A CHARAGTERIZATION OF THE HYPERHOMOLOGY GROUPS OF THE TENSOR PRODUCT

THOMAS W. HUNGERFORD

1. Introduction. If K and L are chain complexes of abelian groups (to which we restrict ourselves throughout this paper), then $\mathscr{L}(K \otimes L)$ denotes the graded hyperhomology group of K and L, as defined in Cartan and Eilenberg (1) by means of free double complex resolutions of K and L. Hyperhomology groups have proved convenient in proving various versions of the Künneth theorem (see, for example, (4; 1; 2)). The purpose of this note is to present a description of the hyperhomology group $\mathscr{L}(K \otimes L)$ by means of generators and relations. This characterization, though somewhat complicated, does have the advantage of providing an explicit description of $\mathscr{L}(K \otimes L)$ without reference to free double complex resolutions.

The basic method is to make use of the concept of Bockstein spectra (cf. (3)) and an isomorphism theorem from (4) in order to construct objects which are naturally isomorphic to the hyperhomology groups and which can be defined in terms of generators and relations. For convenience we repeat here some definitions from ($3 ; 4$).

Let Z^{+}denote the non-negative integers. A Bockstein spectrum is a collection $\left\{B_{m} \mid m \in Z^{+}\right\}$, where each B_{m} is a (graded) abelian group, together with homomorphisms $\lambda_{m}^{m k}: B_{m k} \rightarrow B_{m}$ and $\mu_{m k}^{m}: B_{m} \rightarrow B_{m k}$ (for each (m, k) $\in Z^{+} \times Z^{+}$). The maps λ and μ are required to satisfy certain properties which will not be listed here since they will be apparent in the two particular examples of Bockstein spectra we shall be dealing with.

If $\left\{B_{m}\right\}$ and $\left\{B^{\prime}{ }_{m}\right\}$ are Bockstein spectra, then (for our purposes) the tensor product of these spectra $\left\{B_{m}\right\} \otimes\left\{B_{m}{ }_{m}\right\}$ is the (graded) abelian group [$\left.\sum_{m \geqslant 0} B_{m} \otimes B^{\prime}{ }_{m}\right] / S$, where S is the subgroup generated by all elements of the form:

$$
\begin{gather*}
\lambda_{m}^{m k} U_{m k} \otimes V_{m}-(-1)^{\operatorname{deg} \mu_{m k}^{m} \cdot \operatorname{deg} U_{m k}} U_{m k} \otimes \mu_{m k}^{m} V_{m} \quad(m k \geqslant 0), \tag{1}\\
\mu_{m k}^{m} U_{m} \otimes V_{m k}-U_{m} \otimes \lambda_{m}^{m k} V_{m k} \quad(m k \geqslant 0), \tag{2}
\end{gather*}
$$

where $U_{i} \in B_{i}$ and $V_{j} \in B^{\prime}{ }_{j}$. If $U \otimes V \in B_{m} \otimes B^{\prime}{ }_{m}$ represents an element x of $\left\{B_{m}\right\} \otimes\left\{B^{\prime}{ }_{m}\right\}$, then the degree of x is $\operatorname{deg} U+\operatorname{deg} V-1$ if $m>0$ and $\operatorname{deg} U+\operatorname{deg} V$ if $m=0$.

Each of the groups Z_{m} ($m \geqslant 0$; with $Z_{0}=Z$) can be considered as a complex (in dimension 0). If K is any complex, we denote by $\mathscr{L}(K, m)$ the (graded) hyperhomology group $\mathscr{L}\left(K \otimes Z_{m}\right)$. Note that $\mathscr{L}(K, 0)=\mathscr{L}(K \otimes Z)=H(K)$. Since $\mathscr{L}(K, m)=H\left(\bar{K} \otimes Z_{m}\right)$ (\bar{K} a free double complex resolution of K),

Received July 8, 1966.
the canonical maps $Z \rightarrow Z_{m}, Z_{m k} \rightarrow Z_{m}$, and $Z_{m} \rightarrow Z_{m k}$ induce (coefficient) homomorphisms $\lambda_{m}^{m k}: \mathscr{L}(K, m k) \rightarrow \mathscr{L}(K, m)(m k \geqslant 0)$ and $\mu_{m k}^{m}: \mathscr{L}(K, m) \rightarrow$ $\mathscr{L}(K, m k)(m k>0)$. Since \bar{K} is free, the exact sequence

$$
0 \rightarrow Z \xrightarrow{m} Z \rightarrow Z_{m} \rightarrow 0
$$

induces a connecting homomorphism of degree $-1: \mu_{0}^{m}: \mathscr{L}(K, m) \rightarrow \mathscr{L}(K, 0)$. The hyperhomology spectrum of K is the Bockstein spectrum consisting of $\mathscr{L}(K, m)(m \geqslant 0)$ and the maps $\lambda_{m}^{m k}, \mu_{m k}^{m}$ (all $\left.m, k \geqslant 0\right)$. It is denoted by $\{\mathscr{L}(K, m)\}$. The chief result of (4), which we shall use below, is

