DIRECT-SUM DECOMPOSITION OF ATOMIC AND ORTHOGONALLY COMPLETE RINGS

ALEXANDER ABIAN
(Received 5 March 1969)
Communicated by G. B. Preston

In this paper we give a necessary and sufficient condition for decomposition (as a direct sum of fields) of a ring R in which for every $x \in R$ there exists a (and hence the smallest) natural number $n(x)>1$ such that

$$
\begin{equation*}
x^{n(x)}=x . \tag{1}
\end{equation*}
$$

We would like to emphasize that in what follows R stands for a ring every element x of which satisfies (1).

It is well known [1] that R is commutative and that $x^{n(x)-1}$ is an idempotent element of R, i.e., for every $x \in R$

$$
\begin{equation*}
\left(x^{n(x)-1}\right)^{2}=x^{n(x)-1} \tag{2}
\end{equation*}
$$

which implies that R has no nonzero nilpotent element, i.e., for every $x \in R$ and every natural number $k \geqq 1$,

$$
\begin{equation*}
x^{k}=0 \quad \text { implies } \quad x=0 . \tag{3}
\end{equation*}
$$

Lemma 1. The ring R is partially ordered by \leqq where for all elements x and y of R

$$
\begin{equation*}
x \leqq y \text { if and only if } x y=x^{2} . \tag{4}
\end{equation*}
$$

Proof. Since $x x=x^{2}$ we see that \leqq is reflexive.
Next, let $x \leqq y$ and $y \leqq x$, i.e. $x y=x^{2}$ and $y x=y^{2}$. But then

$$
x^{2}-x y-y x-y^{2}=(x-y)^{2}=0
$$

which, in view of (3), implies $x-y=0$, i.e. $x=y$. Hence \leqq is antisymmetric.
Finally, let $x \leqq y$ and $y \leqq z$, i.e., $x y=x^{2}$ and $y z=y^{2}$. Thus, $x^{2} z=x y z=$ $x y^{2}=x^{2} y=x^{3}$. Consequently, $x^{2} z^{2}=x^{3} z$ and $x^{3} z=x^{4}$. But then

$$
x^{2} z^{2}-2 x^{3} z+x^{4}=\left(x z-x^{2}\right)^{2}=0
$$

which, in view of (3), implies $x z=x^{2}$ which in turn, in view of (4), implies $x \leqq z$. Hence \leqq is transitive.

Thus, Lemma 1 is proved.

Clearly, from (4) and (2) it follows that for all elements x, y and z of R

$$
\begin{equation*}
y \leqq z \text { implies } x y \leqq x z \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{n(x)-1} y \leqq y . \tag{6}
\end{equation*}
$$

Definition 1. A nonzero element a of R is called an atom of R provided for every $x \in R$

$$
\begin{equation*}
x \leqq a \quad \text { implies } \quad x=a \quad \text { or } \quad x=0 \tag{7}
\end{equation*}
$$

Moreover, R is called atomic provided for every nonzero element r of R there exists an atom a of R such that $a \leqq r$.

Lemma 2. Let a be an atom of R. Then

$$
r^{n(r)-1} a=a \quad \text { or } \quad r a=0
$$

for every element r of R.
Proof. By (6) we have $r^{n(r)-1} a \leqq a$ and since a is an atom, by (7) we have $r^{n(r)-1} a=a$ or $r^{n(r)-1} a=0$. However, $r^{n(r)-1} a=0$ in view of (1) implies $r a=0$.

Definition 2. A subset S of R is called orthogonal provided $x y=0$ for distinct elements x and y of S.

Lemma 3. The set $\left(e_{i}\right)_{i \in I}$ of all idempotent atoms of R is an orthogonal set.
Proof. Since each e_{i} is both an atom and an idempotent, from Lemma 2 it follows that $e_{i} e_{j}=e_{i}=e_{j}$ or $e_{i} e_{j}=0$.

Lemma 4. Let a be an atom of R. Then $a^{n(a)-1}$ is an idempotent atom of R.
Proof. From (2) it follows that $a^{n(a)-1}$ is idempotent.
Now, let $x \leqq a^{n(a)-1}$. But then (5) and (1) imply $a x \leqq a$. Since a is an atom (7) implies $a x=a$ or $a x=0$.

If $a x=a$ then $a^{n(a)-1} x=a^{n(a)-1}$ which by (4) implies $a^{n^{n(a)-1}} \leqq x$. Hence $x=a^{n(a)-1}$.

If $a x=0$ then $a^{n(a)-1} x=0$; but $a^{n(a)-1} x=x^{2}$ by definition of \leqq, therefore $x^{2}=0$ which by (3) implies $x=0$.

