
Appendix G
Pairing mean-field solution

G.1 Solution of the pairing Hamiltonian

This appendix gives an alternative derivation of the pairing mean-field Hamiltonian and
the BCS wavefunction to that provided in the text.

Let us start with the Hamiltonian

H = Hsp + Hp,

which is the sum of a single-particle Hamiltonian

Hsp =
∑
ν>0

(εν − λ)(a†
νaν + a†

ν̄aν̄)

and a pairing interaction with constant matrix elements

Hp = −G
∑
ν > 0
ν ′ > 0

a†
νa

†
ν̄aν̄ ′aν ′ . (G.1)

In what follows we shall solve H in the mean-field approximation. For this purpose
we introduce the pair-creation operator,

P† =
∑
ν>0

a†
νa

†
ν̄ = α0 + (P† − α0)

and add and subtract from it the mean-field value

α0 = 〈BCS|P†|BCS〉 = 〈BCS|P|BCS〉
of the pair transfer operator in the, still unknown, mean-field ground state. This state is
called the |BCS〉 state, because this solution was first proposed by Bardeen, Cooper and
Schrieffer. Note that 〈BCS|BCS〉 = 1. We can now write

Hp = −G(α0 + (P† − α0))(α0 + (P − α0))

= −G(α2
0 + α0(P† + P − 2α0)+ (P† − α0)(P − α0)).
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Pairing mean-field solution 311

Assuming that the matrix elements of the operators (P† − α0) and (P − α0) in the
states near to the ground state are much smaller than α0, one obtains the pairing field

Vp = −�(P† + P)+ �
2

G
, � = Gα0 . (G.2)

The mean-field Hamiltonian then becomes

HMF = Hsp + Vp

=
∑
ν>0

(εν − λ)(a†
νaν + a†

ν̄aν̄)−�
∑
ν>0

(a†
νa

†
ν̄ + aν̄aν)+ �

2

G
.

This is a bilinear expression in the creation and annihilation operators. Consequently, it
can be diagonalized by a rotation in (a†, a)-space. This can be accomplished through the
Bogoliubov–Valatin transformation

α†ν = Uνa
†
ν − Vνaν̄ .

From this definition one can anticipate that the BCS solution does not change the
energies εν of the single-particle levels or the associated wavefunction ϕν(	r ), but the
occupation probabilities for levels around the Fermi energy within an energy range
2�, a quantity much smaller than the Fermi energy εF. What is also changed is the
mechanism by which the system can be excited, which implies, for nucleons moving
around the Fermi energy, the breaking of Cooper pairs.

The creation operator of a quasiparticle α†ν creates a particle in the single-particle state
ν with probability U 2

ν , while it creates a hole (annihilates a particle) with probability V 2
ν .

To be able to create a particle, the state ν should be empty, while to create a hole it has
to be filled, so U 2

ν and V 2
ν are the probabilities that the state ν is empty and is occupied

respectively.
Expressing the creation and annihilation operators (a†

ν, aν) in terms of the quasiparticle
operators (α†ν, αν), and expressing HMF in terms of quasiparticles, one has the parameters
Uν and Vν for each level ν to make this Hamiltonian diagonal (in fact one, see equation
(G.3)).

Making use of the anticommutation relations

{aν, a†
ν ′ } = δ(ν, ν ′)

{aν, aν ′ } = {a†
ν, a

†
ν ′ } = 0,

one obtains

{αν, α†ν ′ } = {(Uνaν − Vνa
†
ν̄), (Uν ′a

†
ν ′ − Vν ′aν̄ ′ )}

= (UνUν ′ + VνVν ′ ) δ(ν, ν
′).

That is, for the quasiparticle transformation to be unitary, the Uν , Vν occupation factors
have to fulfil the relation

U 2
ν + V 2

ν = 1, (G.3)
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312 Appendix G

implying also that the one-quasiparticle states are orthonormal. In particular

〈ν|ν〉 = 1 = 〈BCS|ανα†ν |BCS〉 = 〈BCS|{αν, α†ν}|BCS〉
= U 2

ν + V 2
ν

implies that the state

|ν〉 = α†ν |BCS〉
is normalized.