Theorem 1.1. If K and L are complexes, then there is a natural isomorphism of graded groups:

$$
\{\mathscr{L}(K, m)\} \otimes\{\mathscr{L}(L, m)\} \cong \mathscr{L}(K \otimes L)
$$

Furthermore, if K and L are differential graded rings, then there is induced a ring structure on $\mathscr{L}(K \otimes L)$ and $\{\mathscr{L}(K, m)\} \otimes\{\mathscr{L}(L, m)\}$ so that the isomorphism is a ring isomorphism.

2. The cone spectrum.

Definition 2.1. If $f: K \rightarrow L$ is a chain map, then the cone of f is the complex given by:

$$
\begin{gathered}
(C f)_{n}=K_{n-1}+L_{n} \\
\partial(u, v)=(-\partial u, \partial v+f(u))
\end{gathered}
$$

If K is any complex, then multiplication by a positive integer m gives a chain map $m: K \rightarrow K$; the cone of this map will be denoted by $C(K, m)$. Define chain maps

$$
\begin{gathered}
\lambda_{m}^{m k}: C(K, m k) \rightarrow C(K, m), \\
\mu_{m k}^{m}: C(K, m) \rightarrow C(K, m k)
\end{gathered}
$$

as follows:

$$
\begin{array}{ll}
\lambda_{m}^{m k}(u, v)=(k u, v), & (u, v) \in K_{p-1}+K_{p}=C(K, m k)_{p} \\
\mu_{m k}^{m}(u, v)=(u, k v), & (u, v) \in K_{p-1}+K_{p}=C(K, m)_{p}
\end{array}
$$

For each $m>0$, define a chain map $\lambda_{m}^{0}: K \rightarrow C(K, m)$ by

$$
\lambda_{m}^{0}(u)=(0, u), \quad u \in K_{p} ;(0, u) \in K_{p-1}+K_{p}=C(K, m)_{p}
$$

Also, define a map $\mu_{0}^{m}: C(K, m) \rightarrow K$ by

$$
\mu_{0}^{m}(u, v)=-u, \quad(u, v) \in K_{p-1}+K_{p}=C(K, m)_{p} .
$$

μ_{0}^{m} is not a chain map; it has degree -1 and anticommutes with the boundary (i.e. $\partial \mu_{0}^{m}=-\mu_{0}^{m} \partial$). Each of the maps $\lambda_{m}^{m k}, \mu_{m k}^{m}(m k \geqslant 0)$ induces a map on the homology groups $H C(K, m k), H C(K, m)$ of $C(K, m k), C(K, m)$; the induced maps will also be denoted by $\lambda_{m}^{m k}$ and $\mu_{m k}^{m}$. If K is denoted by $C(K, 0)$, then
the collection of groups $\{H C(K, m)\}$ and maps $\lambda_{m}^{m k}, \mu_{m k}^{m}(m, k \geqslant 0)$ will be called the cone spectrum of K; it is a Bockstein spectrum.

Definition 2.2. If K is a differential graded ring and m a positive integer, then a differential graded ring structure is given in $C(K, m)$ by:

$$
\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)=\left(u_{1} v_{2}+(-1)^{p_{1}} v_{1} u_{2}, v_{1} v_{2}\right)
$$

where $\left(u_{i}, v_{i}\right) \in K_{p_{i}-1}+K_{p_{i}}=C(K, m)_{p_{i}}(i=1,2)$.
A tedious but straightforward calculation shows that this product has all the required properties $\left(\left(0,1_{K}\right)\right.$ is the identity).

Theorem 2.3. If K is a complex of abelian groups, then there is a natural isomorphism of spectra:

$$
\{\mathscr{L}(K, m)\} \cong\{H C(K, m)\}
$$

If K is a differential graded ring, this is a ring isomorphism.
By an isomorphism of spectra is meant a collection of isomorphisms $\left\{f_{m}: \mathscr{L}(K, m) \rightarrow H C(K, m)\right\} \quad(m \geqslant 0) \quad$ such that $\mu_{m k}^{m} f_{m}=f_{m k} \mu_{m k}^{m} \quad$ and $\lambda_{m}^{m k} f_{m k}=f_{m} \lambda_{m}^{m k}(m k \geqslant 0)$.

