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Abstract

Finite groups with abelian Sylow p-subgroups for certain primes p are characterized in terms of
arithmetical properties of commutators.
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1. Introduction

Let G be a group. Many properties of G, such as nilpotency of class at most c, can be
defined by commutator conditions such as [X1, X2, . . . , Xc+1] = 1. In this example,
no powers of elements nor their orders occur. In this paper, however, we are interested
in relations between arithmetical properties of commutators of elements and properties
of certain subgroups of G.

For example, let π be a set of primes, and let G be finite. If the commutator of
every pair of elements of G is a π -element, then the derived subgroup G ′ of G is a
π -group (the converse is obvious). This result was proved in Brandl [3], and again in
Shumyatsky [8, Lemma 3.2]. The analogue for infinite groups is true in some cases
(see [8]), but not in general (see [4]). It is still open whether (infinite) groups in which
[x, y]3 = 1 for all x, y ∈ G are always soluble (see [7, Problem 12.4]).

Here, we are interested in finite groups with abelian Sylow p-subgroups, where p
runs through a certain set of primes. How can this property be captured by properties
of commutators (see [7, Problem 11.15])?

Consider the following condition on a finite group G:

(C-p) : the commutator of every two p-elements of G is a p′-element.
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Let G satisfy (C-p) for the prime p, and let P be a Sylow p-subgroup of G. For every
pair a, b ∈ P , we obviously have [a, b] ∈ P , and by Condition (C-p), this commutator
is a p′-element. Hence, [a, b] = 1, and so P is abelian. Conversely, assume that G has
abelian Sylow p-subgroups. Does G satisfy (C-p)?

If G is p-soluble, then by a result of Hall and Higman (see Huppert [6, p. 691]),
there exists a series 1≤ R ≤ S ≤ G of normal subgroups of G such that R and G/S
are p′-groups, and S/R is an abelian p-group. Let a, b be p-elements of G. As G/S is
a p′-group, we have a, b ∈ S. As S/R is abelian, we get [a, b] ∈ R, and hence [a, b] is
a p′-element. Hence, G satisfies (C-p). In Brandl [2] it was shown that the hypothesis
on p-solubility can be dropped in the case when p = 2. Indeed, the following result
holds.

THEOREM 1 (See [2]). Let G be a finite group. Then G has abelian Sylow 2-
subgroups if and only if it satisfies Condition (C-2).

The object of this paper is to search for analogues of this result. In the example
below, for every prime p 6= 2, we will construct a finite group G with abelian Sylow p-
subgroups that does not satisfy Condition (C-p). By the remark preceding Theorem 1,
such a group G is necessarily insoluble.

To extend Theorem 1, we have to consider sets of primes. The following describes
finite groups with (C-p) for all odd primes p. It will turn out that these groups are
necessarily soluble.

THEOREM 2. For a finite group G, the following are equivalent:

(i) G is soluble with abelian Sylow p-subgroups for all odd primes p;
(ii) G satisfies (C-p) for all odd primes p.

The following immediate consequence of Theorem 2 describes finite groups which
satisfy (C-p) for all primes p.

COROLLARY 3. For a finite group G the following are equivalent:

(i) G is a soluble group with all Sylow subgroups abelian;
(ii) for every prime p and every two p-elements x, y in G, the commutator [x, y] is

a p′-element.

We use standard notation throughout. In addition, o(x) denotes the order of the
element x of some group. For a prime p, call x a p′-element if p - o(x).

2. Proofs

In view of the remark preceding Theorem 1, it suffices to show that groups with
(C-p) for all odd primes p are soluble. The proof of this will require some information
concerning certain (minimal) simple groups. We start with the projective linear groups.
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LEMMA 4. Let q = p f be a prime power, and let G = PSL(2, q).

(a) If q ≡ 1 mod 4, then there exist two elements x, y in G of order p such that
[x, y] is of order p.

(b) If q ≡ 3 mod 4, then for every two p-elements x, y in G, the commutator
[x, y] is a p′-element. In particular, G satisfies the law [Xm, Y m

]
m
= 1 where

m = q2
− 1.

(c) If r is an odd prime dividing q − 1, then there exist elements x, y in G of order
r such that [x, y] is of order r .

PROOF. The element x of G has order p if and only if its minimal polynomial is
(X ± 1)2. This is obviously equivalent to Tr(x)=±2, where Tr denotes the trace
function.

Let x = ( a b
c d ) and y = ( 1 1

0 1 ). A straightforward calculation using the fact that
ad − bc = 1 shows that

[x, y] =

(
1− cd 1− cd − d2

c2 1+ cd + c2

)
. (1)

For (a), note that Tr([x, y])= 2+ c2. If q ≡ 1 mod 4, we can choose c ∈ GF(q)
with c2

=−4. Hence [x, y] has trace −2. If we choose a = d = 1 and b = 0, then
[x, y] 6= 1, and so this is an element of order p. This proves (a).

