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Abstract

We compute the Hodge ideals of Q-divisors in terms of the V -filtration induced by a local defining
equation, inspired by a result of Saito in the reduced case. We deduce basic properties of Hodge
ideals in this generality, and relate them to Bernstein–Sato polynomials. As a consequence of our
study we establish general properties of the minimal exponent, a refined version of the log canonical
threshold, and bound it in terms of discrepancies on log resolutions, addressing a question of Lichtin
and Kollár.
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A. Introduction

This paper establishes a connection between the Hodge ideals of a Q-divisor,
as defined in [MP19b], and the V -filtration along an appropriately chosen
hypersurface. It is inspired by Saito’s [Sai16], which explained such a connection
expressed in terms of the microlocal V -filtration, in the case of the Hodge ideals
of reduced divisors studied in [MP19a]. In the Q-divisor case, this relationship
turns out to be crucial toward establishing some of the most basic properties of
Hodge ideals, as well as of certain roots of Bernstein–Sato polynomials.

Let X be a smooth complex variety, and D an effective Q-divisor on X . Such a
divisor can be written locally as D = αH , where α ∈ Q, and H = div( f ) is the
divisor of a regular function, and it is this set-up that we focus on in what follows.
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To this data, by a standard construction one associates the left DX -module

M( f β) := OX (∗H) f β,

a free OX (∗H)-module of rank 1 with generator the symbol f β , where β = 1−α
(the D-module action is recalled in Section 1). In [MP19b], we observe that it
carries a natural filtration FpM( f β), with p > 0, which makes it a filtered direct
summand in a D-module underlying a mixed Hodge module. Moreover, we show
that this can be written in the form

FpM( f β) = Ip(D)⊗OX (pZ + H) f β,

with Z = Hred the support of H , where Ip(D) are coherent sheaves of ideals on X
called the Hodge ideals of D. Note that here and throughout the paper we make
a slight abuse of notation, identifying the right-hand side with its image via the
canonical injection into OX (∗H) f β .

The ideal I0(D) is identified in [MP19b] with the multiplier ideal I
(
(1− ε)D

)
associated to the Q-divisor (1− ε)D with 0 < ε � 1, which measures the failure
of the pair (X, D) to be log canonical. On the other hand, when D is integral
Budur and Saito [BS05] have shown the identification

I
(
(1− ε)D

)
= V 1OX ,

where V •OX denotes the V -filtration induced on OX . This is defined as V •OX =

V •ι+OX ∩ OX , where V •ι+OX is the Kashiwara–Malgrange V -filtration on the
graph embedding (via a local equation of H ) of OX ; see Section 2. Consequently
we have I0(D) = V 1OX .

When D is a reduced divisor (corresponding in the notation above to β = 0 and
D = H = Z ), Saito showed in [Sai16] that a relationship of this type continues
to hold in a weaker sense even for p > 1, namely

Ip(D) = Ṽ p+1OX mod f,

or in other words Ip(D)+( f )= Ṽ p+1OX+( f ), where this time Ṽ •OX denotes the
microlocal V -filtration induced on OX by f , defined in [Sai94]. Examples show
that in general this identification does not hold without modding out by f ; even so
however, it is significant for a number of reasons. Most importantly, it establishes
a connection between Hodge ideals and the Bernstein–Sato polynomial of f .
Moreover, to establish the triviality of the ideals on the two sides, it suffices to
check it mod f .

In this paper, we show that similar statements hold for arbitrary Q-divisors.
More precisely, we fully compute the Hodge ideals in terms of the (usual) V -
filtration on ι+OX . This strengthens Saito’s result above even in the reduced case.
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In order to state our results, let us recall first that without loss of generality it
suffices to focus on the case dDe = Z . Indeed, the Q-divisor B = D + Z − dDe
satisfies this condition, while according to [MP19b, Lemma 4.4], we have

Ip(D) = Ip(B)⊗OX (Z − dDe).

(In other words, up to multiplication by locally principal ideals, the Hodge ideals
depend only on the coefficients of D modulo integers, just as in the well-known
case of multiplier ideals, which corresponds to p = 0.) It will also be convenient
to express things equivalently in terms of a slightly different ideal, defined by the
formula

FpM( f β) = I ′′p (D)⊗OX
(
(p + 1)H

)
f β,

or in other words satisfying

I ′′p (D) = Ip(D)⊗OX (pZ − pH).

(The notation I ′p(D) is reserved for a different object in [MP19b].) The V -
filtration will come into play via the following construction: for each p > 0, we
consider the coherent sheaf of ideals in OX given by

Ĩp(D) =

{
v ∈ OX | ∃ v0, . . . , vp−1, vp = v ∈ OX with

p∑
i=0

vi∂
i
t δ ∈ V αι+OX

}
.

For 0 < α 6 1, this is just another way of expressing Saito’s microlocal V -
filtration mentioned above; specifically, one has

Ĩp(D) = Ṽ p+αOX .

It will also be convenient to make use of the polynomials

Qi(X) := X (X + 1) · · · (X + i − 1) ∈ Z[X ].

With these definitions and reductions, our main result can be phrased as
follows:

THEOREM A. In the set-up above, for every positive rational number α such that
D = αH satisfies dDe = Z, and for every p > 0, we have

I ′′p (D) =

{
p∑

j=0

Q j(α) f p− jv j

∣∣∣∣∣
p∑

j=0

v j∂
j

t δ ∈ V αι+OX

}
.

In particular, we have

I ′′p (D)+ ( f ) = Ĩp(D)+ ( f ).
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Note that in the case where D = αZ , with Z a reduced effective divisor, we
have I ′′p (D) = Ip(D) for all p > 0. In this case we have the following variant
of the theorem above, where we place no restrictions on the positive rational
number α.

THEOREM A′. If Z is a reduced, effective divisor on X, defined by the global
equation f ∈ OX (X), then for every positive rational number α, and every p > 0,
if D = αZ we have

Ip(D) =

{
p∑

j=0

Q j(α) f p− jv j

∣∣∣∣∣
p∑

j=0

v j∂
j

t δ ∈ V αι+OX

}
. (0.1)

In particular, we have

Ip(D)+ ( f ) = Ĩp(D)+ ( f ).

The proofs of these theorems, as well as various intermediate results, occupy
Sections 3 and 4. Some of the arguments follow [Sai16], and rely on the regular
and quasi-unipotent property of filtered D-modules underlying mixed Hodge
modules. For the full calculation of Hodge ideals in terms of the V -filtration
however, further techniques need to be developed as well. One technical point, of
independent interest, is a calculation of the V -filtration on the (graph embedding
of the) twisted D-modules M( f β) in terms of the more tractable V -filtration on
ι+OX ; for the statement see Proposition 2.6.

Remark. The microlocal V -filtration has been computed explicitly in various
cases by Saito; for instance, it is computed for a large class of quasihomogeneous
isolated singularities in [Sai16, Proposition (2.2.4)]. In [Sai09], the Hodge
filtration itself is computed combinatorially for all such singularities, and this is
extended to the case of Q-divisors in [Zha18]. This leads to an explicit calculation
of Hodge ideals for isolated quasihomogeneous singularities; see [Zha18] for
examples.

In the Q-divisor case, the results above allow us to deduce some basic properties
of Hodge ideals that do not follow from the methods of [MP19b]. We collect some
of these, treated individually and discussed in detail in Section 5, in the following:

COROLLARY B. Let D = αZ, where Z is a reduced divisor and α ∈ Q>0. Then
the following hold:

(1) Ip(D)+OX (−Z) ⊆ Ip−1(D)+OX (−Z) for all p.
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(2) If (X, D) is (p − 1)-log canonical (This means that I0(D) = · · · =
Ip−1(D) = OX . In particular, it requires α 6 1.), then Ip+1(D) ⊆ Ip(D) =
Ĩp(D).

(3) Fixing p, there exists a finite set of rational numbers 0 = c0 < c1 < · · · <

cs < cs+1 = 1 such that for each 0 6 i 6 s and each α ∈ (ci , ci+1] we have

Ip(αZ) ·OZ = Ip(ci+1 Z) ·OZ = constant

and such that

Ip(ci+1 Z) ·OZ ( Ip(ci Z) ·OZ .

The last statement gives a picture analogous to that of jumping coefficients of
multiplier ideals [Laz04, Lemma 9.3.21]. If f is a local equation of Z , the set of
ci is a subset of the set of jumping numbers for the V -filtration on ι+OX associated
to f . An example in Section 5 shows that the statement fails if we work directly
with Ip(αZ) as opposed to Ip(αZ) ·OZ .

There are interesting applications, obtained in Section 6 by combining the
above results with the birational study of Hodge ideals in [MP19b], concerning
the Bernstein–Sato polynomial bZ (s) of Z . Assuming Z 6= 0, the polynomial
(s + 1) divides bZ (s). Following [Sai16], we denote by α̃Z the negative of the
largest root of bZ (s)/(s+ 1) (with the convention that this is∞ if bZ (s) = s+ 1).
This invariant is called the minimal exponent of Z , and is a refined version of
the log canonical threshold of the pair (X, Z), which is equal to min{̃αZ , 1}; see
Section 6 for a discussion. First, since by Theorem A′ we have that Ip(D) is trivial
if and only if Ĩp(D) is so, results of Saito on the microlocal V -filtration will allow
us to conclude:

COROLLARY C. If Z 6= 0 is a reduced effective divisor on the smooth variety X
and α ∈ (0, 1] is a rational number, then

Ip(αZ) = OX ⇐⇒ p 6 α̃Z − α.

Now given a log resolution µ : Y → X of the pair (X, Z), assumed to be an
isomorphism over X r Z , if F1, . . . , Fm are the irreducible components of its
exceptional locus and Z̃ is the strict transform of Z , assumed to be smooth, we
write

µ∗Z = Z̃ +
m∑

i=1

ai Fi and KY/X =

m∑
i=1

bi Fi ,
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where KY/X is the relative canonical divisor. Denoting

γ := min
i=1,...,m

{
bi + 1

ai

}
,

it is well known that the log canonical threshold of (X, Z) is also equal to min{γ,
1}. Such a precise interpretation in terms of log resolutions is however not known
for other roots of the Bernstein–Sato polynomial, and Lichtin [Lic89, Remark 2,
p. 303] posed the natural question whether α̃Z = γ . As noted by Kollár [Kol97,
Remark 10.8], in general the answer is negative, since γ in fact depends on the
choice of log resolution. Nevertheless:

COROLLARY D. With the notation above, we always have α̃Z > γ .

