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ISOMETRIES OF SPACES OF
U N B O U N D E D CONTINUOUS FUNCTIONS

JESUS ARAUJO AND KRZYSZTOF JAROSZ

By the classical Banach-Stone Theorem any surjective isometry between Banach
spaces of bounded continuous functions defined on compact sets is given by a homeo-
morphism of the domains. We prove that the same description applies to isometries of
metric spaces of unbounded continuous functions defined on non compact topological
spaces.

Let X, X' be topological spaces and let A (X), A (X') be metric vector spaces of
continuous functions on X and A", respectively. If A (X), A (X1) consist of only bounded
functions, for example if X, X' are compact, then, in most cases, we have a complete
description of all surjective linear isometries T : A(X) —> A(X'). One may check
[2, 3, 4, 5, 6, 7, 10, 11, 12, 13] for descriptions of isometries of spaces of bounded
continuous scalar and vector valued functions, bounded analytic functions, absolutely
continuous functions, bounded Lipschitz functions, differentiable functions, and many
other classes of bounded functions. Usually (but not always, see for example [l] or
[9]) any such an isometry is given by a homeomorphism <p : X' -» X followed by a
multiplication by a continuous scalar valued function K; that is,

Tf = KJ O <£ for all / € A (X).

Any map of the above form will be called canonical. The most classical result in this area
is the Banach-Stone Theorem which states that any surjective isometry of the space of
all bounded continuous functions on a compact set X equipped with the usual sup norm,
onto the space of bounded continuous functions on a compact set X', is canonical. In
this paper we discuss isometries of spaces of unbounded continuous functions.

Assume that X is a cr-compact topological space and let X\, X2,... be a sequence of
compact subsets of X such that

00

A', £ X2 £ ... £ Xn g . . . , and \J Xn = X.
n=l
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The two metrics most often considered on the space of unbounded continuous functions
on X are:

(1) ' 11/11 = £ a» II/IL. and
n=l

OO || x _ l l

(2)

where ||-||n is the usual sup norm on the set Xn and (an)^Li is a fixed sequence of positive
oo

numbers such that J2 an < oo; for example, an = 1/2". The formula (1) defines a Banach
n=l

space norm; for fixed sequences (Xn) and (on) we shall denote this space by C (X). The
space C (X) contains unbounded continuous functions of restricted rate of growth; it does
not contain all the continuous functions. The second formula defines a complete metric
on the space C (X) of all the continuous functions on A". In this paper we prove that all
surjective isometries of the spaces {C (X), ||-||) and (C (X) ,d(•,•)) are canonical. The
results are valid both in the real and in the complex case; however at some crucial points
the arguments will be different in the two cases. We denote by K the set of scalars (R or
C), and by Kx the set of scalars of absolute value one.

THEOREM 1 . Let (C (X), ||-||) be tie Banach space of continuous functions on
a a-compact set X with the norm given by (1) . Let (C(X ' ) , ||-||) be the analogous
space on X'. Assume that T is a linear isometry from C (X) onto C (X1). Then there
is a homeomorphism ip of X' onto X with ip(X'n) = Xn, for n £ N, and a unimodular,
continuous, scalar valued function K on X' such that

Tf = c • K • f o ip for all f e C {X),

/ oo \ I ( \
where c = I £ an / E~=i an • Moreover, an = ca'n, for n € N.

\n=l / ' \ /

P R O O F OF THE THEOREM

DEFINITION 1: We call a nonempty subset £2 of C (X) a peaking set if

ll/i + - + fP\\ = ll/ill + - + II/PII for all fu ...,/„ e fi.

A subset of C (X) is called a maximal peaking set if it is a peaking set and it is not
contained properly in any other peaking set.

The definition of a peaking set involves only the norm and the addition operation
of the vector space. Since surjective isometries preserve both the metric and the lin-
ear structure they map peaking sets onto peaking sets and maximal peaking sets onto
maximal peaking sets.
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DEFINITION 2: For a given peaking set Q. we define the complement QL of fi by

SlJ-={geC{X):3r>0 3 / € Q Va e K, | | / + rag\\ = \\f\\}.

Again, linear isometries map complements of peaking sets onto complements of peak-

ing sets.

DEFINITION 3: For x € X we define the index of x by

ind (x) — min {n : x € Xn} .

