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Maps Preserving Complementarity of
Closed Subspaces of a Hilbert Space

Lucijan Plevnik and Peter Šemrl

Abstract. Let H and K be infinite-dimensional separable Hilbert spaces and LatH the lattice of all
closed subspaces oh H. We describe the general form of pairs of bijective maps φ, ψ : LatH→ LatK
having the property that for every pair U ,V ∈ LatH we have H = U⊕V ⇐⇒ K = φ(U )⊕ψ(V ).
Then we reformulate this theorem as a description of bijective image equality and kernel equality
preserving maps acting on bounded linear idempotent operators. Several known structural results for
maps on idempotents are easy consequences.

1 Introduction

Throughout the paper H and K are separable infinite-dimensional Hilbert spaces
over F ∈ {R,C}. Denote the lattice of all closed subspaces of H by LatH and the
algebra of all bounded linear operators on H by B(H). For any positive integer n, we
introduce

LatnH = {U ∈ LatH : dim U = n},

that is, the set of all n-dimensional subspaces, and

Lat−nH = {U ∈ LatH : dim U⊥ = n},

that is, the set of all subspaces of codimension n. Here, U⊥ stands for the orthog-
onal complement of U . Further denote the set of all closed subspaces with infinite
dimension and infinite codimension by Lat∞H and the set of trivial subspaces by
Lat0H = {{0},H}. Then {LatnH}n∈Z∪{∞} is a partition of the set LatH. The set
of indices Z ∪ {∞} will be shortly denoted by Z∞. It will be convenient to use the
following arithmetic: −∞ = ∞ and ∞ ± 1 = ∞. We will sometimes represent
finite-dimensional subspaces as [x1, . . . , xn], the linear span of vectors x1, . . . , xn .

The subject of our interest is the set of unordered pairs of closed subspaces of H
that are complemented, that is, CH = {{U ,V} : U ,V ∈ LatH,U ⊕V = H}. Here,
the direct sum need not be orthogonal. Our aim is to characterize pairs of bijective
maps φ, ψ : LatH→ LatK that preserve complementarity of subspaces:

(1.1) {U ,V} ∈ CH ⇐⇒
{
φ(U ), ψ(V )

}
∈ CK, U ,V ∈ LatH.
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We mention here that it is natural to consider this problem in the Hilbert space set-
ting. Indeed, [9, Theorem 1] states that if every closed subspace of a Banach space X
is complemented, then X is a Hilbert space.

Clearly, a pair (φ, ψ) satisfies (1.1) if and only if the pair (ψ, φ) satisfies (1.1). Note
that {U ,V} ∈ CH and U ∈ LatnH for some n ∈ Z∞ imply V ∈ Lat−nH. For every
n ∈ Z∞ and any set S ⊂ LatnH, we introduce

S ′ = {V ∈ Lat−nH : {U ,V} /∈ CH for every U ∈ S} and S ′ ′ = (S ′) ′.

Let us give some examples of pairs of maps satisfying (1.1). First, define the set
BCI(H,K) = {A : H → K : A is bounded, invertible, linear, or conjugate linear}.
Note that in the case F = R, operators from BCI(H,K) are linear. If A ∈ BCI(H,K),
then the maps φ(U ) = ψ(U ) = A(U ), U ∈ LatH, clearly fulfil (1.1). We can get
further examples if we notice that the behavior of φ and ψ on sets LatnH and LatmH

are completely unrelated if m 6= −n. Thus, we may define φ and ψ as follows. Let
(An)n∈Z∞ be a sequence in BCI(H,K). For every n ∈ Z∞ and U ∈ LatnH define
φ(U ) = An(U ) and ψ(U ) = A−n(U ). Then the maps φ and ψ satisfy (1.1). Another
class of examples comes from the orthogonal complementation. Let U ,V ∈ LatH.
Then

(1.2) {U ,V} ∈ CH ⇐⇒ {U⊥,V⊥} ∈ CH.

Indeed, it is enough to prove implication in one direction. Assume that H = U ⊕V .
Let P be the idempotent operator with im P = U and ker P = V . Then H = ker P∗⊕
im P∗ = U⊥ ⊕ V⊥. Thus, we may construct a pair of complementarity preserving
maps φ, ψ : LatH → LatK in the following way. We will call a partition of Z∞ into
a disjoint union of two subsets Z∞ = Z∞(id) t Z∞(⊥) regular if for every n ∈ Z∞
we have n ∈ Z∞(id) ⇐⇒ −n ∈ Z∞(id). Assume that Z∞ = Z∞(id) t Z∞(⊥) is a
regular partition. Then the pair of maps φ, ψ : LatH→ LatK defined by

• if U ∈ LatnH for some n ∈ Z∞(id), then φ(U ) = ψ(U ) = U ;
• if U ∈ LatnH for some n ∈ Z∞(⊥), then φ(U ) = ψ(U ) = U⊥,

obviously satisfies (1.1). Our main theorem states that any pair of bijective maps φ, ψ
satisfying (1.1) is a composition of pairs of maps described in the last two examples.

We remark that (1.1) and (1.2) yield the equivalence

(1.3) {U ,V} ∈ CH ⇐⇒ {φ(U⊥)⊥, ψ(V⊥)⊥} ∈ CK, U ,V ∈ LatH,

which will prove useful.
The motivation for this research is twofold. Denote by G(m,m + n), m, n > 1,

the Grassmannian consisting of all m-dimensional subspaces of a vector space V
with dim V = m + n. Two elements U ,W ∈ G(m,m + n) are said to be adja-
cent if dim(U ∩ W ) = m − 1 (or equivalently, dim(U + W ) = m + 1). The
classical Chow’s theorem [3] states that if φ is an adjacency preserving bijection of
G(m,m + n) onto itself, then it is induced by a semilinear automorphism of V ,
or m = n and φ is induced by a semilinear isomorphism from a dual space V ′

onto V . For a pair of different subspaces of the same dimension, one extremal
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position is when they are adjacent, and the other extreme is that they are comple-
mentary subspaces. This motivated Blunck and Havlicek [1] to investigate bijective
maps φ on G(m, 2m) with the property that for every pair U ,W ∈ G(m, 2m) we
have V = U ⊕ W ⇐⇒ V = φ(U ) ⊕ φ(W ). They proved that such maps
preserve adjacency, and therefore one can apply Chow’s result to describe the gen-
eral form of such maps. They have also included the infinite-dimensional case in
their considerations as much as possible. In particular, they pointed out that their
proof techniques cannot be extended to the infinite-dimensional case. These obser-
vations certainly made the infinite-dimensional case interesting. When dealing with
the infinite-dimensional case we have two possibilities, either to work in a purely alge-
braic setting or to work, say, with Hilbert spaces, where some analysis is involved. We
believe that the second possibility is more interesting, and, as we shall soon see, it is
also more important because of applications. If we followed Blunck and Havlicek, we
would restrict ourselves to bijective mappings acting on the set of all closed subspaces
of infinite dimension and infinite codimension. But there is no reason to restrict to
such subspaces. So we consider the whole lattice of closed subspaces. Of course, this
makes the problem more difficult as we first need to show the somewhat surprising
fact that the subspaces of a finite dimension m are mapped into subspaces that either
have dimension m or codimension m, while the subspaces of infinite dimension and
infinite codimension are mapped into subspaces of the same type. Next, with each
pair of complementary closed subspaces we can associate a pair of bounded idempo-
tent operators whose images and kernels are these two subspaces. This observation
brings us to the second motivation for our research. Namely, an easy consequence
of our main result is a structural theorem for bijective maps on the set of bounded
idempotent operators preserving the equality of images and the equality of kernels.
We will also prove the dual form of this result. In fact, because of these two appli-
cations it is more natural to work with a complementarity preserving pair of maps
on LatH instead of with a single map as in the result of Blunck and Havlicek. Once
we have the description of image equality and kernel equality preserving bijections
on the set of idempotent operators we can reprove a whole set of characterizations of
various maps on idempotent operators. We will illustrate this with two examples.

For a given Hilbert spaceH we denote the set of all bounded idempotent operators
on H by I(H),

I(H) = {P ∈ B(H) : P2 = P}.

It is well known that I(H) is a poset with the partial order defined by

P ≤ Q ⇐⇒ PQ = QP = P.

It is easy to verify that for P,Q ∈ H we have P ≤ Q if and only if there is a direct
sum decomposition of H into a direct sum of closed subspaces H = H1 ⊕H2 ⊕H3

(here, some of subspaces H j , j = 1, 2, 3, may be trivial) such that P and Q have the
following matrix representations with respect to this decomposition:

P =

I 0 0
0 0 0
0 0 0

 and Q =

I 0 0
0 I 0
0 0 0

 .
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A bijective map φ : I(H) → I(K) is a poset isomorphism if for every pair of idem-
potents P,Q ∈ I(H) we have P ≤ Q if and only if φ(P) ≤ φ(Q). Motivated by some
problems in mathematical physics, Ovchinnikov [11] described the general form of
such maps. We will show that this beautiful result can be quickly deduced from our
main theorem.

Recently, quite a lot of attention has been paid to the study of 2-local automor-
phisms (see [8] and the references therein). Let S be a ring. A map φ : S → S is
called a 2-local automorphism if for every pair of elements a, b ∈ S there exists an
automorphism φa,b : S → S (depending on a and b) such that φ(a) = φa,b(a) and
φ(b) = φa,b(b). Of course, the natural question is whether for a given ring S each 2-
local automorphism is an automorphism. Clearly, if φ is a 2-local automorphism of
S, then φ maps every idempotent element of S into some idempotent element. And
clearly, for every pair of idempotents p, q ∈ S, the product pq is a nonzero idem-
potent if and only if φ(p)φ(q) is a nonzero idempotent. The study of maps having
this property is also motivated by a well developed theory of additive, linear, and
multiplicative preservers (see [2, 7, 12] and the references therein). We will conclude
our paper by reproving a structural result for bijective maps on I(H) preserving the
nonzero idempotency of the products of idempotent operators.