The reason is that the triviality of Ip(D) is related on the one hand to α̃Z by
Corollary C, and on the other hand to γ by [MP19b, Proposition 11.2]. It is worth
noting that, although the statement is about the reduced divisor Z , the proof uses
crucially the theory of Hodge ideals for Q-divisors of the form D = αZ .

Using further properties of Hodge ideals of Q-divisors proved in [MP19b], we
deduce some general properties of the minimal exponent α̃D for any effective
divisor D, extending important features of the log canonical threshold. In order
to formulate the result, it is convenient to use a local version of this refined
log canonical threshold, denoted α̃D,x , for x ∈ D (see Section 6 for the precise
definition).

THEOREM E. Let X be a smooth n-dimensional complex variety, and D an
effective divisor on X.

(1) If Y is a smooth subvariety of X such that Y 6⊆ D, then for every x ∈ D∩Y ,
we have

α̃D|Y ,x 6 α̃D,x .

(2) Consider a smooth morphism π : X → T , together with a section
s : T → X such that s(T ) ⊆ D. If D does not contain any fiber of π ,
so that for every t ∈ T the divisor Dt = D|π−1(t) is defined, then the function

T 3 t → α̃Dt ,s(t)

is lower semicontinuous.

(3) For every x ∈ X, if m = multx(D) > 2, then

n − r − 1
m

6 α̃D,x 6
n
m
,
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where r is the dimension of the singular locus of the projectivized tangent
cone P(Cx D) of D at x (with the convention that r = −1 if P(Cx D) is
smooth).

When D has an isolated singularity at x and Y is a general hyperplane section
through x , the inequality in (1) was proved in [Loe84, Théorème 1] (in fact, in
this case the inequality is strict). The semicontinuity property in (2) was proved
when every Dt has an isolated singularity at s(t) in [Ste85, Theorem 2.11], where
it was deduced from more general semicontinuity properties of the spectrum. We
stress that in (2) we do not assume that the restriction of the support of D to the
fibers of π is reduced, as in the semicontinuity theorem [MP19b, Theorem 14.1]
(which we do use); see also [MP18, Theorem E].

Yet more properties analogous to those of log canonical thresholds follow by
combining Theorem E with a Thom–Sebastiani-type result from [MSS20]; see
Proposition 6.6 for the concrete statement. We ask in Question 6.9 whether the
analogue of the ACC property for log canonical thresholds holds for minimal
exponents as well.

Finally, going back to the general relationship between Hodge ideals and the
Bernstein–Sato polynomial, in Proposition 6.14 we give an extension of the fact
that the negatives of the jumping coefficients of multiplier ideals in the interval
(0, 1] are roots of the Bernstein–Sato polynomial, see [ELSV04, Theorem B].
Namely, under a suitable log-canonicity hypothesis, the jumping coefficients of
higher Hodge ideals in the same interval, in the sense of Corollary B(3), lead
to further such roots. This follows quickly from results proved in the final two
sections of the paper.

B. Main results

1. The set-up. Let X be a smooth complex algebraic variety and H an
effective divisor on X . We assume that H is defined by a global regular function
f ∈ OX (X). We denote by OX (∗H) the sheaf of rational functions on X with
poles along H , that is,

OX (∗H) =
⋃
m>0

OX (m H).

Given a rational number γ , we consider the DX -module

M( f γ ) := OX (∗H) f γ .
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This is a free OX (∗H)-module of rank 1, with generator the symbol f γ , on which
a derivation D of OX acts by

D(w f γ ) =
(

D(w)+ w
γ · D( f )

f

)
f γ .

We will keep the notation OX (∗H) for M( f 0). The DX -modules M( f γ ) are
regular holonomic, with quasi-unipotent monodromy. In fact, they are filtered
direct summands of D-modules underlying mixed Hodge modules, see [MP19b,
Section 2].

Note that if γ1 − γ2 = d is an integer, then we have a canonical isomorphism
of DX -modules

M( f γ1)
'

−→M( f γ2), g f γ1 7→ (g f d) f γ2 .

We will be particularly interested in the D-modules M( f β) as in the Introduction,
which via the isomorphism above can also be identified with M( f −α) with α =
1− β.

2. The V -filtrations corresponding to OX(∗H) and M( f β). We begin by
reviewing some basic facts about V -filtrations. Let

ι : X ↪→ X × C, x 7→
(
x, f (x)

)
be the closed embedding given by the graph of f . For a DX -module M, we
consider the D-module theoretic direct image

ι+M :=M⊗C C[∂t ],

see for instance [HTT08, Example 1.3.5]. This is a DX×C-module that can be
described as follows. First, if M = OX , then

ι+OX ' OX [t] f−t/OX [t],

with the obvious DX -module structure. If δ denotes the class of 1
f−t in ι+OX , it is

straightforward to see that every element in ι+OX can be written uniquely as∑
j>0

h j∂
j

t δ,

with h j ∈ OX , only finitely many of these being nonzero. Note that by definition
we have tδ = f δ.
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Given an arbitrary DX -module M, we have

ι+M 'M⊗OX ι+OX =
⊕
j>0

M⊗OX OX∂
j

t δ,

which in particular shows the connection with the original definition above. With
this description, multiplication by t is given by

t (m ⊗ ∂ j
t δ) = f m ⊗ ∂ j

t δ − jm ⊗ ∂ j−1
t δ (2.1)

and the action of a derivation D ∈ DerC(OX ) is given by

D(m ⊗ ∂ j
t δ) = D(m)⊗ ∂ j

t δ − D( f )m ⊗ ∂ j+1
t δ.

In particular, every element in ι+M( f β) can be written uniquely as a finite sum∑
j>0

h j f β ⊗ ∂ j
t δ, with h j ∈ OX (∗H).

For a derivation D as above, we have

D(h f β ⊗ ∂ j
t δ) = D(h) f β ⊗ ∂ j

t δ + β
D( f )h

f
f β ⊗ ∂ j

t δ − D( f )h f β ⊗ ∂ j+1
t δ.

For a DX -module M, we call a V -filtration on ι+M a rational filtration (V γ
=

V γ ι+M)γ∈Q that is exhaustive, decreasing, discrete, and left continuous (More
precisely, the filtration has the property that there is a positive integer ` such that
V γ takes constant value in each interval

(
i
`
, i+1

`

]
, for all i ∈ Z.), such that the

following conditions are satisfied:

(i) Each V γ is a coherent module over DX [t, ∂t t].

(ii) For every γ ∈ Q, we have an inclusion

t · V γ
⊆ V γ+1,

with equality if γ > 0.

(iii) For every γ ∈ Q, we have

∂t · V γ
⊆ V γ−1.

(iv) For every γ ∈ Q, if we put V>γ
=
⋃

γ ′>γ V γ ′ , then ∂t t − γ acts nilpotently
on

GrγV := V γ /V>γ .
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It is easy to see that there exists at most one V -filtration (see for example [Sai88,
Lemme 3.1.2]). The existence of the V -filtration for M = OX and M = OX (∗H)
was proved by Malgrange [Mal83]; the case of an arbitrary holonomic M is
due to Kashiwara [Kas83]. We note that this original V -filtration was indexed by
integers; the indexing by Q (in the case of a regular holonomic M, with quasi-
unipotent monodromy) was introduced by Saito [Sai84].

REMARK 2.1. Every element in the cokernel of the inclusion OX ↪→ OX (∗H)
is annihilated by some power of f . This implies that the canonical inclusion
ι+OX ↪→ ι+OX (∗H) induces equalities

V γ ι+OX = V γ ι+OX (∗H) for all γ > 0

(see [Sai88, Lemme 3.1.7]).

In what follows, it will be convenient to also have a different description of
ι+M under a minor extra assumption on M. From now on we assume that
multiplication by f is bijective on M (in other words, M has a natural structure
of OX (∗H)-module). Note that this applies, in particular, if M =M( f β).

REMARK 2.2. Our hypothesis on M implies that multiplication by t is bijective
on ι+M. Indeed, if we consider on ι+M the filtration given by

G p = G pι+M :=

p⊕
j=0

M⊗OX OX∂
j

t δ,

then multiplication by t preserves the filtration; moreover, it follows from (2.1)
that for every p > 0, via the obvious isomorphism G p/G p−1 'M, multiplication
by t gets identified with multiplication by f . We thus obtain by induction on p
the fact that multiplication by t on G p is an isomorphism.

REMARK 2.3. If we assume that M is as above and there is a V -filtration on
ι+M, then

t · V α
= V α+1 for all α ∈ Q,

where for simplicity we denote V α
= V αι+M. Indeed, the inclusion ‘⊆,’ as

well as the reverse inclusion for α > 0, follow from general properties of the
V -filtration. Moreover, the induced map

Gr(t) : GrδV → Grδ+1
V

is an isomorphism if δ 6= 0.
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Suppose now that α 6 0 and u = tw ∈ V α+1. Let δ � 0 be such that w ∈ V δ.
If δ > α, then we are done. On the other hand, if δ < α, then δ 6= 0 since α 6 0;
since tw ∈ V>δ+1, we conclude that w ∈ V>δ. After repeating this argument
finitely many times, we obtain w ∈ V α.

Let D〈t, s〉 be the subsheaf of DX×C generated by DX , t , and s = −∂t t . Note
that t and s satisfy st = t (s − 1) and more generally

P(s)t = t P(s − 1) for all P ∈ C[s]. (2.2)

We also consider the localization DX 〈t, t−1, s〉 = DX 〈t, t−1, ∂t〉 of D〈t, s〉. (This
is the push-forward of the sheaf of differential operators from X ×C∗ to X ×C.)
Note that in this ring we have ∂t = −st−1 and from (2.2) we obtain

t−1 P(s) = P(s − 1)t−1 for all P ∈ C[s]. (2.3)

A DX 〈t, t−1, s〉-module is simply a DX×C-module on which t acts bijectively.
We consider the DX 〈t, t−1, s〉-module M[s] f s defined as follows. As an OX -

module, we have an isomorphism

M⊗OX OX [s] 'M[s] f s, u ⊗ s j
→ us j f s .