We shall say that (xn)5JLi is an increasing sequence in X if ind(xi) = 1, and for any
n € N, we have

ind ( i n + 1) > ind {xn) or xn+1 = xn,

and the set {xn : n e N} has no limit points. D

LEMMA 2 . A subset QofC (X) is a maxima] peaking set if and only if there is
an increasing sequence (£n)^li in X and a sequence (#n)^Li of scaJars of absolute value
one such that

B), (*„)) * {/ e C(X) : Vn g N, | |/ | |B = fln/ (xn)

PROOF: Assume fi = fi((in), (&„)). For any / i , . . . , / p e fi, we have

n = l

so fi is a peaking set. Assume that Qo is a strictly larger peaking set and let f0 € fi0 - fi.
Since /o ^ Q then we have two cases:

1. There is a positive integer k such that ||/o||fc > |/o (i*)|, or

2. there is a positive integer k such that ||/o||fc = |/o(z*)|> D u t

ll/ollfc ^ ejo (xk).
Let (yn) be a sequence of nonzero scalars such that for any n, \yn\ — 9nyn, the series

oo
J2 an \yn\ is convergent, and yn = yn+l if xn = xn+1 and \yn\ < | j / n + 1 | , if xn ^ x n + ] . In
n=l
the first case we introduce a continuous function / on X such that

/ (a:) = 0 for any x £ Xk with | /0 {x)\ = \\fo\\k , and

ll/lln = 0»/ (Sn) = ^n2/n: for any n € N.
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To construct such a function / we first construct inductively a continuous function / on
n n

X: after it is defined on (J Xj we extend it to (J XjU{xn+i} by putting / (in+i) = yn+i,
n+l

and then extend to [J Xj with the same sup norm [8]. Put
J=I

K={xeXk:\f0(x)\ = \\f0\\k}.
A' is a closed set and does not contain x*, nor any xn for n > k; since (xn) is an increasing
sequence neither does it contain any xn with n < k. Let g be a continuous function on X

with norm one and such that g — 0 on K and g = 1 on {xn : n G N} . Put / = gf. The
function / belongs to fi; however \\f + fo\\ < \\f\\ + \\fo\\ since \\f + fo\\k < | | / | | f c+ ||/o||fc,
so fio is not a peaking set.

In the second case using the same method, and the same function / , we construct a
continuous function / on X such that

/ (s) = 0 for any x G Xk with |/0(x) + f(x)\ = \\fo\\k + | / j [ , and

= Onf (xn) - 9nyn, for any n € N.

Again | | / + /o|| < | | / | | + ||/ol| since | | / + fo\\k < \\f\\k + \\fo\\k, so Qo is not a peaking set.
Assume now that Q, is a maximal peaking set. For any / € C (X) put

Ms - {(*„ A ) € fl Xn x Kt : ||/||B = 0B/ (i
*• n = l

The sets M/ are compact and, since Q. is a peaking set the family {Mf : f £ Q} has the
finite intersection property, consequently

M = (xn, 6n) G | | Xn x Kx : | | / | |n - 6nf (xn) for all / G
*• n = l

is not empty. Assume M contains two distinct points (xj,,#^) and (x^,^). The sets
{xj, : n G N}, i = 1,2 can not have a limit point so we may select / G C (X) such
that (xj,,0^) G Mj and (z£,#J;) ^ M/. Then Q U {/} is a peaking set contrary to our
assumption that Q is maximal. Hence M is a singleton, M = {(xn,#n)}, consequently
(xn) is increasing and Q is contained in

Q((xn),(9n)) = {/ G C(X) :Vn G N, | | / | | n = 9nf(xn)}.

Again from the maximality of £1, since by the first part of the proof fi((xn), (0n)) is a

peaking set, we have fi = Q((xn), (^n))- D

LEMMA 3 . For any maximal peaking set £l({xn),(9n)) we have
oo

P) ker5In C nx((a;n), (#„)),
n=l

where t i e functionai Sx on C (X) is defined by 6X (h) :- h (x) for h G C (X).
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oo

PROOF: Let g € f) ker<5In. For any n 6 N let Un be an open neighbourhood of xn
n=l

and kn a continuous function on X such that for all n, m S N

Un n C/m = 0 if xn / xm, and 0 ^ A;n(x) ^ 1, kn(xn) = 1, and /cn = 0 on X \ Un.

