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STABLY FREE MODULES OVER RINGS
OF GENERALISED INTEGER QUATERNIONS

A. W. CHATTERS AND M. M. PARMENTER

ABSTRACT.  In this note, we obtain, in a rather easy way, examples of stably free
non-free right ideals. We also give an example of a stably free non-free two-sided ideal
in a maximal Z-order. These are obtained as applications of a theorem giving necessary
and sufficient conditions for H/nH to be a complete 2 x 2 matrix ring, when H is a
generalised quaternion ring.

1. Introduction. For some readers the most interesting part of this paper may be
the construction in Theorem 6 of a maximal Z-order with a stably free non-free two-sided
ideal, but this was not the original intention of our work. _

When Hy = Z[i,j], the ring of Lipschitz quaternions, Chatters [1] asked whether the

tiled matrix ring ZO 3: 0 ) is isomorphic to a complete 2 x 2 matrix ring. This question
0 0

has led to quite a bit of activity ([2], [S], [6]). All three papers answer the question in the
H() nrigp
Hy Hyp
if and only if # is odd (far more general results are proved in [5]).

The original motivation for the present note was to determine how the above and
related results carry over to generalised quaternion rings H = Z[i,j], where # = a,
j2 =b(a,b € Z)and ij + ji = 0. We do this in Section 2. Then, in Section 3, we use the
material of Section 2 concerning the ring H to give many examples of stably free non-
free right ideals of H (see also [7] and [8] for other examples with similar properties).
More significantly, we also give an example of a maximal Z-order with a stably free
non-free two-sided ideal. The question of the existence of such ideals (in orders which
are not necessarily maximal) was raised in [4] and the first examples were given in [3].
Our example has the advantages, we believe, of being easy and occurring in a maximal
order.

affirmative and show more generally that is a complete 2 X 2 matrix ring

2. Matrices. Crucial to our work is the following result of J. C. Robson.

PROPOSITION 1 ([6], THEOREM 2.2). Let R be a ring with identity element 1, and
suppose there are elements a and x of R such that ax + xa = 1 and x> = 0. Then R is a
complete 2 X 2 matrix ring. More precisely, the following elements e;; of R form a set of
2 by 2 matrix units: e|} = ax, e\, = axa, e;; = x and ey = xa.
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To prove Theorem 3, we need the following number theoretic result. The proof follows
the same lines as that of Lemma 2.2 in [2].

LEMMA 2. Given integers a, b, m, n such that gcd(n,2ab) = 1 and ged(n,m) = 1,
there exist integers v, r, s such that vh = m + ar* + bs?.

PROOF. We shall prove the result when # is a prime number. It is then routine to ex-
tend this to the case when n is a prime power (here the fact that gcd(n, m) = 1 is required),
and then the Chinese remainder theorem can be used for arbitrary » by combining the
results for the various prime power factors of n.

So assume » = p is an odd prime which does not divide ab. We shall work in F =
Z/pZ. Note that there are %‘ distinct squares in F, so there are &21_ distinct elements of
the form bs? and L;l— distinct elements of the form —m —ar?. It follows that some element
of F lies in both sets, i.e., we have bs?* = —m — ar? for some r, s in F. =

We are now ready to prove the main result of this section. Recall from the introduction
that H = Z[i,j) is a generalised quaternion ring, where # = a,# = b (a,b € Z) and
ij+ji=0.

THEOREM 3. Let n be a positive integer. Then the following are equivalent:
(i) H/nH is isomorphic to M»(S) for some ring S.

(ii) H/nH is isomorphic to My(Z [ nZ).

(iii) H/pH is isomorphic to My(Z | pZ) for every prime factor p of n.

(iv) ged(n,2ab) = 1.

PROOF. An easy counting argument shows that (i) implies (ii), and (ii) implies (iii)
is clear.

Assume that H/pH is isomorphic to M>(Z / pZ) for some prime p. Because H/2H is
commutative, we have p # 2. Set R = H/pH and let x be the image of i in R. Then xR is
a nonzero two-sided ideal of R and (xR)* = aR. Since R is semiprime, we conclude that
p does not divide a. Similarly p does not divide b. It follows that (iii) implies (iv).

Finally, we show that (iv) implies (i). Using m = —ab in Lemma 2, choose integers
r, s such that ar? + bs? is congruent to ab (mod n). Setx = ri+sj+ijand y = ri +sj.
Then x? is in nH and yx + xy is congruent to 2ab mod(nH). Choose ¢ such that ¢(2ab)
is congruent to 1 (mod n), and we have that (cy)x + x(cy) is congruent to 1 mod(nH).