2 Maps on LatH

This section is devoted to our main result. We start with some definitions.
For U ,V ∈ LatH denote U 	V = U ∩V⊥. If U ,V ∈ LatnH for some n ∈ Z∞,

then we say that U and V are adjacent if dim U 	 (U ∩V ) = dim V 	 (U ∩V ) = 1.
Note that this is equivalent to dim(U +V )	U = dim(U +V )	V = 1. When n 6=∞,
the definition simplifies to: U and V are adjacent if and only if U ∩V ∈ Latn−1H if
and only if U + V ∈ Latn+1H.

Let U and V be distinct elements of LatnH for some n ∈ Z∞ \ {0} and let k
be a positive integer. We call a sequence U0,U1, . . . ,Uk ∈ LatnH an adjacent chain
between U and V if U0 = U , Uk = V , and U j , U j+1 are adjacent for all j = 0, . . . , k−
1. Furthermore, we say that k is the length of a chain.

We continue with a few lemmas about adjacent subspaces that we will need in the
sequel.

Lemma 2.1 Let k be a positive integer, n ∈ Z∞\{0}, and let U0,U1, . . . ,Uk ∈ LatnH

be an adjacent chain. Then for j = 0, . . . , k− 1,

dim U j 	 (U0 ∩U1 ∩ · · · ∩Uk) = dim U j+1 	 (U0 ∩U1 ∩ · · · ∩Uk) ≤ k.

Proof For every j ∈ {0, 1, . . . , k} define

V j = U j 	 (U0 ∩U1 ∩ · · · ∩Uk).

Then V j ∩V j+1 = (U j ∩U j+1)	 (U0 ∩ · · · ∩Uk) implies

V j 	 (V j ∩V j+1) = U j 	
(

(U0 ∩ · · · ∩Uk) +
(

(U j ∩U j+1)	 (U0 ∩ · · · ∩Uk)
))

= U j 	 (U j ∩U j+1),
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where the last equality holds because U0 ∩ · · · ∩Uk ⊂ U j ∩U j+1. Analogously we
get V j+1 	 (V j ∩ V j+1) = U j+1 	 (U j ∩ U j+1). Because U j and U j+1 are adjacent,
the same is true for V j and V j+1. In particular, dim V j = dim V j+1, and it remains to
show that dim V0 ≤ k. In order to do this, note that for every j ∈ {0, . . . , k − 1},
there exists u j ∈ U j \ {0} such that U j ∩U j+1 = U j 	 [u j]. Moreover, let P ∈ I(H)
be the projection onto U0. Then

V0 = U0 	
(

(U0 ∩ · · · ∩Uk−1)	 [uk−1]
)
= · · · = U0 	

(
U0 	 [u0, . . . , uk−1]

)
= [Pu0, . . . , Puk−1]

is at most k-dimensional.

Lemma 2.2 Let U ,V ∈ LatH be such that

dim U 	 (U ∩V ) = dim V 	 (U ∩V ) = d

for some positive integer d. Then

• there exists an adjacent chain between U and V of length d;
• any adjacent chain between U and V has length at least d.

Proof We start by proving the first statement in the lemma. Set U0 = U and Ud =
V . If d = 1, then U and V are adjacent and we are done. If d > 1, choose a
basis u1, . . . , ud of U 	 (U ∩ V ) and a basis v1, . . . , vd of V 	 (U ∩ V ). For every
j ∈ {1, . . . , d − 1} define U j = [v1, . . . , v j , u j+1, . . . , ud] ⊕ (U ∩ V ). Then clearly
U0,U1, . . . ,Ud is an adjacent chain between U and V .

Turn now to the proof of the second statement. Let r be a positive integer and
V0, . . . ,Vr an adjacent chain between U and V . By Lemma 2.1 we have

r ≥ dim U 	 (V0 ∩V1 ∩ · · · ∩Vr) ≥ dim U 	 (U ∩V ) = d,

as desired.

Lemma 2.3 Let U1,U2,U3 ∈ LatH be pairwise adjacent. If U1 ∩ U2 6⊂ U3, then
U3 ⊂ U1 + U2 and dim(U1 + U2)	U3 = 1.

Proof We will first show that U1 ∩U2 6⊂ U3 implies

(2.1) U1 ∩U3 6⊂ U2 and U2 ∩U3 6⊂ U1.

Indeed, denote U = U1 ∩ U2 ∩ U3. Suppose that U1 ∩ U3 ⊂ U2, or, equivalently,
U = U1 ∩U3. Since U1 and U3 are adjacent, this yields dim U1 	U = 1. This and
the adjacency of U1 and U2 now imply U = U1 ∩U2. It follows that U1 ∩U2 ⊂ U3,
a contradiction. By exchanging the roles of U1 and U2 in the previous argument we
also get U2 ∩U3 6⊂ U1, as desired.

We next claim that

dim U j 	U = 2, j = 1, 2, 3.
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The inclusions (2.1) guarantee that the assumptions on U1, U2, and U3 are completely
symmetric, so it is enough to show that dim U3 	 U = 2. Since U1,U2,U3 is an
adjacent chain, Lemma 2.1 implies that dim U3 	U ≤ 2. It is clear that dim U3 	U
cannot equal 0. Moreover, neither can it equal 1, because this would imply U =
U1 ∩U3, a contradiction with (2.1).

Because U1, U2, and U3 are pairwise adjacent, the previous paragraph yields the
existence of linearly independent u1, u2, and u3 such that

U1 = U ⊕ [u1, u2], U2 = U ⊕ [u2, u3], U3 = U ⊕ [u1, u3].

Hence, U1 +U2 = U⊕[u1, u2, u3] contains U3 as a subspace with codimension 1.

For any U ∈ LatH \ {H} denote

AU = {V ∈ LatH : V ⊃ U , dim V 	U = 1} = {U ⊕ [x] : x ∈ U⊥ \ {0}},

and for any U ∈ LatH \ {{0}} denote

BU = {V ∈ LatH : V ⊂ U , dim U 	V = 1} = {U 	 [x] : x ∈ U \ {0}}.

We remark that

(2.2) BU = {V ∈ LatH : V⊥ ∈ AU⊥}.

A subset S ⊂ LatnH is called a maximal adjacent set if any two distinct elements
of S are adjacent and S is maximal among all such sets. Clearly, Lat1H = A{0} and
Lat−1H = BH are maximal adjacent sets.

Lemma 2.4 Let S ⊂ LatnH, where n ∈ Z∞ \ {−1, 0, 1}. Then the following two
statements are equivalent:

• S is a maximal adjacent set;
• either there exists U ∈ Latn−1H such that S = AU , or there exists U ∈ Latn+1H

such that S = BU .

Proof It is clear that AU , U 6= H, and BU , U 6= {0}, are adjacent sets. If, moreover,
U 6∈ Lat−2H ∪ Lat−1H, then AU is a maximal adjacent set. Indeed, for every W ∈
LatH such that W /∈ AU we will find V ∈ AU so that V and W are not adjacent. So,
let W ∈ LatH \AU . We distinguish three cases.

Case 1 W ⊃ U and dim W 	U ≥ 2. Choose any nonzero w ∈W 	U and set
V = U ⊕ [w] ∈ AU . Then V is contained in W and is therefore not adjacent to W .

Case 2 W 6⊃ U and U + W 6= H. Choose nonzero v ∈ (U + W )⊥ and set
V = U ⊕ [v] ∈ AU . It follows from W 6⊃ U that U + W strictly contains W , hence
W has codimension at least 2 in V + W = [v] ⊕ U + W . Thus, W and V are not
adjacent.

Case 3 U + W = H. Because U has codimension at least 3 in H, any V ∈ AU

has codimension at least 2 in V + W = H. Hence, V and W are not adjacent.
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Suppose now that U 6∈ Lat1H ∪ Lat2H. We already know that AU⊥ is a maximal
adjacent set. Since orthogonal complementation preserves adjacency, (2.2) implies
that BU is also a maximal adjacent set.

Assume on the other hand that S ⊂ LatnH, n 6∈ {−1, 0, 1}, is a maximal adjacent
set such that S 6= AU for every U ∈ Latn−1H. We need to show that there exists
Z ∈ Latn+1H such that S = BZ . Indeed, there exist U1,U2,U3 ∈ S such that U3 /∈
AU1∩U2 . We assert that U1 ∩U2 6⊂ U3. Suppose on the contrary that U1 ∩U2 ⊂ U3.
Then U1 ∩ U2 and U1 ∩ U3 are comparable and have both codimension 1 in U1.
Hence, they are the same and consequently, U3 ∈ AU1∩U2 , a contradiction. Lemma
2.3 now yields that U3 ∈ BU1+U2 . Denote Z = U1 + U2 ∈ Latn+1H. By what we have
already proved we have

U j = Z 	 [v j], j = 1, 2, 3,

for some linearly independent v1, v2, v3 ∈ Z.
Choose any V ∈ S different from U1, U2, U3. We will show that V ∈ BZ . We

claim that V does not contain at least one of U1 ∩ U2 and U1 ∩ U3. Indeed, if V
contained both, U1 ∩U2 = Z 	 [v1, v2] and U1 ∩U3 = Z 	 [v1, v3], then it would
also contain (U1 ∩ U2) + (U1 ∩ U3) = Z 	 [v1] = U1, which would contradict
adjacency of U1 and V . Suppose that U1 ∩U3 6⊂ V , as the other case is symmetric.
Then Lemma 2.3 implies that V ∈ BU1+U3 = BZ , as desired. Thus, S ⊂ BZ , and by
the maximality of S, S = BZ .