Put ^

/(x) := X>(*)£(lMI» " |$(*)|), for x G X
n=l

It is clear that / 6 f2((:rn), (^n))- For each n £ N and i G Xn we have

so kn(x)(\\g\\n - \g(x)\) + \g(x)\ < ||ff||n, hence

which proves that g £ fi-L((xn), (#„)). D

LEMMA 4 . Assume K = C. Let / , 5 be elements ofC{X) such that

3r>0 Va€K! ||/ + m5|| = ||/||

and let (xn) be an increasing sequence in X such that \\f\\n — \f (xn)\ for n £ N. Then

g (xn) = 0 for n £ N.

P R O O F : We have

(3) \\f + ^9\\=

By a simple computation one can check that for any nonzero scalar y we have

/•1
/ | l + e27r''*2/|d0> 1.

Jo

It follows that if the g (xn) are not all equal to zero then

(\{a)da = f > n f\f(xn) + e2"iag(xn)\da > f^an|/(xn)| = ||/||.
Jo n=l Jo n=l

Hence ^ (0O) > | | / | | for some real number 60. From (3) | | / + e27ri8°g\\ > \\f\\ which
contradicts our assumption. D

From the last two lemmas it follows that in the complex case

n=l

The above formula is not true in the real case in general. However, the next lemma shows
that it remains true if (xn) is constant.
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LEMMA 5 . Assume £1 = £l((xn), (#„)) is a maximal peaking set, and assume that
the sequence (xn) contains only one value, that is xn = xi for every n £ N. Then

P R O O F : Suppose that g e C (X) satisfies g{xi) ^ 0. Then given any / €

fl((in), (^n)) we can find an arbitrarily small a € K such that

Hence

f ; < £ an \\ag + f\\n = \\ag + f\\,

so g £ QJ-((xn), (0n)). This implies that $V-((xn),(0n)) C ker<5Xl. The other inclusion
follows from Lemma 3. D

LEMMA 6 . Assume that K = R and that Q, = fi((xn), (#„)) is a maximal peaking

set. Then

nL((xn),(en)) = h

P R O O F : If the sequence (xn) is constant the lemma follows from the previous one
so we may assume that (xn) is not constant. For each n € N, let Un be an open neigh-
bourhood of xn such that Un n Um = 0 if xn ^ xTO. Let g £ C (X) be such that

oo oo

HsIL = \9M\ for n € N, ^an0ns(xn) =0, and g = 0 on X\((J Un\
n=\ n-l

If (xn) contains at least two values then we can always find a g that is not equal to
~ oo

zero at these two points. Moreover, if h € C(X) is such that J2 an6nh(xn) = 0, then
n=l

we can always find a function g that satisfies all the above conditions and a function
oo

g' G n ker<5In such that g + g' = h. From Lemma 3 we know that f i i ( (x n ) , (#„))
n=l

oo
contains f] ker <5In so to prove the lemma it is sufficient to show that the function g is

n=l

contained in n x ( ( x n ) , (#„)).

Let / G fi((xn), (#„)) be such that for some sequence of numbers (cn) with absolute

values equal to one, we have
/ (x) = Cng (x) if x € Un and g (xn) # 0,

(
n=l
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Notice that c,, is positive if and only if g (xn) 6n is positive. For any 0 ^ r ^ 1 we have

||/ ± rg\\n = (l ± £ ) 1/ (*»)| if 9 (*») * 0, and

||/ ± rp||B = | | / | | n otherwise,

hence

n=l n=l n=l
oo

so sen-1-((!„), (*„)). D
PROOF OF THEOREM 1: Notice that the isometry T maps maximal peaking sets

onto maximal peaking sets. We shall show that T maps the maximal peaking sets
fi((zn), (9n)) that correspond to the constant sequence (xn) = (x\), onto the same type
of maximal peaking sets: T(r2((xi), (#1))) = £2((zi), {0[)). We shall also show that x\
does not depend on the value of 0i, but only on x\.

In the complex case, by the previous lemmas, £lx((xn), (6n)) is of codimension one if
and only if (xn) is constant. Since T preserves the codimension and the maximal peaking
sets and their complements, it maps maximal peaking sets that correspond to constant
sequences in X, onto the same type maximal peaking sets. For a constant sequence (xn),
nJ-((in), {0n)) is equal to ker(5Xl and hence it does not depend on 9\.