Proof. By definition, $\mathscr{L}(K, 0)=H(K)=H C(K, 0)$. For each $m>0$, $\mathscr{L}(K, m)=H\left(K \otimes X_{m}\right)$, where X_{m} is a free resolution of (the complex) Z_{m}. In particular, we may choose for X_{m} the resolution:

$$
0 \rightarrow Z\left(c_{m}\right) \xrightarrow{\partial} Z\left(c_{m}^{\prime}\right) \xrightarrow{5} Z_{m}\left(1_{m}\right) \rightarrow 0,
$$

where $\partial c_{m}=m c^{\prime}{ }_{m}$ and $\zeta\left(c^{\prime}{ }_{m}\right)=1_{m}$. Note that this is a free resolution of both the group and the complex Z_{m}. Since $K_{p} \otimes Z \cong K_{p}$ for all $p, K \otimes X_{m}$ is the complex given by

$$
\begin{gathered}
\left(K \otimes X_{m}\right)_{p}=K_{p-1} \otimes Z\left(c_{m}\right)+K_{p} \otimes Z\left(c_{m}^{\prime}\right) \cong K_{p-1}+K_{p} \\
\partial(u, v)=\left(\partial u,(-1)^{p-1} m u+\partial v\right) ;(u, v) \in K_{p-1}+K_{p} .
\end{gathered}
$$

Define a chain map $\bar{f}_{m}:\left(K \otimes X_{m}\right) \rightarrow C(K, m)$ by

$$
\bar{f}_{m}(u, v)=\left((-1)^{p-1} u, v\right), \quad(u, v) \in K_{p-1}+K_{p}
$$

It is evident that \bar{f}_{m} is an isomorphism in each dimension and therefore induces (for each $m>0$) an isomorphism:

$$
f_{m}: \mathscr{L}(K, m) \cong H C(K, m)
$$

Let f_{0} be the identity map on $\mathscr{L}(K, 0)=H(K)=H C(K, 0)$.
To show that $f=\left\{f_{m}\right\}$ is in fact a map of spectra we need only show that f commutes with λ and μ. Recall that the maps $\lambda_{m}^{m k}, \mu_{m k}^{m}(m k>0)$ on $\mathscr{L}(K, m)$ were induced by the canonical maps $Z_{m k} \rightarrow Z_{m}$ and $Z_{m} \rightarrow Z_{m k}$. Thus we can
take $\lambda_{m}^{m k}$ and $\mu_{m k}^{m}$ on $\mathscr{L}(K, m)$ to be the maps induced by the following chain maps:

$$
\begin{gathered}
\bar{\lambda}_{m}^{m k}: X_{m k} \rightarrow X_{m}, \quad \bar{\lambda}\left(c_{m k}\right)=k c_{m}, \quad \bar{\lambda}\left(c_{m k}^{\prime}\right)=c_{m k} \quad(m k>0) ; \\
\bar{\lambda}_{m}^{0}: Z \rightarrow X_{m}, \quad \bar{\lambda}(1)=c_{m}^{\prime} ; \quad \bar{\mu}_{m k}^{m}: X_{m} \rightarrow X_{m k}, \quad \bar{\mu}\left(c_{m}\right)=c_{m k}, \\
\bar{\mu}\left(c_{m}^{\prime}\right)=k c^{\prime}{ }_{m k} \quad(m k>0) .
\end{gathered}
$$

But the maps induced by these maps on $K_{p-1}+K_{p}=\left(K \otimes X_{m k}\right)_{p}$ and $K_{p-1}+K_{p}=\left(K \otimes X_{m}\right)_{p}$ are precisely the maps $\lambda_{m}^{m k}$ and $\mu_{m k}^{m}$ defined on $K_{p-1}+K_{p}=C(K, m k)_{p}$ and $C(K, m)_{p}$. It follows immediately that f commutes with λ and μ in these cases; the case of f and λ_{m}^{0} is also easy.