Note that |BCS〉 is also the quasiparticle vacuum, i.e.

αν |BCS〉 = 0.

Let us now invert the quasiparticle transformation, i.e. express a†
ν in terms of α†ν and αν̄ .

Multiplying α†ν by Uν and αν̄ by Vν gives

Uνα
†
ν = U 2

ν a†
ν −UνVνaν̄ ,

Vναν̄ = UνVνaν̄ + V 2
ν a†

ν .

Adding these expressions one obtains

a†
ν = Uνα

†
ν + Vναν̄ .

We shall now express a†
νaν in terms of quasiparticles, i.e.

a†
νaν = (Uνα

†
ν + Vναν̄)(Uναν + Vνα

†
ν̄)

= U 2
ν α

†
ναν +UνVνα

†
να

†
ν̄ +UνVναν̄αν + V 2

ν αν̄α
†
ν̄

= U 2
ν α

†
ναν +UνVν(α

†
να

†
ν̄ + αν̄αν)− V 2

ν α
†
ν̄αν̄ + V 2

ν . (G.4)

The time reversal of this expression reads

a†
ν̄aν̄ = U 2

ν α
†
ν̄αν̄ +UνVν(α

†
να

†
ν̄ + αν̄αν)− V 2

ν α
†
ναν + V 2

ν ,

where the phase relation | ˜̃ν >= τ 2|ν >= −|ν > and thus a†
˜̃ν = −a†

ν have been used.
One can then write

(a†
νaν + a†

ν̄aν̄) = (U 2
ν − V 2

ν )(α†ναν + α†ν̄αν̄)
+ 2UνVν(α

†
να

†
ν̄ + αν̄αν)+ 2V 2

ν . (G.5)

Note that

N = 〈BCS|N̂ |BCS〉 = 〈BCS|
∑
ν>0

(a†
νaν + a†

ν̄aν̄)|BCS〉 = 2
∑
ν>0

V 2
ν (G.6)

is the average number of particles in the pairing mean-field ground state (BCS state).
Let us now express the pair-creation field a†

νa
†
ν̄ in terms of quasiparticles

a†
νa

†
ν̄ = (Uνα

†
ν + Vναν̄)(Uνα

†
ν̄ − Vναν)

= U 2
ν α

†
να

†
ν̄ −UνVνα

†
ναν

+ VνUνα
†
ν̄αν̄ − V 2

ν αν̄αν +UνVν . (G.7)
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The Hermitian conjugate of this expression is then

aν̄aν = U 2
ν αν̄αν −UνVν(α

†
ναν + α†ν̄αν̄)− V 2

ν α
†
να

†
ν̄ +UνVν . (G.8)

Summing these expressions leads to

(a†
νa

†
ν̄ + aν̄aν) = (U 2

ν − V 2
ν )(α†να

†
ν̄ + αν̄αν)− 2UνVν(α

†
ναν̄ + α†ν̄αν)+ 2UνVν .

Note that

α0 = 〈BCS|P†|BCS〉 =
∑
ν>0

〈BCS|a†
νaν̄ |BCS〉 =

∑
ν>0

UνVν (G.9)

and

� = Gα0 = G
∑
ν>0

UνVν . (G.10)

Making use of the relations worked out above one can express HMF in terms of
quasiparticles, i.e.

HMF = U + H11 + H20, (G.11)

where

U = 2
∑
ν>0

(εν − λ)V 2
ν −�

∑
ν>0

2UνVν + �
2

G
,

H11 =
∑
ν>0

{
(εν − λ)(U 2

ν − V 2
ν )+�2UνVν

}
(α†ναν + α†ν̄αν̄),

H20 =
∑
ν>0

{
(εν − λ)2UνVν −�(U 2

ν − V 2
ν )

}
(α†να

†
ν̄ + αν̄αν).

In other words, the mean-field pairing Hamiltonian expressed in terms of quasiparticles
is equal to the sum of three terms: one which is a constant, a second one which is diagonal
in the quasiparticle basis, and a third one which, although bilinear in the operators α†

and α, is not diagonal. Consequently, imposing the condition H20 = 0, i.e.