Let n ∈ Z∞ \ {0} and r be a positive integer, r ≥ 2. We will investigate the set
{U1, . . . ,Ur} ′ ′, where U1, . . . ,Ur ∈ LatnH. Recall that for U ∈ LatnH we have
U ∈ {U1, . . . ,Ur} ′ ′ if and only if

(2.3) {U ,V} /∈ CH

for every V ∈ Lat−nH satisfying

(2.4) {U j ,V} /∈ CH, j = 1, . . . , r.

We continue with several rather simple statements that will help the reader to easily
absorb the proof of the main theorem. In these statements we fix n, r and pairwise
distinct U1, . . . ,Ur as above.

Lemma 2.5 Let U ∈ {U1, . . . ,Ur} ′ ′. If V ∈ LatH is finite-dimensional such that
V ∩U j 6= {0} for every j = 1, . . . , r, then V ∩U 6= {0}.

Proof Assume on the contrary that V ∩ U = {0}. Obviously, U ⊕ V is a closed
subspace of H, (U ⊕V )⊥ ∩V = {0}, and V ⊕ (U ⊕V )⊥ ∈ Lat−nH. The subspace
V ⊕ (U ⊕V )⊥ satisfies (2.4) due to the assumption V ∩U j 6= {0}, j = 1, . . . , r. On
the other hand, H = (U ⊕V )⊕ (U ⊕V )⊥ = U ⊕ (V ⊕ (U ⊕V )⊥), and therefore
V ⊕ (U ⊕V )⊥ satisfies (2.4), but not (2.3), a contradiction.

Corollary 2.6 Let U ∈ {U1, . . . ,Ur} ′ ′. Then

U1 ∩ · · · ∩Ur ⊂ U ⊂ U1 + · · · + Ur.
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Proof To prove the first inclusion we take a nonzero x ∈ U1∩ · · ·∩Ur and apply the
previous lemma with V = [x] to get U1 ∩ · · · ∩Ur ⊂ U . It follows from (1.2), (2.3),
and (2.4) that U⊥ ∈ {U⊥1 , . . . ,U⊥r } ′ ′, and therefore, by what we have just proved,
we have (U1 + · · · + Ur)⊥ = U⊥1 ∩ · · · ∩U⊥r ⊂ U⊥, or equivalently,

U ⊂ U1 + · · · + Ur.

Lemma 2.7 If U1, . . . ,Ur ∈ AW for some W ∈ Latn−1H, then

{U1, . . . ,Ur} ′ ′ = {U ∈ AW : U ⊂ U1 + · · · + Ur}.

Proof Assume that U ∈ {U1, . . . ,Ur} ′ ′. Since U1 + · · · + Ur is closed, we get
from the previous corollary that W ⊂ U ⊂ U1 + · · · + Ur. We need to show that
dim(U 	W ) = 1.

Choose Ũ ∈ LatH such that U1 + · · · + Ur = U ⊕ Ũ . Of course, Ũ is finite-
dimensional. Because H = (U ⊕ Ũ ) ⊕ (U1 + · · · + Ur)⊥, the subspace V = Ũ ⊕
(U1 + · · · + Ur)⊥ does not satisfy (2.3), and consequently we have H = U j ⊕ V =

(U j ⊕ Ũ )⊕ (U1 + · · · + Ur)⊥ for some j ∈ {1, . . . , r}. Since U j , Ũ ⊂ U1 + · · · + Ur,
we conclude that

U j ⊕ Ũ = U1 + · · · + Ur = U ⊕ Ũ ,

yielding that U j and U have the same finite codimension in U1 + · · · + Ur. It follows
that dim(U 	W ) = dim(U j 	W ) = 1, as desired.

To prove the opposite inclusion we first write

U j = W ⊕ [u j], j = 1, . . . , r,

for some nonzero vectors u j ∈W⊥, and then choose U ∈ AW with U ⊂ U1+· · ·+Ur.
We must show that for each V ∈ Lat−nH such that H = U ⊕V (in other words, V
does not satisfy (2.3)) we have H = U j ⊕V for some j ∈ {1, . . . , r}.

We claim that we have U j ∩V = {0} for some j. Suppose on the contrary that for
every j ∈ {1, . . . , r} there exists a nonzero v j ∈ U j ∩V . We have W ∩ [v1, . . . , vr] =
{0}. We also know that W ∩ [u1, . . . , ur] = {0}, because [u1, . . . , ur] ⊂W⊥. Now,
v j ∈W ⊕ [u j], j = 1, . . . , r, and therefore,

U1 + · · · + Ur = W ⊕ [u1, . . . , ur] ⊂W ⊕ [v1, . . . , vr] ⊂ U1 + · · · + Ur.

Since W ⊂ U ⊂ U1 + · · · + Ur and W has codimension one in U , we have U ∩
[v1, . . . , vr] 6= {0}, contradicting H = U ⊕V .

Hence, there is j ∈ {1, . . . , r} such that U j ∩V = {0}. Because H = U ⊕V , we
have u j = u + v for some u ∈ U and some v ∈ V . We distinguish two cases.

If u ∈ U j , then because U j∩V = {0}, we have u = u j , and consequently, U = U j .
We are done.

If, on the other hand u 6∈ U j , then clearly u 6∈W , and therefore, W ⊕ [u] = U . It
follows that

U j + V = W + [u j] + V = W + [u] + V = U + V = H,

as desired.
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Corollary 2.8 If U1, . . . ,Ur ∈ BZ for some Z ∈ Latn+1H, then

{U1, . . . ,Ur} ′ ′ = {U ∈ BZ : U1 ∩ · · · ∩Ur ⊂ U}.

Proof This statement follows directly from the previous lemma, (1.2), and (2.2).

Lemma 2.9 If 0 < n ≤ ∞ and W ∈ Latn−1H, then for every collection U1, . . . ,Ur ∈
AW we have

{U1, . . . ,Ur} ′ ′ 6= AW .

Proof From n > 0 we conclude that U1 + · · · + Ur 6= H, and then the statement is a
straightforward consequence of Lemma 2.7.

Lemma 2.10 If 0 < n < r and Z ∈ Latn+1H, then there exist U1, . . . ,Ur ∈ BZ such
that

{U1, . . . ,Ur} ′ ′ = BZ .

Proof Since n < r, one can choose U1, . . . ,Ur ∈ BZ such that U1 ∩ · · · ∩Ur = {0}.
Applying Corollary 2.8 we complete the proof.

A purely algebraic analogue of the next lemma can be found in [1, Theorem 3.2].

Lemma 2.11 Let n ∈ Z∞ \ {0} and U1,U2 ∈ LatnH be distinct. Then U1 and U2

are adjacent if and only if {U1,U2} ′ ′ 6= {U1,U2}.

Proof Applying Lemma 2.7 with r = 2 and W = U1 ∩ U2, we get {U1,U2} ′ ′ 6=
{U1,U2} if U1,U2 ∈ LatnH are adjacent. Suppose now that for distinct U1,U2 ∈
LatnH there exists U ∈ {U1,U2} ′ ′ such that U /∈ {U1,U2}. We will prove that U1

and U2 are adjacent in four steps.

Step 1 U1 6⊂ U and U2 6⊂ U . By symmetry, it suffices to prove the first equation.
It holds automatically if n 6= ∞, so assume the opposite. Suppose that U1 ⊂ U .
We will distinguish two cases. First, assume that we also have U2 ⊂ U . If V ∈
Lat∞H is such that {U ,V} ∈ CH, then U1 + V and U2 + V are strictly contained in
U + V = H. Thus, {U1,V} /∈ CH and {U2,V} /∈ CH, a contradiction with (2.3)
and (2.4). Turn now to the second case, when U2 6⊂ U . Choose u2 ∈ U2 \ U and
set V = [u2] ⊕ ([u2] ⊕ U )⊥ ∈ Lat∞H. Then {U ,V} ∈ CH, U1 + V 6= H, and
U2 ∩V 6= {0} again contradict (2.3) and (2.4).

Step 2 U1 ∩ U ∈ BU1 and U2 ∩ U ∈ BU2 . We will again prove only the first
equation and then refer to symmetry. The equation clearly holds if n = 1, so assume
that n 6= 1. Because U1 6⊂ U , U1∩U is strictly contained in U1. Hence, it is enough to
show that for any pair of linearly independent u1, v1 ∈ U1 we have [u1, v1]∩U 6= {0}.
So choose linearly independent u1, v1 ∈ U1. Since U2 6⊂ U , there exists u2 ∈ U2 \U .
If u1 and u2 were linearly dependent, they would be contained in U1 ∩ U2, which
is contained in U by Corollary 2.6, a contradiction. Thus, u1 and u2 are linearly
independent and the same argument applies to v1 and u2. It follows that u1, v1, u2 are
linearly independent. Otherwise u2 would belong to [u1, v1] and therefore we would
have u2 ∈ U1 ∩U2 ⊂ U , a contradiction. Lemma 2.5 yields that there exist 0 6= u ∈
[u1, u2]∩U and 0 6= v ∈ [v1, u2]∩U . We claim that u and v are linearly independent.
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Indeed, u = λ1u1 + λ2u2 and v = µ1v1 + µ2u2 for some λ1, λ2, µ1, µ2 ∈ F. It follows
from u2 /∈ U that λ1, µ1 6= 0. The linear independence of u1 and v1 now implies the
linear independence of u and v. So, [u, v] and [u1, v1] are two-dimensional subspaces
of [u1, u2, v1] and have therefore non-trivial intersection. This completes Step 2.