Lemma 5. Let $\left(e_{i}\right)_{i \in I}$ be the set of all idempotent atoms of R. Then for every $i \in I$ the ideal F_{i} of R given by

$$
\begin{equation*}
F_{i}=\left\{r e_{i} \mid r \in R\right\} \tag{8}
\end{equation*}
$$

is a subfield of R. Moreover,

$$
\begin{equation*}
F_{i} \cap F_{j}=\{0\} \text { if } i \neq j . \tag{9}
\end{equation*}
$$

Proof. Since $e_{i}^{2}=e_{i}$ it follows that e_{i} is an element of F_{i} and also the unit of F_{i}.

Now, let $r e_{i} \neq 0$. We show that $r e_{i}$ has an inverse in F_{i}. If $n(r)=2$ then Lemma 2 implies $r e_{i}=e_{i}$ which shows that $r e_{i}$ is its own inverse in F_{i}. If $n(r)>2$ then Lemma 2 implies $\left(r e_{i}\right)\left(r^{n(r)-2} e_{i}\right)=e_{i}$ which shows that $r^{n(r)-2} e_{i}$ is the inverse of $r e_{i}$ in F_{i}.

Next, if $i \neq j$ and $r e_{i}=q e_{j}$ for $r, q \in R$ then Lemma 3 implies $r e_{i} e_{j}=q e_{j}=$ $r e_{i}=0$.

Lemma 6. Let R be atomic and let $\left(e_{i}\right)_{i \in I}$ be the set of all idempotent atoms of R. Then for every nonzero element q of R there exists an idempotent atom, say, e_{k} such that $q e_{k} \neq 0$. Moreover, for every $r \in R$ the $\sup _{i} r e_{i}$ exists and

$$
\begin{equation*}
r=\sup _{i} r e_{i} \tag{10}
\end{equation*}
$$

Proof. In view of (7) there exists an atom a such that $a \leqq q$, i.e., $a q=a^{2} \neq 0$. But then Lemma 4 and (1) imply that $e_{k}=a^{n(a)-1}$ is an idempotent atom and $a^{n(a)-1} q=a^{n(a)}=a \neq 0$, i.e., $q e_{k} \neq 0$.

Next, since $r r e_{i}=\left(r e_{i}\right)^{2}$ for every $i \in I$, it follows that r is an upper bound of $\left(r e_{i}\right)_{i \in I}$. Let h be any upper bound of $\left(r e_{i}\right)_{i \in 1}$, i.e. $h r e_{i}=\left(r e_{i}\right)^{2}$ for every $i \in I$. We show that $r \leqq h$. Because otherwise, $h r-r^{2}=q \neq 0$ and therefore $h r e_{k}-r^{2} e_{k}=q e_{k} \neq 0$, contradicting that $h r e_{i}=r r e_{i}$ for every $i \in I$.

Thus, Lemma 6 is proved.
Let us observe that if $\left(e_{i}\right)_{i \in I}$ is the set of all idempotent atoms of R then in view of (9) we may consider the direct sum $\oplus_{i \in I} F_{i}$ of the fields F_{i} given by (8). In this connection we have the following

Lemma 7. Let R be atomic and let $\left(e_{i}\right)_{i \in I}$ be the set of all idempotent atoms of R. Then

$$
\begin{equation*}
\alpha(r)=\left(r e_{i}\right)_{i \in I} \tag{11}
\end{equation*}
$$

is an isomorphism from R into the direct sum $\oplus_{i \in I} F_{i}$ of fields F_{i}.
Proof. It is obvious that α is a homomorphism. We show that α is one-toone. Indeed, if $r \neq q$ then $\alpha(r) \neq \alpha(q)$. Because otherwise, (10) would imply $r=\sup _{i} r e_{i}=\sup _{i} q e_{i}=q$, contradicting $r \neq q$.

Thus, Lemma 7 is proved.
Let us observe that the existence of an isomorphism from R onto a subring of a direct sum of fields is a well known fact and is proved without imposing any special condition (such as atomicity) on R. However, for the proof of our Theorem we need (as seen below) the special isomorphism α described in Lemma 7. In fact the existence of the isomorphism α is crucial for the proof of our Theorem which states that atomicity and orthogonal completeness of R is a necessary and sufficient
condition for R to be isomorphic to a direct sum of fields. The proof uses Lemma 8 below.