The symbol f s motivates the DX -action: a derivation D in DerC(OX ) acts by

D(us j f s) =

(
D(u)s j

+
D( f )

f
us j+1

)
f s .

The action of s on M[s] f s is the obvious one, while the action of t is given by
the automorphism ‘s → s + 1,’ that is

us j f s
→ f u(s + 1) j f s .

REMARK 2.4. In light of Remarks 2.2 and 2.3, if M is a DX -module on which
multiplication by f is bijective, a V -filtration on ι+M can be characterized
as an exhaustive, decreasing, discrete, left continuous, rational filtration (V γ

=

V γ ι+M)γ∈Q, that satisfies the following conditions:

(i′) Each V γ is a coherent module over DX 〈t, t−1, s〉.

(ii′) For every γ ∈ Q, we have

t · V γ
= V γ+1.
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(iii) For every γ ∈ Q, we have

∂t · V γ
⊆ V γ−1.

(iv) For every γ ∈ Q, the operator s + γ acts nilpotently on GrγV .

The next proposition contains the promised description of ι+M. While the
result is well known (in fact, in the case M = OX (∗H), this has already
been noticed in [Mal83]), we sketch the proof since we will need the explicit
description of the isomorphism. For every i > 0, we put

Qi(x) = i ! ·
(

x + i − 1
i

)
:=

i−1∏
j=0

(x + j) ∈ Z[x]

(with the convention Q0 = 1).

PROPOSITION 2.5. If M is a DX -module on which f acts bijectively, then we
have an isomorphism of DX 〈t, t−1, s〉-modules

M[s] f s
' ι+M, us j f s

→ u ⊗ (−∂t t) jδ. (2.4)

The inverse isomorphism is given by

u ⊗ ∂ j
t δ→

u
f j

Q j(−s) f s . (2.5)

Proof. It is straightforward to check that the map in (2.4) is DX 〈t, t−1, s〉-linear. In
order to see that it is an isomorphism, consider onM[s] f s and ι+M the filtrations
given by

G pM[s] f s
=

p⊕
i=0

Ms j f s and G pι+M =

p⊕
j=0

M⊗OX OX∂
j

t δ.

Note that the map (2.4) preserves the filtrations. Moreover, we have canonical
isomorphisms

G pM[s] f s/G p−1M[s] f s
'M ' G pι+M/G p−1ι+M

such that the map induced by (2.4) is given by multiplication with (−1)p f p. Since
this is an isomorphism, we conclude by induction on p that each induced map
G pM[s] f s

→ G pι+M is an isomorphism.
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The formula for the inverse isomorphism follows if we show that in ι+OX (∗H)
we have

Q j(∂t t)δ = f j∂ j
t δ for all j > 0.

We argue by induction on j , the case j = 0 being obvious. Assuming the formula
for some j , we apply (2.3) and the fact that ∂t = −st−1 to write

f j+1∂ j+1
t δ = f ∂t Q j(−s)δ = − f st−1 Q j(−s)δ
= f (−s)Q j(−s − 1)t−1δ = Q j+1(−s)δ.

This completes the proof of the proposition.

We now come to the main result of this section, relating the V -filtrations on
ι+M( f β) and ι+OX (∗H) as follows.

PROPOSITION 2.6. For every β ∈ Q, we have an isomorphism of DX 〈t, t−1, s〉-
modules

Φ : ι+M( f β)→ ι+OX (∗H),

where on the right-hand side DX 〈t, t−1, s〉 acts via the automorphism DX 〈t, t−1,

s〉 → DX 〈t, t−1, s〉 that maps s to s − β and is the identity on DX and on t. The
isomorphism Φ is given by

Φ

(
p∑

i=0

hi f β ⊗ ∂ i
t δ

)
=

p∑
i=0

gi ⊗ ∂
i
t δ,

where
p∑

i=0

hi

f i
Qi(−s + β) =

p∑
i=0

gi

f i
Qi(−s) in OX (∗H)[s]. (2.6)

The isomorphism Φ translates the V -filtration by −β, in the sense that

Φ
(
V γ ι+M( f β)

)
= V γ−β ι+OX (∗H) for every γ ∈ Q. (2.7)

Proof. The isomorphism is more transparently described via the identifications
provided by Proposition 2.5, which gives isomorphisms

ϕ1 : ι+M( f β)→M( f β)[s] f s, ϕ1(u f β ⊗ ∂ i
t δ) =

u
f i

f βQi(−s) f s and

ϕ2 : ι+OX (∗H)→ OX (∗H)[s] f s, ϕ2(u ⊗ ∂ i
t δ) =

u
f i

Qi(−s) f s .

It is then straightforward to check that if we define

Φ ′ :M( f β)[s] f s
→ OX (∗H)[s] f s, (u f β)P(s) f s

→ u P(s − β) f s,
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this is an isomorphism of DX 〈t, t−1, s〉-modules, where the action on the right-
hand side is via the automorphism of DX 〈t, t−1, s〉 described in the statement of
the proposition. If we take Φ = ϕ−1

2 ◦ Φ
′
◦ ϕ1, we obtain an isomorphism that

satisfies (2.6). The fact that Φ translates the V -filtration by −β is a consequence
of the uniqueness of the V -filtration and of the fact that our automorphism of
DX 〈t, t−1, s〉 is the identity on DX and t and maps s to s − β.

REMARK 2.7. In a first version of this paper, we showed that the isomorphism Φ

translates the V -filtration by−β using the description of this filtration in terms of
Bernstein–Sato polynomials due to Sabbah [Sab84] (see Proposition 6.11 below).
The argument above, based on the uniqueness of the V -filtration, was pointed out
to us by M. Saito.

We next give a more explicit description of the transformation Φ.

PROPOSITION 2.8. If Φ : ι+M( f β)→ ι+OX (∗H) is the map in Proposition 2.6,
and if Φ(u) = v, where

u =
p∑

i=0

hi f β ⊗ ∂ i
t δ and v =

p∑
i=0

gi ⊗ ∂
j

t δ,

then
hi

f i
=

p∑
j=i

(
j
i

)
Q j−i(−β)

g j

f j
. (2.8)

Proof. Letting x = −s and y = −β in Lemma A.1 in the Appendix A, and using
the definition of Φ, we get

p∑
i=0

hi

f i
Qi(−s + β) =

p∑
j=0

g j

f j
Q j(−s)

=

p∑
j=0

j∑
i=0

g j

f j

(
j
i

)
Q j−i(−β)Qi(−s + β)

=

p∑
i=0

(
p∑

j=i

g j

f j

(
j
i

)
Q j−i(−β)

)
Qi(−s + β).

Since the polynomials Qi(−s+β), with 0 6 i 6 p, are linearly independent over
Q, the equality between the first and the last expressions above gives (2.8).
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REMARK 2.9. Proposition 2.8 is used below in the proof of Theorem A. It was
noted more recently in [JKSY19, Section 2.4] that there is a proof of the theorem
along the same lines as here, which however avoids the use of this precise formula.

3. From the Hodge ideals of D = αH to V αι+OX . We now begin the study
of the Hodge filtration on M( f β). Recall that we are considering a Q-divisor
D = αH , with α ∈ Q>0, and H defined by f ∈ OX (X). We denote Z = Hred, and
assume from now on that dDe = Z .

Recall from the introduction that for every nonnegative integer p, there is an
ideal sheaf I ′′p (D) such that

FpM( f β) = I ′′p (D)⊗OX
(
(p + 1)H

)
f β .

This ideal is related to the pth Hodge ideal of D by the formula

I ′′p (D) = Ip(D) ·OX (pZ − pH).

In particular, we see that I ′′0 (D) = I0(D).

DEFINITION 3.1. For every p > 0, we define the subsheaf Ĩp(D) of OX by

Ĩp(D) =

{
v ∈ OX | ∃ v0, . . . , vp−1, vp = v ∈ OX with

p∑
i=0

vi∂
i
t δ ∈ V αι+OX

}
.

Since V αι+OX is an OX -module, it follows that Ĩp(D) is a (coherent) ideal in
OX . As mentioned in the Introduction, when 0 < α 6 1 this is another way of
expressing Saito’s microlocal V -filtration [Sai94] induced on OX .

We note that we have made an abuse of notation here: both ideals I ′′(D) and
Ĩp(D) depend on the choice of H , and not just on the Q-divisor D = αH .
However, in what follows H will be fixed, and we hope that this will not lead
to any confusion.

PROPOSITION 3.2. For every nonnegative integer p and every g ∈ I ′′p (D), there
is

v =

p∑
j=0

v j∂
j

t δ ∈ V αι+OX

such that

g =
p∑

j=0

Q j(α) f p− jv j . (3.1)

In particular, we have
I ′′p (D) ⊆ Ĩp(D)+ ( f ).
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Before giving the proof, recall that the Hodge filtration on M( f β) induces a
Hodge filtration on ι+M( f β), given by

Fpι+M( f β) =
p⊕

j=0

Fp− jM( f β)⊗ ∂ j
t δ, for all p > 0.

(In the literature, the right-hand side is sometimes taken to define Fp+1ι+M( f β)
rather than Fp. We find it somewhat more convenient notationally to use this
convention here.) This, just as with all the filtered D-modules we consider here,
satisfies the following special property.

LEMMA 3.3 [Sai88, 3.2.3]. Let t be a nonzero function on the smooth variety Y ,
defining a smooth divisor H. If (M, F) is a filtered DY -module with no t-torsion,
and which carries a V -filtration with respect to t that is compatible with the F-
filtration in the sense of [Sai88, 3.2], such that the induced morphism

Gr(t) :
(
Gr0

V (M), F
)
→
(
Gr1

V (M), F
)

is strict, then

Fp M =
∑
i>0

∂ i
t (V

0 M ∩ j∗ j∗Fp−i M) for all p, (3.2)

where j : Y r H ↪→ Y is the inclusion.