Step 3 U1 + U2 = U ⊕ [u2] for some u2 ∈ U2 \U . We know from Step 2 that
U1 = (U1 ∩U ) ⊕ [u1] and U2 = (U2 ∩U ) ⊕ [u2] for some u1, u2 /∈ U . It follows
from Lemma 2.5 that the intersection [u1, u2]∩U is non-trivial. Because u1, u2 /∈ U ,
this intersection must be equal to some [u] /∈ {[u1], [u2]}. Hence,

U1 +U2 = (U1 ∩U ) + (U2 ∩U ) + [u1, u2] ⊂ U + [u1, u2] = U + [u, u2] = U ⊕ [u2].

But the latter term is contained in U1 + U2 by Corollary 2.6, and therefore U1 + U2 =
U ⊕ [u2].

Step 4 U1 and U2 are adjacent. Let u2 ∈ U2\U be as in the previous step. Denote
V = [u2]⊕(U1 +U2)⊥ ∈ Lat−nH. Then U⊕V = (U⊕[u2])⊕(U1 +U2)⊥ = H and
0 6= u2 ∈ U2 ∩V . Hence, {U2,V} /∈ CH, so (2.3) and (2.4) yield {U1,V} ∈ CH.
It is now clear that U1 ⊕ [u2] ⊂ U1 + U2, and these two subspaces have a common
complement, namely (U1+U2)⊥. Hence, they are the same and consequently, U1+U2

is closed. Moreover, U1 has codimension 1 in U1 + U2 and, by symmetry, the same is
true for U2.

Corollary 2.12 Let n,m ∈ Z∞ \ {0}, and φ : LatnH → LatmK, ψ : Lat−nH →
Lat−mK be bijective maps such that

{U ,V} ∈ CH ⇐⇒ {φ(U ), ψ(V )} ∈ CK, U ∈ LatnH,V ∈ Lat−nH.

Then for all U1,U2 ∈ LatnH we have

U1 and U2 are adjacent ⇐⇒ φ(U1) and φ(U2) are adjacent.

Moreover, for all V1,V2 ∈ Lat−nH we have

V1 and V2 are adjacent ⇐⇒ ψ(V1) and ψ(V2) are adjacent.

Proof The first statement is a direct consequence of Lemma 2.11 and the fact that
φ({U1,U2} ′ ′) = ψ({U1,U2} ′) ′ = {φ(U1), φ(U2)} ′ ′. We get the second statement if
we exchange the roles of φ and ψ in the last argument.

Proposition 2.13 Let n be a positive integer. Suppose that φ : LatnH → LatnK and
ψ : Lat−nH→ Lat−nK are bijective maps such that

{U ,V} ∈ CH ⇐⇒ {φ(U ), ψ(V )} ∈ CK, U ∈ LatnH,V ∈ Lat−nH.

Then there exists An ∈ BCI(H,K) such that

φ(U ) = An(U ), U ∈ LatnH, and ψ(V ) = An(V ), V ∈ Lat−nH.
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Proof We apply induction on n. Start with n = 1. Lemma 2.7, applied to r = 2 and
W = {0}, tells us that for [x] ∈ Lat1H and distinct [y], [z] ∈ Lat1H we have

[x] ⊂ [y] + [z] ⇐⇒ [x] ∈ {[y], [z]} ′ ′.

Hence,
[x] ⊂ [y] + [z] ⇐⇒ φ([x]) ⊂ φ([y]) + φ([z]).

By the fundamental theorem of projective geometry [4] there exists a bijective semi-
linear map A1 : H → K such that φ([x]) = [A1x], x ∈ H \ {0}. In other words,
φ(U ) = A1(U ), U ∈ Lat1H. Now (1.3) yields that the same is true for the map
U 7→ ψ(U⊥)⊥, U ∈ Lat1H, so ψ(V ) = B1(V⊥)⊥, V ∈ Lat−1H, for some bijective
semilinear map B1 : H→ K.

We next show that A1 is linear or conjugate linear and is bounded. Note that for
any pair x, y ∈ H \ {0}, we have {[x], [y]⊥} /∈ CH ⇐⇒ [x] ∩ [y]⊥ 6= {0} ⇐⇒
x ⊥ y, which implies

(2.5) x ⊥ y ⇐⇒ A1x ⊥ B1 y, x, y ∈ H.

Hence, A1 carries closed hyperplanes in H into closed hyperplanes in K, and the
analogous statement is true for A−1

1 . If F = R, then A1 is automatically linear and is
bounded by [10, Lemma B]. On the other hand, if F = C, the (conjugate) linearity
and the boundedness follow from [5, Lemmas 2 and 3]. We already know that for
every V ∈ Lat−1H we have ψ(V ) = B1(V⊥)⊥, which equals A1(V ) by (2.5).

Continue with the induction step. Let n ≥ 2 and suppose that any pair of bi-
jective maps defined on Latn−1H and Lat−n+1H that preserves complementarity is
induced by an operator from BCI(H,K). We want to see that the same is true for the
maps defined on LatnH and Lat−nH. Choose and fix an arbitrary W ∈ Latn−1H.
Corollary 2.12 and Lemma 2.4 yield that we have either φ(AW ) = AW ′ for some
W ′ ∈ Latn−1K or φ(AW ) = BZ for some Z ∈ Latn+1K. Suppose that the second
condition is fulfilled. Let r be any integer greater that n. By Lemma 2.10 there exist
U1, . . . ,Ur ∈ BZ such that {U1, . . . ,Ur} ′ ′ = BZ . After applying φ−1 on the last
equation, we get {φ−1(U1), . . . , φ−1(Ur)} ′ ′ = AW , a contradiction to Lemma 2.9.
Thus, for every W ∈ Latn−1H there exists (unique) W ′ ∈ Latn−1K such that
φ (AW ) = AW ′ . Consequently, φ induces a map τ : Latn−1H → Latn−1K, deter-
mined by

φ(AW ) = Aτ (W ), W ∈ Latn−1H,

or equivalently

(2.6) W ⊂ U ⇐⇒ τ (W ) ⊂ φ(U ), W ∈ Latn−1H, U ∈ LatnH.

We assert that τ is bijective. The injectivity follows directly from the injectivity of φ.
In order to check the surjectivity choose an arbitrary W ′ ∈ Latn−1K. Since φ−1 has
the same properties as φ, we get φ−1(AW ′) = AW for some W ∈ Latn−1H and finally
τ (W ) = W ′. It now follows from (1.3) that the map U 7→ ψ(U⊥)⊥, U ∈ LatnH,
also maps the sets of the form AW , W ∈ Latn−1H, into such sets. This, together with
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(2.2), implies that ψ induces a bijective map ρ : Lat−n+1H → Lat−n+1K, determined
by

ψ(BZ) = Bρ(Z), Z ∈ Lat−n+1H.

Of course, the last condition has an equivalent formulation:

(2.7) V ⊂ Z ⇐⇒ ψ(V ) ⊂ ρ(Z), V ∈ Lat−nH, Z ∈ Lat−n+1H.

We claim that for any pair W ∈ Latn−1H, Z ∈ Lat−n+1H we have

(2.8) {W,Z} ∈ CH ⇐⇒ ∀U ∈ AW∃V ∈ BZ : {U ,V} ∈ CH.

Assume first that {W,Z} ∈ CH and let U ∈ AW be arbitrary. Then U = W ⊕ [z] for
some z ∈ Z \ {0}. Hence, for V = Z	 [z] ∈ BZ we have U ⊕V = W ⊕ ([z]⊕V ) =
W ⊕ Z = H. Suppose now that the second condition in (2.8) holds. Because W is
finite-dimensional and Z has finite codimension in H, one can choose z ∈ Z \W .
Let U = W ⊕ [z] ∈ AW . Then there exists V ∈ BZ such that W ⊕ ([z] ⊕ V ) =
U ⊕ V = H. Since z /∈ V and V ∈ BZ , we have [z] ⊕ V = Z, so W ⊕ Z = H, as
desired.

Equation (2.8) now yields that for any pair W ∈ Latn−1H, Z ∈ Lat−n+1H we have

{W,Z} ∈ CH ⇐⇒ ∀U ∈ φ(AW )∃V ∈ ψ(BZ) : {U ,V} ∈ CK,

and furthermore,

{W,Z} ∈ CH ⇐⇒ {τ (W ), ρ(Z)} ∈ CK.

By the induction hypothesis, there exists An ∈ BCI(H,K) such that τ (W ) = An(W ),
W ∈ Latn−1H, and ρ(Z) = An(Z), Z ∈ Lat−n+1H. Now (2.6) and (2.7) imply that
φ(U ) = An(U ), U ∈ LatnH, and ψ(V ) = An(V ), V ∈ Lat−nH, respectively.

We are now ready to prove our main theorem.

Theorem 2.14 Let φ, ψ : LatH→ LatK be bijective maps such that

{U ,V} ∈ CH ⇐⇒ {φ(U ), ψ(V )} ∈ CK, U ,V ∈ LatH.

Then there exist a sequence (An)n∈Z∞ ⊂ BCI(H,K) and a regular partition Z∞ =
Z∞(id) t Z∞(⊥) such that

• if U ∈ LatnH for some n ∈ Z∞(id), then φ(U ) = An(U ) and ψ(U ) = A−n(U );
• if U ∈ LatnH for some n ∈ Z∞(⊥), then φ(U ) = An(U⊥) and ψ(U ) = A−n(U⊥).