(εν − λ)2UνVν = �(U 2
ν − V 2

ν ), (G.12)

is equivalent to diagonalizing HMF. This relation together with equation (G.3) allows us
to calculate the corresponding coefficients Uν and Vν .

We start by taking the square of the above relation,

(εν − λ)24U 2
ν V 2

ν = �2(U 2
ν − V 2

ν )2. (G.13)

From the normalization relation one can write

(U 2
ν + V 2

ν )2 = 1 = U 4
ν + V 4

ν + 2U 2
ν V 2

ν

and

U 4
ν + V 4

ν = 1− 2U 2
ν V 2

ν .
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Consequently,

(U 2
ν − V 2

ν )2 = U 4
ν +U 4

ν − 2U 2
ν V 2

ν = 1− 4U 2
ν V 2

ν .

Inserting this relation in equation (G.13) leads to

4U 2
ν V 2

ν ((εν − λ)2 +�2) = �2,

a relation which can be rewritten as

2UνVν = �

Eν
, (G.14)

where the+ sign of the square root operation implies the minimization of the ground-state
energy U . The quantity Eν is given by

Eν =
√

(εν − λ)2 +�2. (G.15)

Making use again of the condition H20 = 0 one can write

(εν − λ)
�

Eν
= �(U 2

ν − V 2
ν ),

i.e.

(U 2
ν − V 2

ν ) = εν − λ
Eν

, (G.16)

U 2
ν − V 2

ν = 1− 2V 2
ν =

εν − λ
Eν

,

V 2
ν =

1

2

(
1− εν − λ

Eν

)
,

leading to

Vν = 1√
2

(
1− εν − λ

Eν

)1/2
, (G.17)

Uν = 1√
2

(
1+ εν − λ

Eν

)1/2
. (G.18)

Let us now substitute these expressions in the relation (G.10). One obtains

� = G

2

∑
ν>0

(
1− (εν − λ)2

E2
ν

)1/2
= G

2

∑
ν>0

�

Eν
.

The above equation together with equation (G.6) are the BCS equations, i.e.

N = 2
∑
ν>0

V 2
ν (number equation), (G.19)

1

G
=

∑
ν>0

1

2Eν
(gap equation). (G.20)

These equations allow us to calculate the parameters λ and� from the knowledge of G
and εν , parameters which completely determine the occupation amplitudes Uν and Vν .
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Pairing mean-field solution 315

One can now write U in terms of the parameters λ and �, i.e.

U = 2
∑
ν>0

(εν − λ)V 2
ν − 2

�2

G
+ �

2

G

= 2
∑
ν>0

(εν − λ)V 2
ν −

�2

G
.

Making use of equations (G.14), (G.15) and (G.18) one can write H11 in terms of λ
and �,

H11 =
∑
ν>0

{ (εν − λ)2

Eν
+ �

2

Eν

}
(α†ναν + α†ν̄αν̄)

=
∑
ν>0

Eν(α
†
ναν + α†ν̄αν̄) =

∑
ν

Eνα
†
ναν

=
∑
ν

Eν N̂ν, (G.21)

where N̂ν = α†ναν .

G.2 Two-quasiparticle excitations

In the case of a normal system, within the independent-particle model, the lowest exci-
tations are of particle–hole character, i.e.

|ki〉 = a†
kai |0〉HF,

where

|0〉HF =
A∏

i=1

a†
i |0〉 ,

(|0〉HF: Hartree–Fock vacuum, |0〉: fermion vacuum).
Making use of the single-particle Hamiltonian

Hsp =
∑
ν

ενa
†
νaν =

∑
ν

εν N̂ν

one can calculate the energy of the particle–hole states. Let us start with the calculation
of the ground-state energy,

Hsp|0〉HF =
∑
ν

ενNν
A∏

i=1

a†
i |0〉

=
∑
ν

ενa
†
νaν a†

1a†
2 · · · a†

A|0〉

= (εν1 + εν2 + · · · + ενA )|0〉HF = E0|0〉HF.
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Let us now calculate the energy of the particle–hole excitation referred to this energy,
i.e.