REMARK 3.4. The conclusion of the lemma applies in particular when (M, F) is
a direct summand of a filtered DY -module (N , F) that underlies a mixed Hodge
module (and hence is regular and quasi-unipotent, so it satisfies [Sai88, 3.2]), and
such that N has no t-torsion and

Gr(t) :
(
Gr0

V (N ), F
)
→
(
Gr1

V (N ), F
)

is a filtered isomorphism. We may therefore apply it to the filtered DX×C-module
ι+M( f β). Indeed, according to [MP19b, Lemma 2.11], M( f β) is a filtered
direct summand in a D-module on X of the form j+(Q, F), where j : U ↪→ X
is the natural inclusion of U = X r Z , and (Q, F) is the filtered D-module
underlying a mixed Hodge module on U ; hence

(
ι+M( f β), F

)
is a summand

in ( j × idC)+(ιU )+(Q, F), where ιU is the graph embedding corresponding to
f |U . But filtered D-modules such as the latter satisfy the properties above, by the
general construction of direct images of Hodge modules via open embeddings in
[Sai90, Proposition 2.8] (cf. also [Sai93, Proposition 4.2]).

We can now prove the main result of the section.
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Proof of Proposition 3.2. The argument is similar to that in [Sai16], which treats
the case when D is reduced (that is, H is reduced and α = 1). In what follows we
may, and will assume, that X is affine.

Let g ∈ I ′′p (D). It follows from the definition of I ′′p (D) that we have

g
f p+1

f β ⊗ δ ∈ Fpι+M( f β).

Using Remark 3.4, we may apply Lemma 3.3 for the DX×C-module ι+M( f β),
hence we can write

g
f p+1

f β ⊗ δ =
p∑

i=0

∂ i
t u(i), (3.3)

with u(i) ∈ V 0ι+M( f β) ∩ j∗ j∗Fp−i ι+M( f β) for all i . If we write

u(0) =
p∑

i=0

u(0)i f β ⊗ ∂ i
t δ,

then it follows from (3.3) that

g = f p+1u(0)0 .

Note now that since u(0) ∈ V 0ι+M( f β), we have

tu(0) ∈ V 1ι+M( f β),

and by the definition of the action of t , we can write

tu(0) =
p∑

i=0

f u(0)i f β ⊗ ∂ i
t δ −

p∑
i=1

iu(0)i f β ⊗ ∂ i−1
t δ.

We now use the transformation Φ in Proposition 2.6 to deduce that

Φ(tu(0)) ∈ V αι+OX (∗H) = V αι+OX ,

where we use the fact that V γ ι+OX (∗H) = V γ ι+OX for every γ > 0, by
Remark 2.1. For every j > i , let

ai, j :=

(
j
i

)
Q j−i(−β).

It follows from Proposition 2.8 that there are v0, . . . , vp ∈ OX (X) such that

f u(0)i − (i + 1)u(0)i+1 =

p∑
j=i

ai, j
v j

f j−i
,
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with the convention that u(0)p+1 = 0. Therefore, we have

g = f p+1u(0)0 =

p∑
i=0

(
i ! f p+1−i u(0)i − (i + 1)! f p−i u(0)i+1

)
=

p∑
i=0

p∑
j=i

i !ai, j f p− jv j

=

p∑
j=0

f p− jv j

j∑
i=0

i !
(

j
i

)
Q j−i(−β) =

p∑
j=0

Q j(α) f p− jv j ,

where the last equality follows from Lemma A.2. We thus have (3.1). The last
assertion in the statement is clear, since vp ∈ Ĩp(αH) and Q p(α) 6= 0.

4. From V αι+OX to the Hodge ideals of D = αH . Keeping the notation of
Section 3, the following is the main result of this section:

PROPOSITION 4.1. For every nonnegative integer p, if v =
∑p

j=0 v j∂
j

t δ ∈

V αι+OX , then
p∑

j=i

(
j
i

)
Q j−i(α) f p− jv j ∈ I ′′p−i(D) for 0 6 i 6 p. (4.1)

In particular, we have
Ĩp(D) ⊆ I ′′p (D)+ ( f ).

REMARK 4.2. We will prove the proposition by induction on p. Note that if we
know it for all q < p, then we know the statements in (4.1) for 1 6 i 6 p. Indeed,
since v ∈ V αι+OX , we also have

V αι+OX 3 ( f − t)v =
p∑

j=1

jv j∂
j−1

t δ.

Iterating this, we conclude that for every 1 6 i 6 p, we have

V αι+OX 3 ( f − t)iv =
p∑

j=i

j !
( j − i)!

v j∂
j−i

t δ.

Applying the inductive hypothesis for ( f − t)iv, we conclude that we have
p∑

j=i

j !
( j − i)!

Q j−i(α) f p− jv j ∈ I ′′p−i(D),

as claimed.
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REMARK 4.3. Let us explain the significance of the sums on the left-hand side of
(4.1). Suppose that v =

∑p
i=0 vi∂

i
t δ ∈ V αι+OX and

u =
p∑

i=0

ui f β ⊗ ∂ i
t δ ∈ V 1ι+M( f β)

is such thatΦ(u) = v. Note that multiplication by t is bijective on ι+M( f β), and
let w be such that u = tw. If we write w =

∑p
i=0wi f β ⊗ ∂ i

t δ, then

wi =

p∑
j=i

(
j
i

)
Q j−i(α)

v j

f j−i+1
, (4.2)

hence
f p−i+1wi

are precisely the sums on the left-hand side of (4.1).
To check (4.2), if we denote by w′i the right-hand side of the formula, it is

enough to show that

fw′i − (i + 1)w′i+1 = ui for 0 6 i 6 p − 1,

and fw′p = u p. Since w′p =
1
f vp =

1
f u p, the last equality is clear. Note now that

w′i =

p∑
j=i

v j

f j−i+1

(
j
i

)
·

j−i∏
k=1

(k − β).

It follows that if 0 6 i 6 p − 1, then

fw′i − (i + 1)w′i+1

=

p∑
j=i

v j

f j−i

(
j
i

)
·

j−i∏
k=1

(k − β)−
p∑

j=i+1

v j

f j−i
(i + 1)

(
j

i + 1

)
·

j−i−1∏
k=1

(k − β)

= vi +

p∑
j=i+1

v j

f j−i
·

j−i−1∏
k=1

(k − β) ·
(
( j − i − β)

(
j
i

)
− (i + 1)

(
j

i + 1

))

= vi −

p∑
j=i+1

v j

f j−i
·

(
j
i

)
β ·

j−i−1∏
k=1

(k − β),

where the last equality follows from the fact that

( j − i)
(

j
i

)
= (i + 1)

(
j

i + 1

)
.
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Using Proposition 2.8, we thus conclude that

fw′i − (i + 1)w′i+1 = vi +

p∑
j=i+1

(
j
i

)
Q j−i(−β)

v j

f j−i
= ui .

REMARK 4.4. It is shown in [MP19b, Proposition 9.1] that, if I(γ H) denotes
the multiplier ideal of the Q-divisor γ H , we have

I
(
(α − ε)H

)
= I0(αH) = I ′′0 (αH)

for 0 < ε � 1. We refer to [Laz04, Ch. 9] for the definition and basic properties
of multiplier ideals. In particular, for every α 6 1, we have

( f ) = I(H) ⊆ I
(
(α − ε)H

)
= I0(αH).

The following property of the Hodge filtration on ι+M( f β) is probably well
known to the experts, but we include a proof for the benefit of the reader.

LEMMA 4.5. For every p ∈ Z and every γ > 0, we have

t · V γ Fpι+M( f β) = V γ+1 Fpι+M( f β).

Proof. In order to simplify the notation, we write V γ for V γ ι+M( f β) and Fp for
Fpι+M( f β). Note first that since multiplication by f is bijective on M( f β), it
follows that multiplication by t on ι+M( f β) is bijective and

t · V γ
= V γ+1 for all γ ∈ Q.

(See Remarks 2.2 and 2.3.)
The inclusion ‘⊆’ is clear, and when γ > 0 the equality follows from the

compatibility of the F and V filtrations, see [Sai88, Section 3.2]. (We use again
the fact that ι+M( f β) is a filtered direct summand of a mixed Hodge module.)
Suppose now that γ = 0. We also know that

Gr(t) : (Gr0
V , F)→ (Gr1

V , F)

is a filtered isomorphism (see Remark 3.4). The statement follows then from the
five lemma applied to the filtered commutative diagram

0 (V>0, F) (V 0, F) (Gr0
V , F) 0

0 (V>1, F) (V 1, F) (Gr1
V , F) 0.

·t ·t ·Gr(t)
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We can now prove the main result of this section.

Proof of Proposition 4.1. We argue by induction on p. The case p = 0 is known:
if v0 ⊗ δ ∈ V αι+OX , then it follows from [BS05] that v0 ∈ I

(
(α − ε)H

)
. On the

other hand, we have

I
(
(α − ε)H

)
= I0(D) = I ′′0 (D)

by Remark 4.4. We thus obtain the statement of the proposition for p = 0.
Suppose now that the statement holds for all q 6 p, and let us prove it for p+1.

Let

v =

p+1∑
i=0

vi∂
i
t δ ∈ V αι+OX ,

and let

u =
p+1∑
i=0

ui f β ⊗ ∂ i
t δ ∈ V 1ι+M( f β)

such thatΦ(u) = v. We also consider the unique w =
∑p+1

i=0 wi f β⊗∂ i
t δ such that

tw = u. Note that w ∈ V 0ι+M( f β) by Lemma 4.5. We need to show that

p+1∑
j=i

(
j
i

)
Q j−i(α) f p+1− jv j ∈ I ′′p+1−i(D) for 0 6 i 6 p + 1. (4.3)

We have seen in Remark 4.2 that for 1 6 i 6 p+ 1 the assertion follows from the
induction hypothesis, hence we only need to prove it for i = 0.

On the other hand, it follows from Remark 4.3 that

wi =

p+1∑
j=i

(
j
i

)
Q j−i(α)

v j

f j−i+1
.