Proof Our first goal is to show that φ and ψ map sets of the form LatnH, n ∈ Z∞,
into sets of the same form. Of course, this can be done in the easiest way for n = 0.

Indeed, observe that U ∈ Lat0H if and only if there is exactly one V ∈ LatH such
that {U ,V} ∈ CH. Hence, φ(Lat0H) = Lat0K and ψ(Lat0H) = Lat0K. It is clear
that either both φ and ψ act like the identity on the set Lat0H or they both act like
orthogonal complementation. Thus, any A0 ∈ BCI(H,K) satisfies the conclusion of
the theorem.

We next claim that for any pair of distinct U ,V ∈ LatH, the following are equiv-
alent:
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• ∃n ∈ Z∞ : U ∈ LatnH, V ∈ Lat−nH;
• ∃W,Z ∈ LatH : {U ,W} ∈ CH, {W,Z} ∈ CH, {Z,V} ∈ CH.

A trivial verification shows that the second condition implies the first one. Assume
now that the first condition is satisfied. We distinguish three cases.

Case 1 n = 0. In this case one of U ,V , say U , equals {0} and the other one
equals H. So, the second condition is fulfilled for W = H and Z = {0}.

Case 2 n ∈ Z \ {0}. Without loss of generality assume that n > 0. Set Z =
V⊥ ∈ LatnH. We have to prove that U and Z have a common complement. Indeed,
if U ∩ Z is non-trivial, choose its basis B = {w1, . . . ,wr}. Otherwise set r = 0 and
B = ∅. Now extend the set B to a basis of U with ur+1, . . . , un ∈ U and analogously
with zr+1, . . . , zn ∈ Z to get a basis of Z. One can easily verify that W = [ur+1 +
zr+1, . . . , un + zn]⊕ (U + Z)⊥ is a common complement of U and Z, as desired.

Case 3 n = ∞. In this case the second condition is proved in [6, Theorem
1.4].

For any pair of distinct U ,V ∈ LatH the following equivalence holds:

∃n ∈ Z∞ \ {0} : U ,V ∈ LatnH,(2.9)

m

∃W,Z,Y ∈ LatH : {U ,W} ∈ CH, {W,Z} ∈ CH, {Z,Y} ∈ CH, {Y,V} ∈ CH.

The second condition again trivially implies the first one. To get the other direction
we apply the previous equivalence for the pair U ∈ LatnH and Y = V⊥ ∈ Lat−nH.

Consequently, for every n ∈ Z∞ \ {0} there exists m ∈ Z∞ \ {0} such that
φ(LatnH) = LatmK and ψ(Lat−nH) = Lat−mK. We assert that either m = n or
m = −n. In order to prove this, choose arbitrary n ∈ Z \ {0} and m ∈ Z∞ \ {0}.

We claim that the following two statements are equivalent:

(a) m ∈ {−n, n}.
(b) For every pair of distinct U ,V ∈ LatmH there exists an adjacent chain between

U and V of length at most |n|. Moreover, there exists a pair of distinct U ,V ∈
LatmH such that any adjacent chain between U and V has length at least |n|.

Proof We distinguish four cases.

Case 1 m = |n|. Let U ,V ∈ Lat|n|H be distinct. Then dim U 	 (U ∩ V ) =
dim V 	 (U ∩V ) = |n| − dim(U ∩V ). By Lemma 2.2, there exists an adjacent chain
between U and V of length |n|−dim(U ∩V ) ≤ |n|. By the same lemma, any adjacent
chain between U and V has length at least |n| if U ∩V = {0}.

Case 2 m = −|n|. For any pair of distinct U ,V ∈ Lat−|n|H we have dim U 	
(U ∩ V ) = dim V 	 (U ∩ V ) = |n| − dim(U⊥ ∩ V⊥). We finish the proof in the
same way as in the previous case.

Case 3 |m| < |n|. Let U ,V ∈ LatmH be distinct. Suppose that m < 0, as the
other case is analogous. By Lemma 2.2 one can find an adjacent chain between U
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and V of length |m| − dim(U⊥ ∩V⊥) ≤ |m| < |n|. Thus, the second statement in
(b) does not hold.

Case 4 m = ∞ or |m| > |n|. One can find U ,V ∈ LatmH such that |n| <
dim U 	 (U ∩ V ) = dim V 	 (U ∩ V ) < ∞. By Lemma 2.2, any adjacent chain
between U and V has length greater than |n|, contradicting the first statement in (b)
and proving our claim.

Let n be a positive integer. Using Corollary 2.12 we now conclude that φ(LatnH)
equals either LatnK or Lat−nK. In the first case we must have also φ(Lat−nH) =
Lat−nK, ψ(Lat−nH) = Lat−nK, and ψ(LatnH) = LatnK, while in the other we have
φ(Lat−nH) = LatnK, ψ(Lat−nH) = LatnK and ψ(LatnH) = Lat−nK. Hence, there
exists a regular partition Z∞ = Z∞(id)tZ∞(⊥) such that φ(LatnH) = ψ(LatnH) =
LatnK if n ∈ Z∞(id), while φ(LatnH) = ψ(LatnH) = Lat−nK if n ∈ Z∞(⊥).
Instead of a pair (φ, ψ), consider now a pair (φ̃, ψ̃), where φ̃(U ) = φ(U ), ψ̃(U ) =

ψ(U ) if U ∈ LatnH for some n ∈ Z∞(id) and φ̃(U ) = φ(U⊥), ψ̃(U ) = ψ(U⊥)
otherwise. After doing this we may assume that φ(LatnH) = LatnK and ψ(LatnH) =
LatnK for every n ∈ Z∞.

Let again n be a positive integer. Then Proposition 2.13 guarantees the existence
of An ∈ BCI(H,K) for which φ(U ) = An(U ), U ∈ LatnH, and ψ(V ) = An(V ),
V ∈ Lat−nH. By (1.3), we can also apply Proposition 2.13 to a pair of maps U 7→
φ(U⊥)⊥, U ∈ LatnH, and V 7→ ψ(V⊥)⊥, V ∈ Lat−nH. Thus, there exists Bn ∈
BCI(H,K) such that φ(V ) = Bn(V⊥)⊥, V ∈ Lat−nH, and ψ(U ) = Bn(U⊥)⊥, U ∈
LatnH. By setting A−n := (B∗n)−1, we therefore get φ(V ) = A−n(V ), V ∈ Lat−nH,
and ψ(U ) = A−n(U ), U ∈ LatnH, as desired.

It remains to describe the behavior of φ and ψ on the set Lat∞H. Corollary 2.12
and Lemma 2.4 yield that for every W ∈ Lat∞H there exists W ′ ∈ Lat∞K so that
either φ(AW ) = AW ′ or φ(AW ) = BW ′ . We define an equivalence relation on the set
of maximal adjacent subsets of Lat∞H by S1 ∼ S2 if and only if there exist W1,W2 ∈
Lat∞H such that either {S1, S2} = {AW1 ,AW2} or {S1, S2} = {BW1 ,BW2}. Our
next aim is to show that φ and ψ preserve this relation; that is

φ(S1) ∼ φ(S2) ⇐⇒ S1 ∼ S2 ⇐⇒ ψ(S1) ∼ ψ(S2).

In order to do this we start with some observations. We claim that for W,Z ∈
Lat∞H we have

(a) {W,Z} ∈ CH ⇐⇒ ∀U ∈ AW∃V ∈ BZ : {U ,V} ∈ CH,
(b) {W,Z} ∈ CH ⇐⇒ ∀U ∈ BW∃V ∈ AZ : {U ,V} ∈ CH,
(c) ∃U ∈ AW∀V ∈ AZ : {U ,V} /∈ CH,
(d) ∃U ∈ BW∀V ∈ BZ : {U ,V} /∈ CH.

Let us prove (a). The first condition implies the second in the same way as (2.8) in
Proposition 2.13. Assume now that the second condition holds. We can again copy
the proof of (2.8), with the only difference being that we have to change the proof of
the existence of z ∈ Z \W . Assume that such a z does not exist, that is Z ⊂W . Then
for any U ∈ AW and V ∈ BZ we have V ⊂ U . Thus, for such a pair we can have
{U ,V} ∈ CH only if V = {0} and U = H, a contradiction with W,Z ∈ Lat∞H.
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It follows from (a) and (1.2) that

{W,Z} ∈ CH ⇐⇒ {W⊥,Z⊥} ∈ CH

⇐⇒ ∀U ∈ AW⊥∃V ∈ BZ⊥ : {U⊥,V⊥} ∈ CH.

To complete the proof of (b) we use (2.2). We further choose U ∈ AW with U ∩Z 6=
{0} to prove (c), and U ∈ BW with U + Z 6= H to prove (d).

It follows from (a)–(d) that φ(AW1 ) 6∼ ψ(BW2 ) for any pair W1,W2 ∈ Lat∞H

with {W1,W2} ∈ CH. Now let W1,W2 ∈ Lat∞H be arbitrary. By (2.9) and the
previous statement, there exist W3,W4,W5 ∈ Lat∞H such that

φ(AW1 ) 6∼ ψ(BW3 ) 6∼ φ(AW4 ) 6∼ ψ(BW5 ) 6∼ φ(AW2 ).

Hence, φ(AW1 ) ∼ φ(AW2 ), and similarly φ(BW1 ) ∼ φ(BW2 ), ψ(AW1 ) ∼ ψ(AW2 ),
and ψ(BW1 ) ∼ ψ(BW2 ), as desired.