Proposition 1 now gives the result. n
It is a special case of results in [5] that H /nH is a complete 2 X 2 matrix ring if and only

. . . . H nH H nH

if the same is true of the tiled matrix ring (n H H ), and hence also H H ) We

would like to note that the direct number-theoretic argument used in the last part of the
proof of Theorem 3 can be adapted to give this as well. Starting with gcd(n, 2ab) = 1,
Lemma 2 allows us to choose integers u, r, s such that ar? + bs> — ab = un®. With
a=ri+sjand 3 = ri+sj+ij, set

(2 ) e (5 0 ()
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Note that X* = 0, XB + BX = diag(2(ab + un?)) and XC + CX = diag(—n?). Since

gcd(2(ab +un?), —n2) = 1, we can choose integers f, g such that X(fB+gC)+(fB+g(C)X
is the identity matrix. Proposition 1 then gives the result.

3. Stably free modules. As mentioned in the introduction, we will begin by apply-
ing the results of Section 2 to obtain examples of stably free non-free right ideals of H.
Most important for our purposes is the equivalence of (ii) and (iv) in Theorem 3, namely
the fact that H/nH ~ M,(Z /nZ) if and only if gcd(n, 2ab) = 1.

Recall that an R-module M is stably free if M & F is isomorphic to G for some free
R-modules F and G. Our approach is as follows (with a, b, H as in Section 2). If p is
a prime number which does not divide 2ab, then the principal maximal right ideals of
H containing p correspond to elements of norm p in H. We shall show that a, b, p can
be chosen so that there is at least one principal maximal right ideal of H containing p,
but there are not enough elements of norm p to generate all the maximal right ideals
containing p.

PROPOSITION 4.  Let p be a prime number which does not divide 2ab. Then

(i) There are p + 1 maximal right ideals of H which contain p.

(i) Suppose that at least one of the maximal right ideals of H which contain p is
principal. Then all the maximal right ideals of H which contain p are stably free.

PROOF. (i) By Theorem 3, H/pH is isomorphic to M>(Z /pZ). The result now fol-
lows from the fact that M>(Z /pZ) has p + 1 maximal right ideals.

(ii) Let K and L be maximal right ideals of H which contain p, K # L, and suppose
that L is principal. Since K+ L = H,if 0: K & L — K + L is the obvious H-module
epimorphism, the exact sequence 0 — Kerf — K® L — K+ L — 0 splits. But Ker§ ~
KNL=pH~ H. Also, L >~ H as an H-module. We conclude that K & H ~ H @ H, so
K is stably free. n

We can now easily construct stably free non-free right ideals. Here is one example.

EXAMPLE 5. Takea = —1,b = -2l,p =31.Ifh = s+tituyj+vijisin H
(s,t,u,v € Z), then the norm N(h) of & is given by N(h) = s* + 2 + 214> + 212, Thus
H has some elements of norm 31, for instance 3 + i + j, but not enough to generate all
the 32 maximal right ideals of H which contain 31. Proposition 4 tells us that there is a
stably free non-free maximal right ideal of H containing 31 (a specific example will be
given in Theorem 6). n

Finally, we note the following concerning stably free non-free two-sided ideals. Recall
again that the first examples of such ideals were given in [3].

THEOREM 6. There is a maximal Z-order with a non-principal stably free two-sided
ideal.

PROOF. Start with the generalised quaternion ring H in Example 5 and consider the
two-sided ideal / = 3H + jH. With the object of obtaining a contradiction, we suppose
that / = xH for some x. Because xH contains the elements 3 and j, it follows that N(x)
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divides both N(3) = 9 and N(j) = 21. Therefore N(x) divides 3. But A has no elements
of norm 3, and because I # H we have N(x) # 1. This is the desired contradiction.
Therefore / is not principal as a right ideal of H, and by symmetry it is also not principal
as a left ideal. But note that 3H+jH = 3H+(3+2j)H is isomorphic as a right H-module to
3- 2j)(3H+(3 +2j)H) = 3(3—2/)H+93H, which is isomorphic to 31H+(3—2/)H = K.

Now, K is a maximal right ideal of H which contains 31. It follows from Example 5
that K, and hence also /, is stably free.

Finally, note that, just as with the Lipschitz quaternions, the ring H which we have
been discussing is contained in a maximal Z-order.

1
S= {E(ao +api+ ayf + asij) | 2o, ), 2, 3 € Z are all even or all odd }
and all of the earlier calculations work equally well in S. =
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