The statement in (4.3) is thus equivalent to

f p+2−iwi ∈ I ′′p+1−i(D) for 0 6 i 6 p + 1,

that is,
wi f β ∈ Fp+1−iM( f β) for 0 6 i 6 p + 1. (4.4)

Therefore, equivalently, we know the statement in (4.4) for 1 6 i 6 p + 1, and
we need to show it for i = 0. We also record the fact that, due to the way the
F-filtration is defined on ι+M( f β), the conditions in (4.4) are equivalent to the
statement w ∈ Fp+1ι+M( f β).
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Note now that we have

ui = fwi − (i + 1)wi+1 for 0 6 i 6 p + 1

(with the convention wp+2 = 0). Therefore,

ui f β ∈ Fp+1−iM( f β)+ Fp−iM( f β) ⊆ Fp+1−iM( f β)

for 1 6 i 6 p + 1. Furthermore, since

u0 = fw0 − w1

and
w1 f β ∈ FpM( f β),

we conclude that u0 f β ∈ Fp+1M( f β) (which, given what we already know
inductively, is equivalent to u ∈ Fp+1ι+M( f β)) if and only if fw0 f β ∈
Fp+1M( f β) (which again, given what we already know, is equivalent to fw ∈
Fp+1ι+M( f β)). Using Lemma 4.5 we thus conclude that

w0 f β ∈ Fp+1M( f β) ⇐⇒ fw0 f β ∈ Fp+1M( f β).

We can now apply the same argument with v replaced by f v, . . . , f p+1v to
conclude that

w0 f β ∈ Fp+1M( f β) ⇐⇒ f p+2w0 f β ∈ Fp+1M( f β).

However, it follows from Remark 4.3 that

f p+2w0 =

p+1∑
j=0

Q j(α)v j f p+1− j

is a section of OX . Now using Remark 4.4 we see that

OX f β ⊆ F0M( f β) ⊆ Fp+1M( f β),

and putting everything together we conclude that w0 f β ∈ Fp+1M( f β). As we
have seen, this completes the proof of (4.4), and thus of the proposition.

Theorem A now follows by combining Propositions 3.2 and 4.1. Let us explain
how we can remove the condition on α when H = Z .
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Proof of Theorem A′. It is of course enough to prove only the first assertion of the
theorem. For α ∈ (0, 1], this follows from Theorem A. Therefore, it suffices to
show that if we know (0.1) for α, then we also know it for α+1. Let us temporarily
denote the right-hand side of (0.1) by σ(αZ).

Note that Ip
(
(α + 1)Z

)
= f · Ip(αZ) by [MP19b, Lemma 4.4]), hence it is

enough to show that we also have σ
(
(α+ 1)Z

)
= f · σ(αZ). By the definition of

the V -filtration, since α > 0 we have

V α+1ι+OX = t · V αι+OX .

It follows that, given v =
∑p

j=0 v j∂
j

t δ ∈ V α+1ι+OX , we can find w =∑p
j=0w j∂

j
t δ ∈ V αι+OX such that v = tw. This means that

v j = fw j − ( j + 1)w j+1 for 0 6 j 6 p,

with the convention that wp+1 = 0. Let us denote by h and g the elements of
σp(αZ) and σp

(
(α + 1)Z

)
corresponding to w and v, respectively. We thus have

g =
p∑

j=0

Q j(α + 1) f p− jv j =

p∑
j=0

Q j(α + 1) f p− j( fw j − ( j + 1)w j+1)

=

p∑
j=0

f p− j+1w j
(
Q j(α + 1)− j · Q j−1(α + 1)

)
= f h,

where the last equality follows from the fact that

Q j(α + 1)− j · Q j−1(α + 1) =
j∏

i=1

(α + i)− j ·
j−1∏
i=1

(α + i) = Q j(α).

The equality g = f h implies that σ
(
(α + 1)Z) = f · σ(αZ), and thus completes

the proof of the theorem.

We conclude with a few remarks regarding the statements of the main theorems.

REMARK 4.6. If we write f = f m1
1 · · · f mr

r , where fi correspond to the
irreducible components of H and m i > 1, then Z is given by the equation
g = f1 · · · fr , and so

I ′′p (D) = Ip(D) · f p(m1−1)
1 · · · f p(mr−1)

r .

Thus when p > 2 and m i > 2 for all i , we have I ′′p (D) ⊆ ( f ), and so the only

content of the last statement in Theorem A is that Ĩp(D) ⊆ ( f ).
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REMARK 4.7. The last assertion in Theorem A′ is only interesting for α 6 1,
since for α > 1 both sides are equal to ( f ).

REMARK 4.8. Saito introduced and studied in [Sai94] a microlocal V -filtration.
This induces a filtration on OX denoted (Ṽ γOX )γ∈Q. Using the definition of this
filtration, when H is reduced one can reformulate the last assertion in Theorem A
as saying that

Ip(αH) ·OH = Ṽ p+αOX ·OH

for all p > 0. As mentioned in the Introduction, when α = 1, this was proved
in [Sai16].

REMARK 4.9. In the setting of Theorem A, the fact that the FpM( f β)= I ′′p (D)⊗
OX
(
(p+ 1)H

)
f β give a filtration on M( f β) compatible with the order filtration

on DX is equivalent to the following properties:

(i) Each I ′′p (D) is an OX -module.

(ii) We have f · I ′′p (D) ⊆ I ′′p+1(D) for every p > 0.

(iii) For every D ∈ DerC(OX ) and every h ∈ I ′′p (D), we have

f · D(h)+
(
β − (p + 1)

)
h · D( f ) ∈ I ′′p+1(D).

One can easily check that these properties can also be deduced from the formula
in Theorem A and the general properties of the V -filtration.

C. Consequences

5. Basic properties of Hodge ideals. From now on we consider the case
H = Z , that is D = αZ , with Z a reduced divisor and α a positive rational
number. We will see that Theorem A′ implies a number of fundamental properties
of Hodge ideals that cannot be easily deduced directly from the definition.

Note that in the statements below we do not require that Z be defined by a
global equation; however, the assertions immediately reduce to this case, hence
in the proofs we will tacitly make this assumption, and denote by f the equation
defining Z .

COROLLARY 5.1. For every p > 1 we have

Ip(D)+OX (−Z) ⊆ Ip−1(D)+OX (−Z).
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Proof. If v =
∑p

j=0 v j∂
j

t δ ∈ V αι+OX , then

( f − t)v =
p∑

j=1

jv j∂
j−1

t δ ∈ V αι+OX .

We thus see that Ĩp(D) ⊆ Ĩp−1(D). The assertion now follows from
Theorem A′.

REMARK 5.2. In the case α = 1 we have the stronger statement Ip(D) ⊆
Ip−1(D), see [MP19a, Proposition 13.1]. However, for α < 1 this seems likely
to fail, though at the moment we do not have an example. It does hold when Z
has simple normal crossings [MP19b, Proposition 7.1] and when Z has isolated
quasihomogeneous singularities [Zha18].

In what follows we will use of the following triviality criterion for the ideals
Ĩp(D):

LEMMA 5.3. For every p > 0 we have

Ĩp(D) = OX ⇐⇒ ∂ p
t δ ∈ V αι+OX .

Proof. It is clear by definition that if ∂ p
t δ ∈ V αι+OX , then 1 ∈ Ĩp(D), giving one

implication. On the other hand, the converse is clear for p = 0, and in general we
argue by induction. If Ĩp(D) = OX , then there is an element

v = ∂ p
t δ +

p−1∑
j=0

v j∂
j

t δ ∈ V αι+OX .

By considering ( f − t)iv, for 1 6 i 6 p, we see that Ĩp−i(D) = OX , hence
∂

p−i
t δ ∈ V αι+OX by induction. Therefore, we have

∂ p
t δ = v −

p∑
j=1

vp− j∂
p− j
t δ ∈ V αι+OX .

Recall now from [MP19a] and [MP19b] the following notion which extends
that of a log canonical pair.

DEFINITION 5.4. The pair (X, D) is k-log canonical if

I0(D) = · · · = Ik(D) = OX .
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Corollary 5.1 implies that this is equivalent to Ik(D) = OX . Note that for this to
hold, we need α 6 1. We make the convention that (X, D) is (−1)-log canonical
if and only if α 6 1.

For the first nontrivial ideal we have a statement that is stronger than that of
Corollary 5.1.

COROLLARY 5.5. If (X, D) is (p − 1)-log canonical, then

Ip(D) = Ĩp(D)

and also
Ip+1(D) ⊆ Ip(D).

In particular, we always have I1(D) ⊆ I0(D) when D = αZ with α 6 1.

Proof. The inclusion Ĩp(D) ⊆ Ip(D) follows from the identity

Ip(D)+ ( f ) = Ĩp(D)+ ( f ),

combined with the fact that ( f ) ⊆ Ip(D) due to (p − 1)-log canonicity; see
assertion (ii) in Remark 4.9 (note that the inclusion also holds if p = 0, by
Remark 4.4). To prove the opposite inclusion, it suffices to show that we also
have ( f ) ⊆ Ĩp(D). To this end, the triviality of Ip−1(D) implies that we also have
Ĩp−1(D) = OX , which in turn is equivalent to

∂ p−1
t δ ∈ V αι+OX

by Lemma 5.3. On the other hand, we have

f ∂ p
t δ = t∂ p

t δ + p∂ p−1
t δ = t∂t · ∂

p−1
t δ + p∂ p−1

t δ,

and so it follows that
f ∂ p

t δ ∈ V αι+OX

as well, which gives f ∈ Ĩp(D). This proves the first statement.
The second statement follows since by Corollary 5.1 we have

Ip+1(D) ⊆ Ip+1(D)+ ( f ) ⊆ Ip(D)+ ( f ) = Ip(D),

the last equality again being due to (p − 1)-log canonicity.

We also obtain information about the behavior of the Hodge ideals Ip(αZ)
when α varies. In the case of I0, via the connection with multiplier ideals
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(or directly from the description in terms of V αι+OX ), it is well known that
they get smaller as α increases, and that there is a discrete set of values of
α (called jumping coefficients) where the ideal actually changes; see [Laz04,
Lemma 9.3.21]. This is not the case for higher k; for instance, for the cusp
Z = (x2

+ y3
= 0) and α 6 1 and close to 1, we see in [MP19b, Example

10.5] that
I2(αZ) = (x3, x2 y2, xy3, y4

− (2α + 1)x2 y),

and thus we obtain incomparable ideals. However, Theorem A′ implies that the
picture does becomes similar to that for multiplier ideals if one considers the
images in OZ .