We may now assume that for any W,Z ∈ Lat∞H there exist W ′,Z ′ ∈ Lat∞K

such that φ(AW ) = AW ′ and ψ(BZ) = BZ ′ , respectively (otherwise we consider a
pair of maps (U ,V ) 7→ (φ(U⊥), ψ(V⊥)), U ,V ∈ Lat∞H, instead of a pair (φ, ψ)).
Consequently, φ and ψ induce bijective maps τ , ρ : Lat∞H→ Lat∞K, determined
by

(2.10) φ(AW ) = Aτ (W ),W ∈ Lat∞H, and ψ(BZ) = Bρ(Z),Z ∈ Lat∞H,

respectively. It follows from (a) that

(2.11) {W,Z} ∈ CH ⇐⇒ {τ (W ), ρ(Z)} ∈ CK, W,Z ∈ Lat∞H.

Choose any W,Z ∈ Lat∞H with {W,Z} ∈ CH. Then any element of AW can
be uniquely written as W ⊕ [z], where [z] ∈ Lat1 Z. By (2.11), we also have
{τ (W ), ρ(Z)} ∈ CK. Therefore, it follows from (2.10) that any element of φ(AW )
can be uniquely written as τ (W )⊕ [z ′], where [z ′] ∈ Lat1 ρ(Z). Hence, φ induces a
bijective map ξ : Lat1 Z → Lat1 ρ(Z), determined by φ(W ⊕ [z]) = τ (W ) ⊕ ξ([z]),
[z] ∈ Lat1 Z. One can easily show that (2.11) implies

{[z],V} ∈ CZ ⇐⇒ {ξ([z]), ψ(V )} ∈ Cρ(Z), [z] ∈ Lat1 Z, V ∈ BZ .

We use Proposition 2.13 for n = 1 and Hilbert spaces Z and ρ(Z) to establish that
there exists AW,Z ∈ BCI(Z, ρ(Z)) such that

ξ([z]) = AW,Z([z]), [z] ∈ Lat1 Z, and ψ(V ) = AW,Z(V ), V ∈ BZ .

We claim that the last equation yields that AW,Z is independent of W up to a multi-
plication with nonzero scalars. Indeed, let A ∈ BCI(Z, ρ(Z)) be some other operator
satisfying ψ(V ) = A(V ), V ∈ BZ . Because any [z] ∈ Lat1 Z is an intersection of
closed hyperplanes in Z, it follows that AW,Z([z]) = A([z]), [z] ∈ Lat1 Z. A rather

https://doi.org/10.4153/CJM-2013-025-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-025-4


1158 L. Plevnik and P. Šemrl

easy argument (see e.g., [4, Lemma 2.4]) shows that A = λAW,Z for some λ ∈ F\{0},
as desired.

Thus, for every Z ∈ Lat∞H there exists AZ ∈ BCI(Z, ρ(Z)) such that for any
W ∈ Lat∞H with {W,Z} ∈ CH we have

(2.12)
φ(W ⊕ [z]) = τ (W )⊕ AZ([z]), [z] ∈ Lat1 Z,

ψ(V ) = AZ(V ), V ∈ BZ .

Our next aim is to show that for any pair of distinct Z1,Z2 ∈ Lat∞H with
Z1 ∩ Z2 6= {0} there exists λ ∈ F \ {0} such that

(2.13) AZ2 |Z1∩Z2 = λAZ1 |Z1∩Z2 .

Let z ∈ (Z1 ∩ Z2) \ {0}. Using the same argument as when proving that AW,Z is
independent of W , we conclude that it is enough to show that [AZ1 (z)] = [AZ2 (z)].
We will distinguish two cases.

Case 1 There exists W ∈ Lat∞H such that {W,Z1}, {W,Z2} ∈ CH. By (2.12),
τ (W ) ⊕ AZ1 ([z]) = τ (W ) ⊕ AZ2 ([z]). Consequently, there exists α ∈ F \ {0} such
that w := AZ1 (z) + αAZ2 (z) ∈ τ (W ). This, together with (2.11), shows that for every
U ∈ Lat∞K with

(2.14) {U , ρ(Z1)} ∈ CK and {U , ρ(Z2)} ∈ CK

there exists αU ∈ F \ {0} such that AZ1 (z) + αU AZ2 (z) ∈ U .
If w = 0, we are done, so assume the opposite. We will show that this assumption

yields a contradiction. We start by providing some technical tools.
Note that ρ(Z j) ⊕ (τ (W ) 	 [w]), j = 1, 2, are hyperplanes in K. We claim that

there exist linearly independent x, y ∈ K such that

(i) x, y /∈ ρ(Z j)⊕ (τ (W )	 [w]), j = 1, 2,
(ii) [x, y] ∩ τ (W ) = {0}.

Indeed, note that ρ(Z1) and ρ(Z2) are different and have a common comple-
ment τ (W ). Hence, they are not comparable. Choose z1 ∈ ρ(Z1) \ ρ(Z2) and
z2 ∈ ρ(Z2) \ ρ(Z1) such that z1, z2, w are linearly independent. Then we have z j +
w /∈ ρ(Z j) ⊕ (τ (W ) 	 [w]), j = 1, 2. Furthermore, we can choose z1 in such a
way that z1 + w /∈ ρ(Z2) ⊕ (τ (W ) 	 [w]). Indeed, if this was not true, ρ(Z2) ⊕
(τ (W ) 	 [w]) would contain z1 + w, −z1 + w, and consequently w. This would
contradict ρ(Z2)⊕ τ (W ) = K. Symmetrically, we can choose z2 such that z2 + w /∈
ρ(Z1)⊕ (τ (W )	 [w]). Thus, x = z1 + w and y = z2 + w satisfy (i).

Turn now to the proof of (ii). Let z1 and z2 be as before. We can find z ′1 ∈
ρ(Z1) \ ρ(Z2) such that z1 and z ′1 are linearly independent and so are z ′1, z2, w. After
multiplying z ′1 with −1, if necessary, we may again assume that a pair z ′1 + w, z2 + w
satisfies (i). Then one can easily check that not both, [z1, z2] and [z ′1, z2] can intersect
τ (W ) non-trivially. So, we may suppose that [z1, z2] ∩ τ (W ) = {0}, otherwise we
replace z1 by z ′1. Since w ∈ τ (W ), we also have [z1 + w, z2 + w] ∩ τ (W ) = {0}, as
desired.
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Let x, y be as in (i) and (ii). Set U = (τ (W ) 	 [w]) ⊕ [x] and V = (τ (W ) 	
[w])⊕ [y]. Then U ,V ∈ Lat∞K are distinct and both satisfy (2.14). Hence,

AZ1 (z) + βAZ2 (z) ∈ U and AZ1 (z) + γAZ2 (z) ∈ V

for some β, γ ∈ F \ {0}. Therefore, there exist w1,w2 ∈ τ (W ) 	 [w] and λ, µ ∈ F
such that

w + (β − α)AZ2 (z) = AZ1 (z) + βAZ2 (z) = w1 + λx

and

w + (γ − α)AZ2 (z) = AZ1 (z) + γAZ2 (z) = w2 + µy.

Furthermore,

(γ − β)w − (γ − α)w1 + (β − α)w2 = (γ − α)λx − (β − α)µy ∈ [x, y] ∩ τ (W ).

By (ii),

(γ − β)w = (γ − α)w1 − (β − α)w2 ∈ τ (W )	 [w] ⊂ [w]⊥.

Thus, γ = β, which yields w1 + λx = w2 + µy. Hence, w1 − w2 = µy − λx ∈
[x, y] ∩ τ (W ) = {0}. Consequently, w1 = w2 and λ = µ = 0, because x and y are
linearly independent. Moreover, (β − α)AZ2 (z) = w1 − w ∈ ρ(Z2) ∩ τ (W ) = {0}.
Finally, w = w1 ∈ [w]⊥ implies w = 0, a contradiction.

Case 2 Z1 and Z2 are arbitrary. Equation (2.9), applied to the Hilbert space
[z]⊥ yields that there exist W1,W2,W3 ∈ Lat∞H such that (Z1 	 [z]) ⊕W1 =
W1 ⊕W2 = W2 ⊕W3 = W3 ⊕ (Z2 	 [z]) = [z]⊥. For W = W2 ⊕ [z] we therefore
have {Z1,W1}, {W1,W}, {W,W3}, {W3,Z2} ∈ CH. It follows from Case 1 that
[AZ1 (z)] = [AW (z)] = [AZ2 (z)], as desired.

We now define the operator A∞ : H→ K in the following way. Fix Z0 ∈ Lat∞H

and an operator AZ0 from (2.12). For x ∈ Z0 we define A∞x := AZ0 x. For x /∈ Z0

set A∞x := AZx, where we choose Z and AZ such that x ∈ Z, Z ∩ Z0 6= {0}, and
AZ |Z∩Z0 = AZ0 |Z∩Z0 (we achieve the latter by scalar multiplication if neccessary). It
follows from (2.13) that the definition is independent of the choice of Z and that
either all the operators AZ , Z ∈ Lat∞H, are linear or all are conjugate linear. Con-
sequently, A∞ is linear or conjugate linear. It is easy to see that A∞ is bijective, and
it is bounded because the restriction of A∞ to any Z ∈ Lat∞H is bounded. It re-
mains to show that φ(U ) = ψ(U ) = A∞(U ), U ∈ Lat∞H. So, choose an arbitrary
U ∈ Lat∞H. Then one can find Z ∈ Lat∞H such that U ∈ BZ and Z ∩ Z0 6= {0}.
By (2.12), ψ(U ) = AZ(U ) = A∞(U ). Therefore,

{V ′ ∈ Lat∞K : {φ(U ),V ′} ∈ CK} = {A∞(V ) : V ∈ Lat∞H, {U ,V} ∈ CH}

= {V ′ ∈ Lat∞K : {A∞(U ),V ′} ∈ CK},

and consequently, φ(U ) = A∞(U ).
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3 Maps on I(H)

Let n be an integer. Set

In(H) =


{P ∈ I(H) : rank P = n} if n > 0,

{P ∈ I(H) : dim ker P = −n} if n < 0,

{0, I} if n = 0,

and

I∞(H) = {P ∈ I(H) : dim im P =∞ and dim ker P =∞}.