For (b), let x0, y0 ∈ G have order p. Clearly, [x0, y0] is a p′-element if and only if
[α(x0), α(y0)] is a p′-element for some automorphism α of G. We thus may assume
that y0 = y is the element introduced above. By (1), the trace of [x, y] is 2+ c2. If
the order of [x, y] were divisible by p, we would have o([x, y])= p. As above, this
would imply that Tr([x, y])= 2+ c2

=±2, and so we would have c2
=−4 or c = 0.

The first case would contradict q ≡ 3 mod 4. In the second case, it would follow that
x =±( 1 b

0 1 ), and so [x, y] = 1 is a p′-element.

For the second statement of (b), note that for all z ∈ G, the element zm
= zq2

−1 is
of order 1 or p. The first statement yields that [xm, ym

] is a p′-element, whence it is
of order dividing m. The claim follows.

Finally, we prove (c). Let ε ∈ GF(q) be of multiplicative order r . Set

x =

(
ε−1 0

0 ε

)
and y =

(
0 −1
1 ε + ε−1

)
.

Then x and y have the same trace. Moreover, o(x)= r . As r 6= 2, the eigenvalues
of x and y are distinct. This implies that x and y are similar, and so o(x)= o(y)= r .

A straightforward calculation shows that [x, y] =
(
ε2
∗

∗ ε−2

)
. Hence, the trace of

[x, y] is ε2
+ ε−2, which is equal to the trace of x2. As above, this yields o([x, y])=

o(x2)= r . 2

The following example shows that Theorem 2 is no longer true if we assume that
condition (ii) holds for a finite set of odd primes only.
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EXAMPLE 5. Let π be a finite set of primes such that 2 6∈ π . Then there exists a group
with abelian Sylow p-subgroups for all p ∈ π , but not satisfying (C-p) for any p ∈ π .

PROOF. Let π = {p1, . . . , pt }. Choose f such that 2 f
≡ 1 mod (p1 · · · · · pt ), and

let G = PSL(2, 2 f ). Then all Sylow subgroups of G are abelian. However, by
Lemma 4(c), the group G does not satisfy (C-pi ) for any index i . 2

We now set out to classify groups G satisfying (C-p) for all odd primes p. For
this, we need the following analogue of part (c) of Lemma 4 for the simple Suzuki
groups Sz(q).

LEMMA 6. Let G = Sz(q), where q = 2 f
≥ 8 and f is odd. If r is a prime dividing

q − 1, then there exist elements x, y in G of order r such that the commutator [x, y]
is of order r .

PROOF. Let λ ∈ GF(q) be of multiplicative order r , let ϑ be the automorphism of
GF(q) such that ϑ2 is the Frobenius automorphism, and choose

x =


λ1+ϑ

λ

λ−1

λ−1−ϑ

 and y = y(b)=


0 0 0 1
0 0 1 0
0 1 0 b
1 0 b bϑ

 .
Then x, y ∈ G. If we choose b such that bϑ = λ1+ϑ

+ λ+ λ−1
+ λ−1−ϑ , then x

and y are of equal trace, and so Bäärnhielm [1, Lemma 2.7] implies that x and y
are conjugate. In particular, o(y)= o(x)= r .

A simple calculation shows that [x, y] has trace λ−2−2ϑ
+ λ−2

+ λ2
+ λ2+2ϑ .

Hence [x, y] and x2 have the same trace, and by [1, Lemma 2.7] again, [x, y] and x2

are conjugate. As r is odd, we thus have o([x, y])= o(x2)= o(x)= r as claimed. 2

PROOF OF THEOREM 2. It has already been shown that (i) implies (ii). For the
converse, we first show that G is soluble. A counterexample of least possible order
is clearly a minimal simple group. First, let G = PSL(2, q). If q − 1 is not a power
of 2, then by Lemma 4(c), G does not satisfy (C-r ) for a suitable odd prime divisor r
of q − 1. Hence, q is a Fermat prime or q = 9 (see [5, Hilfssatz]). As q 6= 3, we get
q ≡ 1 mod 4. But then Lemma 4(a) applies. Next, PSL(3, 3) has nonabelian Sylow
3-subgroups, and hence does not satisfy (C-3). Finally, let G = Sz(q) where q = 2 f .
As G is minimal simple, f is odd and f ≥ 3. Choose a prime r dividing q − 1. Then
the elements x, y constructed in Lemma 6 show that G does not satisfy (C-r ). This is
a contradiction. Hence, G is soluble. Clearly, the Sylow subgroups of odd order of G
are abelian. Thus, (i) holds. 2
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