COROLLARY 5.6 (Jumping coefficients). Given any p > 0, there exists a finite
set of rational numbers 0 = c0 < c1 < · · · < cs < cs+1 = 1 such that for each
0 6 i 6 s and each α ∈ (ci , ci+1] we have

Ik(αZ) ·OZ = Ik(ci+1 Z) ·OZ = constant

and such that
Ik(ci+1 Z) ·OZ ( Ik(ci Z) ·OZ .

In fact, if Z is defined by a global equation f , the set of ci is a subset of the set
of jumping numbers for the V -filtration on ι+OX associated to f .

REMARK 5.7. For p = 0, we have

OX (−Z) = I(Z) ⊆ I
(
(α − ε)Z

)
= I0(αZ)

for every α ∈ (0, 1], where 0 < ε � 1. It follows that for p = 0, the jumping
coefficients in Corollary 5.6 coincide with those jumping coefficients for the
multiplier ideals of Z , in the sense of [ELSV04], that lie in (0, 1].

REMARK 5.8. Note that Theorem A′ implies further facts about elements in the
V -filtration on ι+OX . For example, if v =

∑p
j=0 v j∂

j
t δ ∈ V αι+OX , with p > 2

and α < 1, then
p∑

j=2

( j − 1)Q j−1(α) f p− j+1v j ∈ Ip(D). (5.1)

For p = 2, this says that f v2 ∈ I2(D), so that f · Ĩ2(D) ⊆ I2(D).
Indeed, it follows from Theorem A′ that

h :=
p∑

j=0

Q j(α) f p− jv j ∈ Ip(D).
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Since

( f − t)v =
p∑

j=1

jv j∂
j−1

t δ ∈ V αι+OX ,

another application of Theorem A′ gives

g :=
p−1∑
j=0

Q j(α)( j + 1) f p−1− jv j+1 ∈ Ip−1(D).

Therefore, we have f g ∈ Ip(D) (see assertion (ii) in Remark 4.9). Note also that
we always have ( f p+1) ⊆ Ip(D), by combining Remark 4.4 with the assertion (ii)
in Remark 4.9. We thus obtain

( f h − f p+1v0)− α f g ∈ Ip(D).

We now compute

( f h − f p+1v0)− α f g =
p∑

j=1

f p− j+1v j
(
Q j(α)− α j Q j−1(α)

)
= (1− α) ·

p∑
j=2

( j − 1)Q j−1(α) f p− j+1v j .

Dividing by (1− α), which is assumed to be nonzero, we obtain (5.1).

6. Bernstein–Sato polynomials and minimal exponent. In this section, we
relate the p-log canonicity of a pair (X, D), with D = αZ , to the Bernstein–Sato
polynomial of Z . We begin by recalling the definition and some basic facts about
Bernstein–Sato polynomials.

Suppose that X is a smooth complex variety and f ∈ OX (X) is a nonzero
regular function on X . The Bernstein–Sato polynomial b f (s) ∈ C[s] of f is the
(nonzero) monic polynomial of minimal degree such that

b f (s) f s
∈ DX [s] · f s+1. (6.1)

If f is not invertible, by setting s = −1 in (6.1), we see that (s+ 1) divides b f (s).
We can thus write b f (s)= (s+1)·̃b f (s), and b̃ f (s) is called the reduced Bernstein–
Sato polynomial of f . This invariant was studied by Saito in [Sai94]. In particular,
he showed that it is related to the microlocal V -filtration mentioned in Remark 4.8;
consequently, b̃ f (s) was also called the microlocal b-function in [Sai94].
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The existence of a nonzero polynomial b f (s) that satisfies (6.1) was proved
by Bernstein [Ber72] when X = An . For a proof in the case of arbitrary X (or,
more generally, when f is a holomorphic function on a complex manifold), see
[Kas76] and [Bjö79]. It follows from the definition that if X =

⋃
i∈I Ui is a finite

open cover, then b f (s) is the least common multiple of the polynomials (b f |Ui
)i∈I .

Moreover, one can show that if g is an invertible function, then b f (s) = b f g(s). If
E is an effective divisor on X , we can thus define the Bernstein–Sato polynomial
bE(s) such that if X =

⋃
i∈I Ui is a finite open cover and fi ∈ OX (Ui) is an

equation of E |Ui , then bE(s) is the least common multiple of the polynomials(
b fi (s)

)
i∈I . If E 6= 0, then bE(s) = (s + 1) · b̃E(s), for a polynomial b̃E(s).

It is sometimes convenient to consider a local version. It is easy to see that for
every x ∈ X and every effective divisor E on X , there is an open neighborhood U
of x such that bE |U (s) divides bE |V (s) for every other such neighborhood V . We
set

bE,x(s) := bE |U (s).
Note that if x ∈ E , then (s + 1) divides bE,x(s); the quotient is denoted b̃E,x(s).

By a result of Kashiwara [Kas76], for every effective divisor E on X , all roots
of bE(s) are negative rational numbers. The negative of the largest root of bE(s)
is an important invariant of singularities, the log canonical threshold αE , also
denoted lct(X, E) (see [Kol97, Theorem 10.6]). Assuming E 6= 0, we can also
consider a refined version of the log canonical threshold, denoted α̃E , which
is the negative of the largest root of b̃E(s); we call this the minimal exponent
of E , following [Sai93] (it is also called the microlocal log canonical threshold
in [Sai16]). We make the convention that if b̃E(s) is a constant, then α̃E = ∞.
Note that we have

αE = min{1, α̃E}.

If E is defined by f ∈ OX (X), then we also write α̃ f for α̃E . We can similarly
define local versions of these invariants: given x ∈ E , the log canonical threshold
αE,x is the negative of the largest root of bE,x(s) and α̃E,x is the negative of the
largest root of b̃E,x(s). When E has an isolated singularity at x , the invariant α̃E,x

is also known as the complex singularity index of E at x .
Our main result implies that the minimal exponent governs the p-log canonicity

of (X, αZ). Since we have observed in Definition 5.4 that this p-log-canonicity
condition is equivalent to Ip(αZ) = OX , the first statement below is equivalent to
Corollary C in the introduction.

COROLLARY 6.1. If Z 6= 0 is a reduced effective divisor on the smooth variety
X and α ∈ (0, 1] is a rational number, then the pair (X, αZ) is p-log canonical
if and only if

p 6 α̃Z − α.
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Similarly, the pair (X, αZ) is p-log canonical in some neighborhood of x ∈ Z if
and only if p 6 α̃Z ,x − α.

Proof. For α = 1, this is due to Saito [Sai16]. The proof combines the connection
between Hodge ideals and the microlocal V -filtration in [Sai16] with a result
deduced from [Sai94] relating α̃ f to the latter, where f is a local equation defining
Z ; namely

α̃ f = max{γ ∈ Q | Ṽ γOX = OX },

see [Sai16, (1.3.8)]. (Note that by Nakayama’s Lemma the triviality of Ṽ γ at the
points of Z is equivalent to the triviality of Ṽ γ

·OZ .)
Once we have Theorem A′, the exact same argument applies in the setting of

the above corollary; see also Remark 4.8.

Combining Corollary 6.1 with results derived from the birational study of
Hodge ideals in [MP19b], we obtain the estimate for α̃Z in terms of a log
resolution of (X, Z) in Corollary D. We fix such a log resolution, that is, a proper
birational morphismµ : Y → X , with Y smooth, such thatµ∗Z has simple normal
crossings support. We assume in addition that µ is an isomorphism over X r Z
and that the strict transform Z̃ of Z is smooth. Let F1, . . . , Fm be the irreducible
components of the exceptional locus of µ and write

µ∗Z = Z̃ +
m∑

i=1

ai Fi and KY/X =

m∑
i=1

bi Fi .

Recall that we denote

γ := min
i=1,...,m

{
bi + 1

ai

}
.

The log canonical threshold of (X, Z) is given by αZ = min{γ, 1}, and we also
have αZ = min{̃αZ , 1}. We now show the inequality α̃Z > γ ; see the Introduction
for a discussion.

Proof of Corollary D. Given any rational number α ∈ (0, 1], it follows from
[MP19b, Proposition 11.2] that if γ > p + α, then Ip(αZ) = OX . We deduce
from Corollary 6.1 that we also have α̃Z > p + α.

By taking p = dγ e−1 and α = γ +1−dγ e, we have α ∈ (0, 1] and p+α = γ ,
hence we obtain α̃Z > γ .

REMARK 6.2 (Rational singularities). Saito showed in [Sai93, Theorem 0.4] that
an integral effective divisor D on X has rational singularities if and only if α̃D >

1. The ‘only if’ part also follows from Corollary D, since it is known that D
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has rational singularities if and only if γ > 1 (see [Kol97, Theorems 7.9 and
11.1]). In order to handle the ‘if’ part via Corollary 6.1, one needs to show that if
I1(αD) = OX for some α ∈ (0, 1], then D has rational singularities. (Note that if
α̃D > 1, then D is automatically reduced: otherwise the log canonical threshold
is 6 1/2, and thus α̃D = αD 6 1/2.) Since a reduced divisor D has rational
singularities if and only if adj(D) = OX , where adj(D) is the adjoint ideal of D
(see [Laz04, Proposition 9.3.48]), we see that the ‘if’ part of the above assertion
would follow from a positive answer to the following question.

QUESTION 6.3. If Z is a reduced effective divisor on the smooth variety X and
α is a rational number in (0, 1], do we have the inclusion

I1(αZ) ⊆ adj(Z)?

For α = 1, a positive answer is provided by [MP19a, Theorem C].

We now turn to the general properties of the minimal exponent stated in the
introduction. We use basic facts about Hodge ideals established in [MP19b].