Theorem 3.1 Let H and K be infinite-dimensional separable Hilbert spaces and let
ϕ : I(H)→ I(K) be a bijective map such that for all P,Q ∈ I(H) we have

im P = im Q ⇐⇒ imϕ(P) = imϕ(Q),

ker P = ker Q ⇐⇒ kerϕ(P) = kerϕ(Q).

Then there exist a sequence (An)n∈Z∞ ⊂ BCI(H,K) and a regular partition Z∞ =
Z∞(id) t Z∞(⊥) such that

• if P ∈ In(H) for n ∈ Z∞(id), then ϕ(P) = AnPA−1
n ;

• if P ∈ In(H) for n ∈ Z∞(⊥), then ϕ(P) = An(I − P∗)A−1
n .

Proof For U ∈ LatH let PU be the projection onto U . We will show that the pair of
maps φ, ψ : LatH → LatK, φ(U ) = imϕ(PU ), ψ(U ) = kerϕ(I − PU ), satisfies the
assumptions of Theorem 2.14. Indeed, it is easy to verify that they are bijective. Let
H = U ⊕ V for some U ,V ∈ LatH. Denote by P the idempotent operator whose
image is U and whose kernel is V . It follows from im PU = im P and ker(I − PV ) =
im PV = ker P that φ(U ) = imϕ(PU ) = imϕ(P) and ψ(V ) = kerϕ(I − PV ) =
kerϕ(P), and consequently, K = φ(U ) ⊕ ψ(V ). If on the other hand, K = φ(U ) ⊕
ψ(V ) for some U ,V ∈ LatH, Q is the idempotent operator whose image is φ(U ) and
whose kernel is ψ(V ), and P = ϕ−1(Q), then imϕ(P) = im Q = φ(U ) = imϕ(PU )
and kerϕ(P) = ker Q = ψ(V ) = kerϕ(I − PV ), and consequently, im P = U and
ker P = ker(I − PV ) = V . Thus, H = U ⊕V .

Therefore, by Theorem 2.14 there exist a sequence (An)n∈Z∞ ⊂ BCI(H,K) and a
regular partition Z∞ = Z∞(id) t Z∞(⊥) such that

• if U ∈ LatnH for some n ∈ Z∞(id), then φ(U ) = An(U ) and ψ(U ) = A−n(U );
• if U ∈ LatnH for some n ∈ Z∞(⊥), then φ(U ) = An(U⊥) andψ(U ) = A−n(U⊥).

First let P be an idempotent with P ∈ In(H) for some n ∈ Z∞(id), or equivalently,
its image U belongs to LatnH for some n ∈ Z∞(id), and then its kernel V belongs to
Lat−nH. On one hand we know that imϕ(P) = imϕ(PU ) = φ(U ) and kerϕ(P) =
kerϕ(I − PV ) = ψ(V ). On the other hand, for every y ∈ φ(U ) = An(U ) we have
y = Anu for some u ∈ U , and therefore, AnPA−1

n y = y, while for every z ∈ ψ(V ) =
An(V ) we have z = Anv for some v ∈ V , and consequently, AnPA−1

n z = AnPv = 0.
Thus, ϕ(P) = AnPA−1

n , as desired.
Assume finally that P is an idempotent whose image U belongs to LatnH for some

n ∈ Z∞(⊥). Then for every y ∈ imϕ(P) = φ(U ) = An(U⊥) we have y =
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Anu(⊥) for some u(⊥) ∈ U⊥, and therefore, An(I − P∗)A−1
n y = An(I − P∗)u(⊥) =

Anu(⊥) = y. And for every z ∈ kerϕ(P) = ψ(V ) = An(V⊥) there is v(⊥) ∈ V⊥

such that z = Anv(⊥), and consequently, An(I − P∗)A−1
n z = 0. It follows that in this

case we have ϕ(P) = An(I − P∗)A−1
n .

Of course, the dual form of this statement reads as follows.

Theorem 3.2 Let H and K be infinite-dimensional separable Hilbert spaces and let
ϕ : I(H)→ I(K) be a bijective map such that for all P,Q ∈ I(H) we have

im P = im Q ⇐⇒ kerϕ(P) = kerϕ(Q)

and

ker P = ker Q ⇐⇒ imϕ(P) = imϕ(Q).

Then there exist a sequence (An)n∈Z∞ ⊂ BCI(H,K) and a regular partition Z∞ =
Z∞(id) t Z∞(⊥) such that

• if P ∈ In(H) for n ∈ Z∞(id), then ϕ(P) = AnP∗A−1
n ;

• if P ∈ In(H) for n ∈ Z∞(⊥), then ϕ(P) = An(I − P)A−1
n .

The proof is almost the same as that of Theorem 3.1. Another possible proof is to
compose ϕ with the map P 7→ P∗ and then apply Theorem 3.1.

It is now easy to reprove the main result from [11]. The first part of the proof is
based on the same arguments as in [11].

Theorem 3.3 Let H and K be infinite-dimensional separable Hilbert spaces and let
ϕ : I(H)→ I(K) be a bijective map such that for all P,Q ∈ I(H) we have

P ≤ Q ⇐⇒ ϕ(P) ≤ ϕ(Q).

Then there exists A ∈ BCI(H,K) such that either

ϕ(P) = APA−1, P ∈ I(H), or ϕ(P) = AP∗A−1, P ∈ I(H).

Proof We first introduce some notation. For every pair of nonzero vectors x, y ∈ H

we denote by x⊗ y∗ the rank one operator from H into itself defined by (x⊗ y∗)z =
〈z, y〉x. Every rank one operator can be written in this form. Clearly, the image of
this operator is the one-dimensional subspace [x], and its kernel is the orthogonal
complement of y, y⊥ = {z ∈ H : 〈z, y〉 = 0}. It is trivial to verify that x ⊗ y∗ is an
idempotent if and only if 〈x, y〉 = 1.

Two rank one idempotents x⊗ y∗ and u⊗w∗ have the same image if and only if x
and u are linearly dependent, while they have the same kernel if and only if y and w
are linearly dependent. We write x ⊗ y∗ ≈ u ⊗ w∗ if and only if these two rank one
idempotents have the same image or the same kernel. Let x and y be nonzero vectors
in H. We denote by L(x) the set of all rank one idempotents whose image is [x], that
is,

L(x) = {x ⊗ w∗ : w ∈ H and 〈x,w〉 = 1},
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and by R(y) the set of all rank one idempotents whose kernel is y⊥, that is,

R(y) = {u⊗ y∗ : u ∈ H and 〈u, y〉 = 1}.

Let M be a subset of I1(H). We say that M is a≈-set if for any two elements P,Q ∈M

we have P ≈ Q. We claim that if M is a ≈-set, then either there exists a nonzero
x ∈ H such that M ⊂ L(x), or there exists a nonzero y ∈ H such that M ⊂ R(y).
There is nothing to prove if M is a singleton. So, assume that M contains at least
two distinct elements x ⊗ y∗ and u ⊗ w∗. They have either the same image or the
same kernel. We will consider just the second possibility. Then, after absorbing the
constant in the tensor product, if necessary, we may assume that y = w. Because
x⊗ y∗ 6= u⊗ y∗ and 〈x, y〉 = 〈u, y〉 = 1, the vectors x and u are linearly independent.
In other words, x⊗ y∗ and u⊗ y∗ have distinct images. It follows that any projection
P ∈ M has the same kernel as x ⊗ y∗ and u ⊗ y∗, and therefore P ∈ R(y). We have
proved that M ⊂ R(y).

Clearly, L(x) and R(y) are ≈-sets. Hence, for every pair of nonzero vectors
x, y ∈ H the sets L(x) and R(y) are maximal ≈-sets, and each ≈-set is contained
either in some L(x), or in some R(y). A direct consequence is that every bijective
map τ : I1(H) → I1(K) with the property that for every pair P,Q ∈ I1(H) we have
P ≈ Q ⇐⇒ τ (P) ≈ τ (Q) has the following property: for each nonzero x ∈ H ei-
ther there exists a nonzero u ∈ K such that τ (L(x)) = L(u), or there exists a nonzero
y ∈ K such that τ (L(x)) = R(y).

Since the zero idempotent is the least element of I(H) we have ϕ(0) = 0. Clearly,
rank one idempotents are minimal nonzero elements, and, therefore, ϕ maps the set
of all rank one idempotents on H bijectively onto the set of all rank one idempotents
on K, and similarly, ϕ(I2(H)) = I2(K). In fact, we have ϕ(In(H)) = In(K) for
every n ∈ Z∞.

In the next step we will show that for any pair P,Q ∈ I1(H) the following two
statements are equivalent:

• P ≈ Q;
• there exist infinitely many idempotents R ∈ I2(H) such that P ≤ R and Q ≤ R.

Indeed, assume first that P ≈ Q. Then either P and Q have the same images, or
they have the same kernels. We will treat only one of these two cases, say the first
one. Then P = x ⊗ y∗ and Q = x ⊗ w∗ for some x, y,w ∈ H with 〈x, y〉 = 1 and
〈x,w〉 = 1. Obviously, there are infinitely many idempotents R ∈ I2(H) such that
P ≤ R and Q ≤ R when P = Q. So, assume that P 6= Q. Then w = y + u for some
nonzero u ∈ x⊥. In particular, y and u are linearly independent, and therefore we
can find infinitely many vectors z ∈ H satisfying

〈z, y〉 = 0 and 〈z, u〉 = 1.