It remains only to show that $f_{0} \mu_{0}^{m}=\mu_{0}^{m} f_{m}$ (for $m>0$). On $\mathscr{L}(K, m)=$ $H\left(K \otimes X_{m}\right)$ the map μ_{0}^{m} is the composition

$$
H\left(K \otimes X_{m}\right) \cong H\left(\bar{K} \otimes X_{m}\right) \cong H\left(\bar{K} \otimes Z_{m}\right) \xrightarrow{\delta} H(\bar{K}) \xlongequal{\cong} H(K),
$$

where \bar{K} is a free resolution of K and the first and last isomorphisms are induced by the augmentation $\epsilon: \bar{K} \rightarrow K$; the second isomorphism is induced by the augmentation $\zeta: X_{m} \rightarrow Z_{m} ; \delta_{0}^{m}$ is the usual connecting homomorphism. If $\eta(x)$ denotes the homology class of an element x, then δ_{0}^{m} is given on $\eta\left(\bar{u} \otimes 1_{m}\right) \in H\left(\bar{K} \otimes Z_{m}\right)$ by $\eta((1 / m) \partial \bar{u}) \in H(\bar{K})$. Let (u, v) be a cycle of $K_{p-1}+K_{p}=\left(K \otimes X_{m}\right)_{p}$; recall that (u, v) is the element $u \otimes c_{m}+v \otimes{c^{\prime}}^{\prime}{ }^{\prime}$. Hence $\mu_{0}^{m}[\eta(u, v)]$ is the homology class of the element

$$
\begin{aligned}
\epsilon \delta_{0}^{m}(1 \otimes \zeta)\left(\epsilon^{-1} \otimes 1\right)(u & \otimes \\
& \left.c_{m}+v \otimes c_{m}^{\prime}\right) \\
& =\epsilon \delta_{0}^{m}\left(\epsilon^{-1} \otimes \zeta\right)\left(u \otimes c_{m}+v \otimes c_{m}^{\prime}\right) \\
& =\epsilon \delta_{0}^{m}\left(\epsilon^{-1} v \otimes 1_{m}\right)=\epsilon((1 / m) \partial)\left(\epsilon^{-1} v\right)=(1 / m) \partial v
\end{aligned}
$$

Butsince (u, v) is a cycle, $(-1)^{p-1} m u+\partial v=0$, and thus $\mu_{0}^{m}[\eta(u, v)]=(-1)^{p} \eta(u)$. It follows immediately that $f_{0} \mu_{0}^{m}=\mu_{0}^{m} f_{m}$. Hence f is an isomorphism of spectra.

Now suppose that K is a differential graded ring. We need only show that each $\operatorname{map} f_{m}(m>0)$ preserves products. Note that the resolution X_{m} of Z_{m} is a differential graded ring, if a product is defined by

$$
c_{m} \cdot c_{m}=0, \quad c_{m} \cdot c^{\prime}{ }_{m}=c_{m}=c_{m}^{\prime} \cdot c_{m}, \quad c_{m}^{\prime} \cdot c^{\prime}{ }_{m}=c_{m}^{\prime}
$$

A direct calculation now shows that the product in $K \otimes X_{m}$, is given by

$$
\left(u_{1}, v_{1}\right) \cdot\left(u_{2}, v_{2}\right)=\left((-1)^{p_{2}} u_{1} v_{2}+v_{1} u_{2}, v_{1} v_{2}\right)
$$

where $\left(u_{i}, v_{i}\right) \in K_{p_{i}-1}+K_{p_{i}}=\left(K \otimes X_{m}\right)_{p_{i}}(i=1,2)$. Another easy calculation shows that f_{m} does in fact preserve the product structure. This completes the proof of the theorem.

Note that the first part of the proof actually proves

Corollary 2.4. For each complex K and integer $m \geqslant 0$, there is an isomorphism (natural in K):

$$
C(K, m) \cong K \otimes X_{m}
$$

3. Characterization of $\mathscr{L}(K \otimes L)$. The following theorem is now an immediate corollary of Theorems 1.1 and 2.3.

Theorem 3.1. If K and L are complexes, then there is a natural isomorphism of graded groups:

$$
\{H C(K, m)\} \otimes\{H C(L, m)\} \cong \mathscr{L}(K \otimes L)
$$

which is a ring isomorphism if K and L are differential graded rings.
Since the spectra tensor product is defined essentially in terms of generators and relations, we can now use the isomorphism of Theorem 3.1 to obtain a description of $\mathscr{L}(K \otimes L)$.

If $\left(u^{\prime}, u\right)$ is a cycle in $C(K, m)$, then $\partial\left(u^{\prime}, u\right)=\left(-\partial u^{\prime}, \partial u+m u^{\prime}\right)=0$; hence $\partial u=-m u^{\prime}$ and $\partial u^{\prime}=0$. This leads us to take for the generators of $\mathscr{L}_{p}(K \otimes L)$ all symbols of the forms:
(1) $\left[u^{\prime}, u, v^{\prime}, v\right]_{m}$, where $m>0, \partial u=-m u^{\prime}, \partial v=-m v^{\prime}, \partial u^{\prime}=0, \partial v^{\prime}=0$, $\operatorname{deg} u+\operatorname{deg} v=p+1$;
(2) $[0, u, 0, v]_{0}$, where $\partial u=0, \partial v=0$, $\operatorname{deg} u+\operatorname{deg} v=p$.