Proof of Theorem E. For the assertion in (1), we may assume that Y is a divisor
in X . Indeed, if r = codimX (Y ), then after possibly replacing X by an open
neighborhood of x , we can find smooth, irreducible subvarieties Y0 = X, Y1, . . . ,

Yr = Y of X such that Yi is a divisor in Yi−1 for 1 6 i 6 r . If we know the
assertion for r = 1, we obtain

α̃D|Y ,x 6 α̃D|Yr−1,x
6 · · · 6 α̃D,x .

From now on, we assume that Y is a divisor in X .
We may also assume that D|Y is reduced in a neighborhood of x . Indeed,

otherwise we have αD|Y ,x 6 1
2 , hence α̃D|Y ,x = αD|Y ,x , and we use the fact

that for log canonical thresholds the analogue of (1) is known. For example,
this follows using the interpretation of the log canonical threshold in terms of
multiplier ideals, combined with the Restriction Theorem for such ideals, see
[Laz04, Theorem 9.5.1]; we thus have

α̃D|Y ,x = αD|Y ,x 6 αD,x 6 α̃D,x .

After replacing X by a suitable neighborhood of x , we may therefore assume that
both D and D|Y are reduced divisors. In this case the Restriction Theorem for
Hodge ideals [MP19b, Theorem 13.1] gives

Ip(αD|Y ) ⊆ Ip(αD) ·OY
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for every nonnegative integer p and every positive rational number α. By taking
p = dα̃D|Y ,xe − 1 and α = α̃D|Y ,x − p ∈ (0, 1], it follows from Corollary 6.1 that
Ip(αD|Y )x = OY,x , hence by the inclusion above we also have Ip(αD)x = OX,x .
Another application of Corollary 6.1 then gives α̃D|Y ,x 6 α̃D,x .

In order to prove the semicontinuity statement in (2), we need to show that for
every t in T there is an open neighborhood U of t such that

α̃Dt ′ ,s(t ′) > α̃Dt ,s(t) for every t ′ ∈ U. (6.2)

If Dt is not reduced, then arguing as above we see that α̃Dt ,s(t) = αDt ,s(t).
The semicontinuity property of log canonical thresholds (see [Laz04,
Example 9.5.41]) implies then that there is an open neighborhood U of t
such that

α̃Dt ′ ,s(t ′) > αDt ′ ,s(t ′) > αDt ,s(t) for every t ′ ∈ U,

which gives (6.2). Suppose now that Dt is reduced. After possibly replacing T
by an open neighborhood T ′ of t , and X by π−1(T ′), we may assume that Dt ′

is reduced for all t ′ ∈ T ; in particular, D is reduced as well. In this case, the
Semicontinuity Theorem for Hodge ideals [MP19b, Theorem 14.1] applies; it
says that for every p > 0 and every positive rational number α, if Ip(αD)s(t) =
OX t ,s(t), then there is an open neighborhood U of t such that Ip(αD)s(t ′) = OX t ′ ,s(t ′)

for every t ′ ∈ U . Taking p = dα̃Dt ,s(t)e−1 and α = α̃Dt ,s(t)− p ∈ (0, 1], it follows
from Corollary 6.1 that Ip(αD)s(t) = OX t ,s(t). Another application of the corollary
gives (6.2) on U .

In order to prove (3), we may assume that D is reduced in a neighborhood of x .
Indeed, otherwise as before we have α̃D,x = αD,x and also r = n − 2. However,
for the log canonical threshold the bounds

1
m

6 αD,x 6
n
m

are well known and easy to prove (see for example, [Kol97, Lemma 8.10]). After
passing to such a neighborhood, we may thus assume that D is reduced.

In this case, it follows from [MP19b, Corollary 11.11] that Ip(αD)x 6= OX,x if
(α+ p)m > n. If α 6 1, then we conclude from Corollary 6.1 that p > α̃D,x − α.
If α̃D,x >

n
m , then by taking p = dα̃D,xe − 1 > 0 and α = α̃D,x − p ∈ (0, 1], we

obtain a contradiction. This proves the upper bound.
To prove the lower bound, we may also assume that X is affine, and we have

an algebraic system of coordinates x1, . . . , xn on X , centered at x . If H is defined
by a general linear combination of x1, . . . , xn , then H is smooth and irreducible
in a suitable neighborhood of x . Furthermore, H is not contained in D, we have
multx(D|H ) = m, and P

(
Cx(D|H )

)
is a general hyperplane section of P(Cx D); in
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particular, the singular locus of P
(
Cx(D|H )

)
has dimension r − 1. Since α̃D|H ,x 6

α̃D,x by part (1), we see that it is enough to prove the lower bound for α̃D|H ,x .
After r + 1 such steps, we reduce to the case when r = −1, that is, P(Cx D) is
smooth. In this case, if we take p = d n

m e − 1 and α = n
m − p ∈ (0, 1], then it

follows from [MP19b, Example 11.6] that Ip(αD)x = OX,x , and we conclude
using Corollary 6.1 that

n
m
= p + α 6 α̃D,x .

This completes the proof of (3).

REMARK 6.4. It is straightforward to see that if x is a smooth point of D, then
bD,x(s) = s+ 1, hence α̃D,x =∞. On the other hand, if x is a singular point of D,
then it follows from part (3) in Theorem E that α̃D,x 6 n

2 . This also follows from
[Sai94, Theorem 0.4], which asserts moreover that the negative of every root of
b̃D,x(s) lies in the closed interval [̃αD,x , n − α̃D,x ].

REMARK 6.5. Part (2) in Theorem E can also be deduced from (1) using the
invariance of the minimal exponent under noncharacteristic restriction, which
follows from results in [DMST06]; see [JKSY19, Remark 1.3(iv)].

In the next proposition we collect further properties of the minimal exponent
that can be deduced with the help of Theorem E. For the corresponding results for
log canonical thresholds, see [Kol97, Section 8].

PROPOSITION 6.6. Let X be a smooth n-dimensional variety.

(1) If f, g ∈ OX (X) are such that f , g, and f + g are nonzero, then for every
x ∈ X such that f (x) = g(x) = 0 we have

α̃ f+g,x 6 α̃ f,x + α̃g,x .

(2) If f, g ∈ OX (X) are nonzero and x ∈ X is such that f (x) = g(x) = 0 and
multx( f − g) = d > 2, then

|̃α f,x − α̃g,x | 6
n
d
.

(3) If f ∈ OX (X) is nonzero and x ∈ X is such that f (x) = 0, then for every
sequence ( fi)i>1 with fi ∈ OX (X), such that limi→∞multx( fi − f ) = ∞,
we have

α̃ f,x = lim
i→∞

α̃ fi ,x .
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The key input for the proof of the proposition is the following special case.

EXAMPLE 6.7. Let X and Y be smooth varieties and f ∈ OX (X), g ∈ OY (Y )
be nonzero regular functions. Consider the two projections π1 : X × Y → X and
π2 : X × Y → Y . If x ∈ X and y ∈ Y are such that f (x) = 0 and g(y) = 0, then

α̃ f⊕g,(x,y) = α̃ f,x + α̃g,y, (6.3)

where f ⊕ g = f ◦π1 + g ◦ π2. This is a consequence of the Thom–Sebastiani
property for microlocal multiplier ideals proved in [MSS20, Theorem 2.2] and of
Saito’s description of the minimal exponent via the microlocal V -filtration as in
the proof of Corollary 6.1 (cf. also Corollary C and Remark 4.8), namely:

α̃ f,x = max{γ > 0 | 1 ∈ Ṽ γOX in a neighborhood of x}.

Proof of Proposition 6.6. The assertion in (1) follows by applying the inequality
in Theorem E(1) to the diagonal embedding X ↪→ X × X and to f ⊕ g, and using
the formula for α̃ f⊕g,(x,y) in Example 6.7. We deduce the inequality in (2) using
(1) and the fact that (assuming f 6= g), we have α̃ f−g,x 6 n

d by Theorem E(3).
Finally, (3) is an immediate consequence of (2).

EXAMPLE 6.8. Recall that if X is smooth and f ∈ OX (X) is nonzero, a result
of Saito says that the hypersurface defined by f is rational in the neighborhood
of some x ∈ X with f (x) = 0, if and only if α̃ f,x > 1 (see Remark 6.2). An
amusing consequence of Proposition 6.6(3) is that if this is the case, then for
every sequence ( fi)i>1 with fi ∈ OX (X), such that limi→∞multx( fi − f ) = ∞,
the hypersurface defined by fi has rational singularities in a neighborhood of x ,
for i � 0.

In the spirit of the analogy with the behavior of log canonical thresholds, we
ask further questions regarding the behavior of minimal exponents.

QUESTION 6.9. Let n > 1 be fixed and consider the set T̃n consisting of all
rational numbers α̃D, where D is a nonzero effective divisor on a smooth n-
dimensional variety. Does the set T̃n satisfy ACC, that is, does it contain no infinite
strictly increasing sequences?

Note that the set Tn = T̃n ∩ (0, 1] consists precisely of the set of log canonical
thresholds for divisors on smooth n-dimensional varieties. This set is known to
satisfy ACC: this was a conjecture of Shokurov, proved in [dFEM10].

QUESTION 6.10. Suppose that X is a smooth variety, f ∈ OX (X) is nonzero,
and x ∈ X such that f (x) = 0. Is it true that for every sequence ( fi)i>1 with
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fi ∈ OX (X), such that limi→∞multx( fi − f ) = ∞, we have

α̃ fi ,x > α̃ f,x for all i � 0?

Note that by Proposition 6.6(3), a positive answer to Question 6.9 implies
a positive answer to this question as well. However, it is worth noting that
when dealing with log canonical thresholds, the proof of the ACC property in
[dFEM10] proceeds by first proving the analogue of this weaker question.

We conclude by showing that the negatives of the jumping coefficients
introduced in Corollary 5.6 give, under a suitable condition, roots of the
Bernstein–Sato polynomial. We accomplish this with the help of a result of
general interest regarding Bernstein–Sato polynomials of certain elements in
ι+OX , Proposition 6.12 below, which we hope will be useful in other contexts as
well. We also make use of Sabbah’s description of the V -filtration in terms of
such polynomials.