Because 〈x, y〉 = 1, the vectors x and z are linearly independent. It follows that
Rz = x ⊗ y∗ + z ⊗ u∗ is of rank two. Straightforward computations show that

R2
z = Rz, RzP = PRz = P, and RzQ = QRz = Q,
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which completes the one direction in the proof of the above equivalence.
To prove the other direction assume that P 6≈ Q and that P ≤ R, Q ≤ R,

P ≤ S, and Q ≤ S for some rank two idempotents R and S. In particular, we have
im P ⊂ im R, im Q ⊂ im R, im P ⊂ im S, and im Q ⊂ im S. As im P and im Q
are linearly independent one-dimensional subspaces of a two-dimensional subspace
im R, we have im R = im P ⊕ im Q, and, of course, im S = im P ⊕ im Q. Similarly,
ker R = ker P∩ker Q = ker S. As R and S have the same images and the same kernels,
we conclude that R = S, as desired.

The above characterization of ≈-pairs of idempotents of rank one and the above
statement concerning the map τ imply that for each nonzero x ∈ H either there exists
a nonzero u ∈ K such that ϕ(L(x)) = L(u), or there exists a nonzero y ∈ K such that
ϕ(L(x)) = R(y). Assume that there is a nonzero x ∈ H such that ϕ(L(x)) = R(y)
for some nonzero y ∈ K (the case when ϕ(L(x)) = L(u) for some nonzero u ∈ K

can be treated in the same way). We claim that then for each nonzero u ∈ H there is
a nonzero w ∈ K such that

(3.1) ϕ(L(u)) = R(w)

and for each nonzero z ∈ H there is a nonzero v ∈ K such that

(3.2) ϕ(R(z)) = L(v).

Clearly, we may assume that u and x are linearly independent. We know that either
ϕ(L(u)) = R(w) for some nonzero w, or ϕ(L(u)) = L(w) for some nonzero w. We
need to show that the second possibility cannot occur. Assume on the contrary that
we have the second possibility. We choose a vector a ∈ H such that 〈a, x〉 = 1 =
〈a, u〉. Then L(x) ∩ R(a) = {x ⊗ a∗} and L(u) ∩ R(a) = {u ⊗ a∗}. It follows that
both sets

R(y) ∩ φ(R(a)) and L(w) ∩ φ(R(a))

are singletons. And we further know that either φ(R(a)) = L(b) for some nonzero
b ∈ K, or φ(R(a)) = R(b) for some nonzero b ∈ K. In the first case we have
L(w) ∩ φ(R(a)) = L(w) ∩ L(b), and L(w) ∩ L(b) is either empty (when w and b are
linearly independent), or L(w) = L(b) (when w and b are linearly dependent). This
contradicts the fact that L(w) ∩ φ(R(a)) is a singleton. Similarly, we get a contradic-
tion in the second case. This proves (3.1). The proof of (3.2) is now trivial.

We next claim that for an arbitrary nonzero idempotent P ∈ I(H) and an arbi-
trary nonzero x ∈ H the following are equivalent:

• x ∈ im P;
• there exists Q ∈ L(x) such that Q ≤ P.

Indeed, if x ∈ im P, then x 6∈ (im P∗)⊥ = ker P. Therefore, we can find y ∈ im P∗

such that 〈x, y〉 = 1. It follows that Q = x ⊗ y∗ ≤ P. If, on the other hand,
Q = x ⊗ u∗ ∈ I1(H) satisfies Q ≤ P, then PQ = Q yields that x ∈ im P. Similarly,
we see that for an arbitrary nonzero idempotent P ∈ I(H) and arbitrary nonzero
y ∈ H we have y ∈ (ker P)⊥ if and only if there exists Q ∈ R(y) such that Q ≤ P.
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This, together with the above obtained properties of the map ϕ, yields that for all
P,Q ∈ I(H) we have

im P = im Q ⇐⇒ kerϕ(P) = kerϕ(Q),

ker P = ker Q ⇐⇒ imϕ(P) = imϕ(Q).

Hence, we can apply Theorem 3.2. Using also the fact that ϕ(In(H)) = In(K) for
every n ∈ Z we conclude that there exists a sequence (An)n∈Z ⊂ BCI(H,K) such that
ϕ(P) = AnP∗A−1

n for every P ∈ In(H), n ∈ Z. After composing ϕ by the map from
I(K) onto I(H) defined by P 7→ A−1

1 P∗A1, P ∈ I(K), we may assume that ϕ maps
I(H) bijectively onto itself and ϕ(P) = P for every operator of rank one. It is then
trivial to conclude that ϕ(P) = P for every P ∈ I(H).

Many other structural results for maps on idempotents can be deduced from our
description of image equality and kernel equality preserving maps. As another ex-
ample we reprove one of the results from [12].

Theorem 3.4 Let H and K be infinite-dimensional separable Hilbert spaces and let
ϕ : I(H)→ I(K) be a bijective map such that for all P,Q ∈ I(H) we have

PQ is a nonzero idempotent ⇐⇒ ϕ(P)ϕ(Q) is a nonzero idempotent.

Then there exists A ∈ BCI(H,K) such that

ϕ(P) = APA−1, P ∈ I(H).

Proof Clearly, 0 is the only idempotent operator having the property that its product
with each idempotent is not a nonzero idempotent. And PQ is a nonzero idempotent
for each nonzero idempotent Q if and only if P = I. Hence, ϕ(0) = 0 and ϕ(I) = I.
We next claim that for every idempotent P 6= 0, I the following are equivalent:

• P is of rank one;
• for each Q ∈ I(H) the product PQ is a nonzero idempotent if and only if QP is a
nonzero idempotent.

Indeed, if P is of rank one, P = x ⊗ y∗, and Q an arbitrary idempotent, then PQ =
x⊗(Q∗y)∗ is a nonzero idempotent if and only if 〈x,Q∗y〉 = 1, while QP is a nonzero
idempotent if and only if 〈Qx, y〉 = 1. Thus, the nonzero idempotency of PQ is
equivalent to the nonzero idempotency of QP. If, on the other hand, P is a non-trivial
idempotent that is not of rank one, then after applying a similarity transformation we
may assume that P is a projection whose image is at least two-dimensional and whose
kernel is nonzero. Take orthonormal vectors x, y ∈ im P and a unit vector u ∈ ker P
and set Q = x⊗x∗+(y +u)⊗u∗. Clearly, Q is an idempotent, PQ = x⊗x∗+ y⊗u∗ is
not an idempotent, while QP = x ⊗ x∗ is an idempotent. This proves that the above
two statements are equivalent, and consequently, ϕ(I1(H)) = I1(K).
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It was proved in [12, Lemma 2.8] that for two rank one idempotents P,Q ∈ I1(H),
P 6= Q, the following statements are equivalent:

• P ≈ Q;
• there exists R ∈ I1(H) \ {P,Q} such that for every T ∈ I1(H), if PT and QT are
both nonzero idempotents, then RT is a nonzero idempotent.

It follows that for every pair P,Q ∈ I1(H) we have P ≈ Q if and only if ϕ(P) ≈ ϕ(Q).
As in the proof of the previous theorem we conclude that either

• for every pair of nonzero vectors x, y ∈ H there exist nonzero vectors u, v ∈ K

such that ϕ(L(x)) = L(u) and ϕ(R(y)) = R(v), or
• for every pair of nonzero vectors x, y ∈ H there exist nonzero vectors u, v ∈ K

such that ϕ(L(x)) = R(u) and ϕ(R(y)) = L(v).

We will consider just the first possibility.
Let P ∈ I(H) and let x ∈ H be a nonzero vector. Then x ∈ im P if and only if PQ

is a nonzero idempotent for every Q ∈ L(x). Indeed, if x ∈ im P and Q = x ⊗ y∗

with 〈x, y〉 = 1, then PQ = Q. If, on the other hand, x 6∈ im P, then either Px = 0
or Px and x are linearly independent. In both cases we can find y ∈ H such that
〈x, y〉 = 1 and 〈Px, y〉 = 0. Consequently, Q = x ⊗ y∗ ∈ L(x) but PQ is not a
nonzero idempotent.

It follows that for every pair P,Q ∈ I(H) we have im P = im Q ⇐⇒ imϕ(P) =
imϕ(Q). And similarly, for every pair P,Q ∈ I(H) we have ker P = ker Q ⇐⇒
kerϕ(P) = kerϕ(Q). Hence, we can apply Theorem 3.1. We also know that rank one
idempotents are mapped into rank one idempotents. Hence, after composing ϕ with
an appropriate isomorphism (see the proof of the previous theorem) we may assume
that ϕ maps I(H) onto itself and satisfies ϕ(P) = P for every idempotent P of rank
one. We once again use the fact that for an arbitrary P ∈ I(H) we have x ∈ im P if
and only if PQ is a nonzero idempotent for every Q ∈ L(x), together with the fact
that for every rank one idempotent Q the product PQ is a nonzero idempotent if and
only if ϕ(P)Q is a nonzero idempotent, to conclude that imϕ(P) = im P. Similarly,
kerϕ(P) = ker P. The proof is complete.

Let us conclude with the remark that Theorem 2.14 plays an essential role in the
proof of Theorems 3.1 and 3.2, while the remaining two theorems in this section
could be derived directly from Proposition 2.13.
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