(Hsp − E0)|ki〉 =
∑
ν

(εν N̂ν − E0)a†
kai |0〉HF

=
∑
ν

εν(a
†
k

[
N̂ν, ai

]+ [
N̂ν, a

†
k

]
ai )|0〉HF.

We have now to work out the commutation relations appearing in the above equations.
They lead to [

N̂ν, ai
] = [

a†
νaν, ai

] = −{a†
ν, ai }aν = −δ(ν, i)aν,[

Nν, a
†
k

]
=

[
a†
νaν, a

†
k

]
= a†

ν{aν, a†
k} = δ(ν, k)a†

ν,

where use was made of the relations

[AB,C] = A [B,C]+ [A,C] B = ABC − AC B − AC B + C AB

and

[AB,C] = A{B,C} − {A,C}B = ABC + AC B − AC B − C AB.

One can then write

(Hsp − E0)|ki〉 =
∑
ν

ε(a†
k(−δ(ν, i)aν + δ(ν, k)a†

νai )|0〉HF

= (εk − εi )a
†
kai |0〉HF = (εk − εi )|ki〉.

Summing up, the simplest excitation of the |0〉HF vacuum is

a†
kai |0〉HF,

i.e. a particle–hole excitation. The lowest of these excitations connects the last occupied
and the first empty state.

In the case of quasiparticles

Hsp ⇒ H11 +U ; |0〉HF ⇒ |BCS〉
a†

kai ⇒ a†
νaν = (Uνα

†
ν + Vναν̄)(Uναν + Vνα

†
ν̄)

= U 2
ν α

†
ναν +UνVνα

†
να

†
ν̄ + VνUναν̄αν

− V 2
ν α

†
ν̄αν + V 2

ν ,

leading to

a†
kai |0〉HF → UνVνα

†
να

†
ν̄ |BCS〉 ∼ α†να†ν̄ |BCS〉,

in that V 2
ν |BCS〉 is not an excitation. Thus, the simplest excitation of the |BCS〉 vacuum

is

α†να
†
ν̃ |BCS〉 = |νν̃〉,

i.e. a two-quasiparticle state.
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The excitation energy associated with these states is

H11|ν1ν2〉 =
∑
ν

Eν N̂να
†
ν1
α†ν2
|BCS〉

=
∑
ν

Eν[N̂ν1α
†
ν1
α†ν2

]|BCS〉,

in keeping with the fact that N̂ν |BC S〉 = 0. We now calculate

[N̂ν, α
†
ν1
α†ν2

] = α†ν1
[N̂ν, α

†
ν2

]+ [N̂ν, α
†
ν1

]α†α2
,[

N̂ν, α
†
ν2

] = [α†ναν, α
†
ν2

] = α†ν{αν, α†ν2
} − {α†ν, α†ν2

}αν
= δ(ν, ν2)α†ν

and [
N̂ν, α

†
ν1

] = [α†ναν, α
†
ν1

] = α†ν{αν, α†ν1
} − {α†ν, α†ν1

}αν
= δ(ν, ν1)α†ν . (G.22)

Consequently [
N̂ν, α

†
ν1
α†ν2

] = δ(ν, ν2)α†ν1
α†ν + δ(ν, ν1)α†να

†
ν2
.

From these relations one can write

H11|ν1ν2〉 =
∑
ν

Eν
(
δ(ν, ν2)α†ν1

α†ν + δ(ν, ν1)α†ναν2 )|BCS〉

= (Eν1 + Eν2 )α†ν1
α†ν2
|BCS〉 = (Eν1 + Eν2 )|ν1ν2〉.

Because (Eν1 + Eν2 ) ≥ 2�, the lowest excitation in the pairing correlated system lies
at an energy ≥ 2�, i.e. the energy which it takes to break a pair. In fact, in the paired
system, the only excitations possible are those associated with the breaking of pairs of
particles moving in time-reversal states, an operation which takes an energy of the order
of 2�.