We start by recalling these concepts, using the notation in Section 2. Given an
element u ∈ ι+OX , the Bernstein–Sato polynomial bu(s) is the (nonzero) monic
polynomial of smallest degree such that

bu(−∂t t)u ∈ DX 〈∂t t, t〉 · tu.

Using Proposition 2.5 and the fact that t jδ = f jδ for all j > 1, it follows
that bδ(s) is the same as b f (s). The following result, due to Sabbah, gives a
description of the V -filtration on ι+OX in terms of Bernstein–Sato polynomials.
We note that in the case M = OX , the existence of bu(s) and the rationality of
its roots follows easily from the existence of the V -filtration on ι+M, which in
turn was constructed in [Mal83] starting from the existence of b f (s). (For more
general DX -modules M, one first proves the existence of general Bernstein–Sato
polynomials and then uses this to construct the V -filtration on ι+M.)

PROPOSITION 6.11 [Sab84]. For every γ ∈ Q, we have

V γ ι+OX = {u ∈ ι+OX | bu(s) has all roots 6 −γ }.

We use this proposition, as well as the relationship between b̃ f and the
microlocal V -filtration, to deduce the following relation between b̃ f (s) and the
polynomials b∂m

t δ
(s).

PROPOSITION 6.12. For every nonnegative integer m, we have the following
divisibility properties of polynomials in C[s]:

b∂m
t δ
(s)|(s + 1)̃b f (s − m) and b̃ f (s − m)|b∂m

t δ
(s).
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Proof. We may and will assume that X is affine. We begin by noting that for every
polynomial Q(s), we have

∂t · Q(∂t t) = Q(∂t t + 1) · ∂t and t · Q(∂t t) = Q(∂t t − 1) · t. (6.4)

Indeed, it is enough to check this when Q(s) = sq is a monomial, and in this case
both equalities can be easily verified by induction on q .

By the definition of the Bernstein–Sato polynomial b f (s) = bδ(s), we can find
P ∈ DX (X)[s] such that

b f (−∂t t)δ = P(−∂t t)tδ.

Using (6.4), we obtain

P(−∂t t)tδ = t P(−∂t t − 1)δ and
b f (−∂t t) = (1− ∂t t )̃b f (−∂t t) = −b̃ f (−∂t t)t∂t = −t · b̃ f (−∂t t − 1)∂t .

Since the action of t on ι+OX is injective, we deduce

b̃ f (−∂t t − 1)∂tδ = R(−∂t t)δ, where R(s) = −P(s − 1). (6.5)

Using (6.4), we get

b̃ f (−∂t t − m)∂m
t δ = ∂

m−1
t · b̃ f (−∂t t − 1)∂tδ

= ∂m−1
t · R(−∂t t)δ

= R(−∂t t − m + 1)∂m−1
t δ,

hence

(1− ∂t t )̃b f (−∂t t − m)∂m
t δ = R(−∂t t − m + 1) · (1− ∂t t)∂m−1

t δ

= −R(−∂t t − m + 1) · t∂m
t δ ∈ DX [−∂t t] · t∂m

t δ.

By the definition of b∂m
t δ
(s), we thus conclude that

b∂m
t δ
(s)|(s + 1)̃b f (s − m).

For the proof of the second divisibility relation, we make use of a result of
Saito describing b̃ f in terms of the microlocal V -filtration. For this, we consider
the localization R̃ := DX 〈t, ∂t , ∂

−1
t 〉 of DX 〈t, ∂t〉 with respect to ∂t . Similarly, we

consider the localization B̃ f of ι+OX with respect to ∂t , so that

B̃ f =
⊕
j∈Z

OX∂
j

t δ.
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(See [Sai94] for more details about this construction.) It was shown in [Sai94,
Proposition 0.3] that b̃ f is the monic polynomial of smallest degree such that
b̃ f (−∂t t)δ ∈ V 1R̃ · δ, where for every p ∈ Z, we put

V pR̃ =
⊕

i− j>p

DX t i∂ j
t .

Note that V pR̃ = ∂−p
t · V 0R̃ = V 0R̃ · ∂−p

t for all p ∈ Z.
If b(s) = b∂m

t δ
(s), then by assumption there is P ∈ DX 〈∂t t, t〉 such that

b(−∂t t)∂m
t δ = P · t∂m

t δ.

Using (6.4), we thus see that

∂m
t b(−∂t t + m)δ ∈ DX 〈∂t t, t〉 · t∂m

t δ,

hence b(−∂t t+m)δ ∈ ∂−m
t V 0R̃t∂m

t · δ ⊆ V 1R̃ · δ. Saito’s result mentioned above
thus implies that b̃ f (s) divides b(s + m).

REMARK 6.13. Note that the result above provides another approach to
Corollary 6.1. Recall that by Theorem A′ the pair (X, D) is p-log canonical
if and only if Ĩp(D) = OX . We may assume that Z is defined by f ∈ OX (X).
Now by Lemma 5.3, we have

Ĩp(D) = OX ⇐⇒ ∂ p
t δ ∈ V αι+OX .

On the other hand, by Proposition 6.11 we see that ∂ p
t δ ∈ V αι+OX if and only

if all roots of b∂ p
t δ
(s) are 6 −α. Since α 6 1, it follows from Proposition 6.12

that this condition holds if and only if all roots of b̃ f (s) are 6 −α − p, which is
equivalent to p 6 α̃ f − α.

We now come to our goal of relating jumping coefficients for Hodge ideals to
roots of the Bernstein–Sato polynomial. This extends the assertion in [ELSV04,
Theorem B], which is the case p = 0.

PROPOSITION 6.14. Let Z 6= 0 be a reduced, effective divisor on the smooth
variety X and suppose that α ∈ (0, 1) is a rational number and p > 0 is an
integer such that the pair (X, βZ) is (p − 1)-log canonical for some β ∈ (α, 1).
If Ip(αZ) 6= Ip

(
(α + ε)Z

)
for 0 < ε � 1, then we have b̃Z (−p − α) = 0.

Proof. We may assume that X is affine and Z is defined by f ∈ OX (X). In order
to simplify the notation, we write V α for V αι+OX . Note first that since we assume
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that the pair (X, βZ) is (p − 1)-log canonical, we have OX (−Z) ⊆ Ip(γ Z) for
every γ ∈ (0, β] (see assertion (ii) in Remark 4.9), hence our hypothesis on α is
equivalent to the condition that

Ip(αZ) ·OZ 6= Ip
(
(α + ε)Z

)
·OZ

for 0 < ε � 1. This is further equivalent to the existence of an h ∈ OX (X) such
that h∂ p

t δ ∈ V αrV>α; this follows using Corollary 5.5 and the fact that ∂ j
t δ ∈ V β

for j 6 p − 1 by Lemma 5.3.
By the definition of general Bernstein–Sato polynomials, we have

b∂ p
t δ
(−∂t t)∂ p

t δ ∈ DX 〈∂t t, t〉 · t∂ p
t δ ⊆ V β,

where the inclusion follows from the fact that ∂ p−1
t δ ∈ V β . In particular, we have

b∂ p
t δ
(−∂t t)h∂ p

t δ ∈ V β
⊆ V>α.

On the other hand, by the definition of the V -filtration, for N � 0 we have

(∂t t − α)N h∂ p
t δ ∈ V>α.

If the two polynomials b∂ p
t δ
(s) and (s + α)N were coprime, we would infer that

h∂ p
t δ ∈ V>α, which is a contradiction. Thus we deduce that b∂ p

t δ
(−α) = 0. Since

α 6= 1, we conclude using Proposition 6.12 that b̃ f (−p − α) = 0.

REMARK 6.15. M. Saito points out that Proposition 6.14 can also be obtained
by combining the proof of Corollary 5.5 with the theory of microlocal Bernstein–
Sato polynomials [Sai94], without appealing to the statement of Proposition 6.12
(which does use this theory in its proof).

EXAMPLE 6.16. Let Z ⊂ C2 be the cusp, defined by f = x2
+ y3. It is well

known that
b̃Z (s) =

(
s + 5

6

) (
s + 7

6

)
,

so that α̃Z = 5/6 and I0(βZ) = OX for every β 6 5/6. On the other hand, explicit
formulas for weighted homogeneous polynomials show that

I1
(

1
6 Z
)
6= I1

(
( 1

6 + ε)Z
)

for 0 < ε� 1; see [Zha18, Example 3.5]. Thus the ‘other’ root−7/6 = −1−1/6
is accounted for by the jumping number 1/6 of I1, as in Proposition 6.14.
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Appendix A. Some combinatorial formulas

In this appendix, we derive some identities involving the polynomials

Qi(x) = i ! ·
(

x + i − 1
i

)
:=

i−1∏
j=0

(x + j) ∈ Z[x], for i > 0

(with the convention Q0 = 1), used in the main body of the paper.

LEMMA A.1. For every j > 0, we have

Q j(x) =
j∑

i=0

(
j
i

)
Q j−i(y)Qi(x − y) in Z[x, y].

Proof. It is enough to show that

Q j(k) =
j∑

i=0

(
j
i

)
Q j−i(`)Qi(k − `) for every k, ` ∈ Z, 1 6 ` < k.

Note that for such k and `, the above formula is equivalent with the binomial
identity (

k + j − 1
j

)
=

j∑
i=0

(
`+ j − i − 1

j − i

)
·

(
k − `+ i − 1

i

)
. (A.1)

For every positive integer m, we have

1
(1− z)m

=

∑
j>0

(
m + j − 1

j

)
z j .
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Using the identity
1

(1− z)k
=

1
(1− z)`

·
1

(1− z)k−`
,

we obtain (A.1).

LEMMA A.2. For every j > 0, we have

Q j(x + 1) =
j∑

i=0

i !
(

j
i

)
Q j−i(x).

Proof. It is of course enough to show that the equality holds whenever we evaluate
each side at a positive integer m. The corresponding equality is equivalent with
the following binomial identity(

m + j
j

)
=

j∑
i=0

(
m + j − i − 1

j − i

)
. (A.2)

The right-hand side of (A.2) is the coefficient of tm−1 in

j∑
p=0

(t + 1)m+p−1
= (t + 1)m−1

·
(t + 1) j+1

− 1
t

,

hence it is equal to the left-hand side of (A.2).
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