of the same order. That this is not correct was pointed out to the author by Professor I.H. Sloan. The correct statement is the following:

THEOREM 2.2.(3). If T is a compact self adjoint operator, then the orders of convergence of x_n^K , s_n^S and x_n^M are at least $\varepsilon_n = \min\{\|R_n^K\|, \|R_n^S\|\}$, where $R_n^A x = x - x_n^A$, $A \in \{K, S\}$, that is, there exists a constant c > 0 such that

$$\|x-x_n^K\| \leq c \varepsilon_n, \|x-x_n^S\| \leq c \varepsilon_n \text{ and } \|x-x_n^M\| \leq c \varepsilon_n.$$

From the definition x_n^K and x_n^M we note that

$$(1-\pi_n T)(x-x_n^K) = (1-\pi_n)Tx = (1-\pi_n)(x-x_n^K) = (1-\pi_n)(x-x_n^M),$$

so that along with Theorem 2.1, we obtain:

THEOREM. There exist positive constants c_1 and c_2 such that

$$c_1 \left\| x - x_n^K \right\| \leq \left\| x - x_n^M \right\| \leq c_2 \max\{ \left\| x - x_n^K \right\|, \left\| x - x_n^S \right\| \}.$$

Thus whenever x_n^S is better than x_n^K , x_n^M and x_n^K have the same order of convergence.

Department of Mathematics Goa University Bambolim, Santa-Cruz P.O. Goa - 402 005 India

Received 5th June 1989

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/89 \$A2.00+0.00.