The symbol $\left[u^{\prime}, u, v^{\prime}, v\right]_{m}$ represents the element

$$
\eta\left(u^{\prime}, u\right) \otimes \eta\left(v^{\prime}, v\right) \in H C(K, m) \otimes H C(L, m)
$$

whose coset is an element of $\{H C(K, m)\} \otimes\{H C(L, m)\}$. Similarly, $[0, u, 0, v]_{0}$ represents

$$
\eta(u) \otimes \eta(v) \in H(K) \otimes H(L)=H C(K, 0) \otimes H C(L, 0)
$$

The requirements on degrees are necessary because of the way degrees are defined in the spectra tensor product (so that the resulting isomorphisms will be isomorphisms of graded groups).

The following relations are required to hold whenever both sides of the equation are defined (in relations (3)-(7) $m \geqslant 0$; if $m=0$ it is assumed that $u^{\prime}=0$ and $v^{\prime}=0$; in relations (8)-(11) $m, k \geqslant 0$):
(3) $\left[-\partial u^{\prime}, \partial u+m u^{\prime}, v^{\prime}, v\right]_{m}=0$;
(4) $\left[u^{\prime}, u,-\partial v^{\prime}, \partial v+m v^{\prime}\right]_{m}=0$;
(5) $\left[u^{\prime}+\bar{u}^{\prime}, u+\bar{u}, v^{\prime}, v\right]_{m}=\left[u^{\prime}, u, v^{\prime}, v\right]_{m}+\left[\bar{u}^{\prime}, \bar{u}, v^{\prime}, v\right]_{m}$;
(6) $\left[u^{\prime}, u, v^{\prime}+\bar{v}^{\prime}, v+\bar{v}\right]_{m}=\left[u^{\prime}, u, v^{\prime}, v\right]_{m}+\left[u^{\prime}, u, \bar{v}^{\prime}, \bar{v}\right]_{m}$;
(7) $\left[r u^{\prime}, r u, v^{\prime}, v\right]_{m}=\left[u^{\prime}, u, r v^{\prime}, r v\right]_{m}$ for $r \in Z$;
(8) $\left[k u^{\prime}, u, v^{\prime}, v\right]_{m}=\left[u^{\prime}, u, v^{\prime}, k v\right]_{m k}$;
(9) $\left[u^{\prime}, u, k v^{\prime}, v\right]_{m}=\left[u^{\prime}, k u, v^{\prime}, v\right]_{m k}$;
(10) $\left[0, u, v^{\prime}, v\right]_{m}=\left[0, u, 0,-v^{\prime}\right]_{0}$;
(11) $\left[u^{\prime}, u, 0, v\right]_{m}=\left[0,-u^{\prime}, 0, v\right]_{0}$.

Relations (3) and (4) merely state that the homology class of a boundary in $C(K, m)$ or $C(L, m)$ is zero. Relations (5)-(7) are those necessary to define the usual tensor product $H C(K, m) \otimes H C(L, m)$; for the spectra tensor product is a quotient group of $\sum_{m \geqslant 0} H C(K, m) \otimes H C(L, m)$. Finally, relations (8)-(11) are those required by the definition of the spectra tensor product.
$\mathscr{L}_{p}(K \otimes L)$, defined in this way, can be made into a covariant bifunctor: if $f: K \rightarrow K^{\prime}$ and $g: L \rightarrow L^{\prime}$ are chain maps, define

$$
\mathscr{L}(f, g)\left[u^{\prime}, u, v^{\prime}, v\right]_{m}=\left[f\left(u^{\prime}\right), f(u), g\left(v^{\prime}\right), g(v)\right]_{m}
$$

We can summarize these facts in
Theorem 3.2. If K and L are complexes, then $\mathscr{L}_{p}(K \otimes L)$ is naturally isomorphic to the group with generators all symbols of the forms (1) and (2), subject to the relations (3)-(11).

References

1. H. Cartan and S. Eilenberg, Homological algebra (Princeton, 1956).
2. A. Dold, Zur homotopie Theorie der Kettenkomplexe, Math. Ann., 140 (1960), 278-298.
3. T. W. Hungerford, Bockstein spectra, Trans. Amer. Math. Soc., 115 (1965), 225-241.
4. -Hyperhomology spectra and a multiplicative Künneth theorem, Illinois J. Math., 10 (1966), 249-254.

University of Washington, Seattle, Washington