First however, we observe that if $\left(r_{i}\right)_{i \in I}$ is a subset of R such that $\sup _{i} r_{i}$ exists then, since $r_{i} \leqq \sup _{i} r_{i}$, in view of (3) we have

$$
\begin{equation*}
r_{i} \sup _{i} r_{i}=r_{i}^{2} \tag{12}
\end{equation*}
$$

Lemma 8. Let $\left(r_{i}\right)_{i \in I}$ be a subset of R such that sup $_{i} r_{i}$ exists. Then for every element b of R the $\sup _{i} b r_{i}$ exists and

$$
\begin{equation*}
b \sup _{i} r_{i}=\sup _{i} b r_{i} \tag{13}
\end{equation*}
$$

Proof. In view of (12) we have

$$
\left(b r_{i}\right)\left(b \sup _{i} r_{i}\right)=b^{2} r_{i} \sup _{i} r_{i}=\left(b r_{i}\right)^{2}
$$

which, in view of (4), implies $b r_{i} \leqq b \sup _{i} r_{i}$ for every $i \in I$. Thus, $b \sup r_{i}$ is an upper bound of $\left(b r_{i}\right)_{i \in I}$.

Next, let u be any upper bound of $\left(b r_{i}\right)_{i \in I}$, i.e., $b r_{i} \leqq u$, which, in view of (4), implies that for every $i \in I$,

$$
b r_{i} u-b^{2} r_{i}^{2}+r_{i}^{2}=r_{i}^{2}
$$

But then from (12) it follows that for every $i \in I$

$$
r_{i}\left(b u-b^{2} \sup _{i} r_{i}+\sup _{i} r_{i}\right)=r_{i}^{2}
$$

and therefore

$$
r_{i} \leqq b u-b^{2} \sup _{i} r_{i}+\sup _{i} r_{i}
$$

which implies

$$
\sup _{i} r_{i} \leqq b u-b^{2} \sup _{i} r_{i}+\sup _{i} r_{i}
$$

But then from (4) it follows that

$$
\left(\sup _{i} r_{i}\right)\left(b u-b^{2} \sup _{i} r_{i}+\sup _{i} r_{i}\right)=\left(\sup _{i} r_{i}\right)^{2}
$$

which yields

$$
\left(b \sup _{i} r_{i}\right) u=\left(b \sup _{i} r_{i}\right)^{2}
$$

implying by (4) that b sup $r_{i} \leqq u$. Hence $\left(b r_{i}\right)_{i \in I}$ has a supremum which is equal to $b \sup r_{i}$.

Definition 3. The ring R is called orthogonally complete provided sup S of every orthogonal subset S of R exists.

Finally, we prove:

Theorem. The ring R is isomorphic to a direct sum of fields if and only if R is atomic and orthogonally complete.

Proof. Let β be an isomorphism from R onto a direct sum $\oplus_{i \in I} K_{i}$ of fields K_{i}. Let r be a nonzero element of R and let $\beta(r)=\left(r_{i}\right)_{i \in I}$. Without loss of generality we may assume that $r_{1} \neq 0$. Let u_{1} be the unit of K_{1}. But then $a=r \beta^{-1}\left(\left(k_{i}\right)_{i \in I}\right)$ with $k_{1}=u_{1}$ and $k_{i}=0$ for $i \neq 1$ is obviously an atom of R such that $a \leqq r$. Thus, R is atomic. Next, let S be an orthogonal subset of R and let $\beta[S]=\left(\left(k_{i}(s)\right)_{i \in I}\right)_{s \in S}$. But then, in view of the orthogonality of S, clearly, $\beta^{-1}\left(\left(k_{i}\right)_{i \in I}\right)=\sup S$ where $k_{i}=k_{i}(s)$ if $k_{i}(s) \neq 0$ for some $s \in S$, and, otherwise $k_{i}=0$. Thus, R is orthogonally complete.

Conversely, we show that if R is atomic and orthogonally complete then R is isomorphic to the direct sum $\oplus_{i \in I} F_{i}$ of fields F_{i} mentioned in Lemma 7. To this end we show that the isomorphism α mentioned in Lemma 7 is an onto mapping. Let $\left(r_{i} e_{i}\right)_{i \in I}$ be an element of $\oplus_{i \in I} F_{i}$. From Lemma 3 it follows readily that $\left(r_{i} e_{i}\right)_{i \in I}$ is an orthogonal subset of R. Let $h=\sup _{i} r_{i} e_{i}$. But then from (13) and Lemma 3 it follows that $h e_{j}=e_{j} \sup _{i} r_{i} e_{i}=r_{j} e_{j}$ for every $j \in I$. Hence $\left(h e_{j}\right)_{j \in I}=\left(r_{i} e_{i}\right)_{i \in I}$. However, from (11) it follows that $\alpha(h)=\left(h e_{j}\right)_{j \in I}=\left(r_{i} e_{i}\right)_{i \in I}$. Thus, $\left(r_{i} e_{i}\right)_{i \in I}$ is in the range of α and therefore α is an onto mapping, as desired.

Reference

[1] N. Jacobson, Structure of Rings, Amer. Math. Soc. Coll. Publ. Vol. 37 (1956), p. 217.

Iowa State University
Ames, Iowa