G.3 Minimization

Writing the pairing Hamiltonian given in equation (G.1) in terms of quasiparticles one
can calculate the average value in the |BCS〉 ground state, obtaining

〈BCS|Hp|BCS〉 = −G
∑
ν>0

V 4
ν − G

∑
ν,ν ′>0

UνVνUν ′Vν ′

= −G
(∑
ν>0

UνVν
)2 − G

∑
ν>0

V 4
ν

= −�
2

G
− G

∑
ν>0

V 4
ν .

Similarly,

〈BCS|Hsp|BCS〉 = 2
∑
ν>0

(εν − λ)V 2
ν .
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Consequently

E0 = 〈BCS|H |BCS〉 = 2
∑
ν>0

(εν − λ)V 2
ν −

�2

G
− G

∑
ν>0

V 4
ν

= 2
∑
ν>0

(εν − λ)V 2
ν − G(

∑
ν>0

UνVν)
2 − G

∑
ν>0

V 4
ν

≈ 2
∑
ν>0

(εν − λ)V 2
ν − G

(∑
ν>0

UνVν

)2

,

where we have neglected the mean-field pairing contribution to the single-particle energy
(i.e. ε′ν = εν − GV 2

ν /2 ≈ εν), in keeping with the fact that GV 2
ν /2 is small (≈ G

4 ≈ 6
A

MeV ∼ 0.05 MeV, with the ansatz V 2
ν ≈ 1

2 and for A ≈ 120).
Let us minimize E0 with respect to Vν

∂〈BCS|H |BCS〉
∂Vν

= 0,

taking into account the normalization condition,

∂Uν
∂Vν

= ∂

∂Vν
(1− V 2

ν )1/2 = 1

2
(1− V 2

ν )−1/2(−2Vν)

= − Vν
Uν

.

One thus obtains

∂〈BCS|H |BCS〉
∂Vν ′

= 4(εν ′ − λ)V ′ν − 2G

(∑
ν>0

UνVν)(Uν ′ − Vν ′
Vν ′

Uν ′

)

= 4(εν ′ − λ)Vν ′ − 2
�

Uν ′
(U 2
ν ′ − V 2

ν ′ ) = 0,

i.e.

2(εν ′ − λ)Uν ′Vν ′ = �(U 2
ν ′ − V 2

ν ′ ), (G.23)

which is the condition H20 = 0 (see (G.12)).

G.4 BCS wavefunction

The state |BCS〉 is the quasiparticle vacuum, i.e.

αν |BCS〉 = 0.

Consequently, it can be written as

|BCS〉 ∼
∏
ν

αν |0〉 ∼
∏
ν>0

αναν |0〉.

Let us now calculate αναν , i.e. the product of

αν = Uνaν − Vνa
†
ν
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and

αν = Uνaν + Vνa
†
ν .

It leads to

αναν = U 2
ν aνaν +UνVνaνa

†
ν −UνVνa

†
νaν − V 2

ν a†
νa

†
ν

= U 2
ν aνaν +UνVν(1− a†

νaν)−UνVνa
†
νaν + V 2

ν a†
νa

†
ν .

Consequently

|BCS〉 = N
∏
ν>0

(
U 2
ν aνaν +UνVν(1− a†

νaν)−UνVνa
†
νaν + V 2

ν a†
νa

†
ν

)
|0〉

= N
∏
ν>0

(
UνVν + V 2

ν a†
νa

†
ν

)
|0〉

= N
∏
ν>0

Vν
(

Uν + Vνa
†
νa

†
ν

)
|0〉,

where N is a normalization constant, to be determined from the relation

1 = 〈BCS|BCS〉
= N 2〈0|

∏
ν>0

Vν
(

Uν + Vνaνaν
) ∏
ν ′>0

Vν ′
(

Uν ′ + Vν ′a
†
ν ′a

†
ν ′

)
|0〉

= N 2〈0|
∏
ν>0

V 2
ν (U 2

ν + V 2
ν )|0〉,

N =
(∏
ν>0

V 2
ν

)− 1
2 =

(∏
ν>0

Vν
)−1
,

leading to

|BCS〉 =
∏
ν>0

(
Uν + Vνa

†
νa

†
ν

)
|0〉.
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