In the real case the situation is more complicated — by the previous lemma

(4) nJ-((xn),(6n))=h

for any increasing sequence (xn), so the codimension of n±((xn), (#„)) is always one.
Since T preserves the maximal peaking sets and their complements as well as the norm,
from (4) we get that for any ((xn), (0n)) there is a ((xj,), (9'n)) in X' x Kj such that

n=l

where c = £3 an I / I Yl a'n ) > anc^ ^" is the conjugate of T. Denote by E the set of
\n=l / ' \n=l /

oo

all functionals of the form J^ CLn.6n&xn- We shall say that functionals F\,Fz € E are

orthogonal if

ll^lll + 11̂ 211 = H^l +/ ! 2 | | = 11^1-^11.
For F 6 E we put

F-1- = {Fi £ E : F, and F are orthogonal} .
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Since the definition of orthogonality involves only the norm and the linear structure it is
00 OO

preserved by T*. On the other hand Fi = £ an0n<5Inand F2 = ]T) an6n8xn are orthogonal
n=l n=l

if and only if the corresponding sequences (xn) and (xn) do not have any common point.
Put

The set Eo is partially ordered by inclusion, Fx is a maximal element of Eo if and only
if F is defined by a constant sequence (xn) = (xi). All this is again preserved by T, so T
maps k e r ^ , x & X\, onto ker^ / , x' 6 X[.

We proved that in both the complex and the real case there is a bijection <fi from X[

onto X\ such that T (ker <5Vl(s)) = kerc5x, for x 6 X[, equivalently T* (Sx) = KX (X) SV

for x G X{, or

(5) T(f) (x) = /«i(i)/(¥>i(x)), for x&X[,

/ OO \ / / OO \

where «i has the constant absolute value equal to c = I J2 an / ( 5Z an ) • Since T* is
\n=l / ' \n=l /

continuous in the weak* topology the functions y>\ and KX must also be continuous.

We proved that T has the canonical form on Xi C X, and

(6) \\Tf\\1 = c\\f\\l for f &C(X).

Now we need to extend fi and KX to the entire set X. Because of the symmetry we may
assume that

^1 < Dn=l a"

and define new norms on C {X) and C (X1), by

P(/) = 11/11 - a, \\f\U - f > n ||/||BI for f€C(X), and
n=2

P'(5) - IMI - -IMIr - k - ^-) Nli + fXlMI" ' for ff € C(A").
C C n=2

By (6) T is an isometry of (C(^),p(-)) onto (C(X') ,?'(•))• Ifa'i-(ai/c) ^ 0, then,
based on what we already proved applied to this new isometry, there is a homeomorphism
<p2 from X{ onto X2, and a scalar valued function K2 such that

but this contradicts (5). Hence a\ — (ai/c) = 0 and if 2 and «2, are extensions to X'2 of
y)i and «i, respectively. By continuing this process we extend <pi to a homeomorphism
of X' onto X.
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We also get

a 2

/ oo \ , / oo \
hence for c = ( 5 2 an I / ^Z an ) w e n a v e

\n=l / ' \n=l /

an — ca'n, for n € N. n

THEOREM 7 . Let (C(X), d(-, •)) be the metric vector space of all continuous func-
tions on a a-compact set X, where the metric is given by (2). Let (C(X'),d(-, •)), be
the analogous space on X'. Assume that T is a linear isometry from C (X) onto C (A'').
Then there is a homeomorphism ip of X' onto X with tp (X'n) = Xn, for n e N , and a
unimodular, continuous, scalar valued function K. on X' such that

Tf = cKfo<p for all feC (X),

/ oo \ , / \
where c — I JZ an I / I IZ^Li a'n ) • Moreover an = ca'n, for n € N.

\n=i / ' \ /

PROOF: Let T : C (X) .-> C (X1) be a surjective isometry. For a fixed / € C (X)
we define a function a/ : R+ —> R+ by

It is easy to check that

doc r °°
For t = 0 the value of —-*- is JZ an l|/||n; it may by finite or may be equal to +oo. Since

dt n = i
the function otj is defined only in terms of the metric and linear structure it is preserved

by the isometry. Hence a/ = ctxj and T preserves the quantity

^ (0) = 11/11 = f>n||/||n.
n=l

Consequently T restricted to the Banach space

C (X) = {/ 6 C{X) : H/ll = f > n ||/||n < oo}
*• n = l '

is an isometry, with respect to that Banach space norm, onto

C(X') =(9€ C(X') : ||p|| = £ < ||p||n < oo}.
"> n = l >
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By the previous Theorem there is a homeomorphism <p of X' onto X with ip (X'n) = Xn,

for n 6 N , and a unimodular, continuous, scalar valued function K on X' such that

Tf = Kf o <p for all / <E C (X).

Since C {X) is dense in (C(X),d(-, •)) the above formula holds for all functions from

C{X). Q
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