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Abstract. For a suitable choice of f, the Selberg integral

/ ST = T [T —xo™dxs - d,
i=3

3<i<j<n =3

is a homolphic function on o;;. In this paper, we show that the coefficients of the Taylor expan-
sions of the Selberg integrals with respect to the variables o; can be expressed as linear com-
binations of multiple zeta values over Q.
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1. Introduction

In this paper, we show that the coefficients of the Taylor expansions of Selberg inte-
grals with respect to their exponent variables can be expressed as linear combinations
of multiple zeta values over Q. The Selberg integrals are the period integrals of an
Abelian covering of the moduli space of n-points in P!. Let 2 < r < n be an integer

and o; be positive real numbers. Let f be an element in C[\_l\,,], and x, ..., x, ele-
j Xi—X;
ments of R such that x; < x, < x,_5 < --- < x,. The integral
ffl_[(Xf—xi)“”dxr+1"'dxn» (1.1)
D i
where
D ={(Xp41, ..., X)) | X1 <Xp < Xp_f <--+ <Xy}

is called a Selberg integral. It is considered as a period integral for an Abelian cover-
ing of the moduli space of (n — r)-distinct points in C — {xy, ..., x,}. It is a function
of x1, ..., x, and the exponent parameters ;. If r = 2, the Selberg integrals are deter-
mined by their restriction to x; = 0 and x, = 1. In this case, the Selberg integrals are
essentially functions of the exponent parameters o;. It is natural to ask about the
arithmetic nature of these Selberg integrals.
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We recall the definition of the multiple zeta values introduced by Euler. Let
k = (ki, ..., ky) be a sequence of integers such that k; >1 (i=1,...,m—1) and
k= 2. The multiple zeta value of index Kk is defined by

(=) %

<<y, 1 7 Mm

The natural number |k |= EZ’:I k, is called the weight of the index k and the multiple
zeta value {(k). By using the iterated integral expressions, multiple zeta values are
regarded as the period integrals for the fundamental group n;(P' — {0, I, 00}) of
P! — {0, 1, 00}. (See Section 2.1 for the iterated integral expressions of multiple zeta
values.) Notice that the motivic weight of {(k) is equal to —2 |Kk].

For a sequence of integers i, ..., i, such that 1 < i <k — 1, we define a formal

sum of graphs

y=Y arD =B(R)AB, i) A+ A(n,iy)
r

(Section 3.1 (3.2)) and a Selberg integral S, = > - arSr. (For the definition of St, see
Section 3.1 (3.1).) The integral S, can be expressed as the restriction to x; = 0 and
x; =1 of (1.1) with r =2 and a suitable choice of f'e Z[1/(x; — X;), a;]. The main
theorem of this paper is

THEOREM 1.1. Let S, be the Selberg integral as above.
(1) The integral S, is a holomorphic function on the variable a; at the origin.
(2) The coefficients of the degree w monomials of a;; in the Taylor expansion of the

Selberg integral S, is a linear combinations of weight w multiple zeta values.

Let us illustrate a primitive example for this statement. By the well-known equality

log (1 = x) = px+ 3 C('an ,
n=?2
we have
L +o)l(1+p) {m(=)" + (=p)" = (== B)")
T +a+p) _eXp<,; " )

In this example, we choose r = 2, n = 3 and /= «/(1 — x). (See [2] and [6] for another
expression of this quantity.) We can find a prototype of this theorem in [2]. This
choice of f'is equal to a f-nbc base after Falk and Terao [3].

Let us summerize the method of the proof of the main theorem. Let C{(X, Y')) be
the formal noncommutative free algebra generated by X and Y, and Q[[«;]] and
C[[o;]] be the formal power series rings with (commutative) variables a; (i € I) over
Q and C, respectively. We construct a representation p: C((X, Y)) — M(r, C[[o;]]),
where all the matrix elements of p(X) and p(Y) are homogeneous polynomial with
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rational coefficients of degree 1 in «;; . To construct the representation p, we consider
the higher direct image of a local system for the projection X, — X,_;, where X,
is the moduli space of n-distinct points in C. We compute the differential equation
of the higher direct image in Section 3 and obtain an explicit description of p by a
combinatorial method in Section 4.

For any solution s of the differential equation

ds = (@—}— p(Y)>sdx,

X x—1

we have
lim((1 = x)~"s(x) = p(@(X. Y) lim (x~*Os(x)),

where ®(X, Y) is the associator in C{(X, Y)) defined by Drinfeld. (For the definition
of ®(X, Y), see Section 2.) It is known that the coefficients of ®(X, Y) are expressed
as Q-linear combinations of the multiple zeta values by Le-Murakami [5], and as a
consequence, the coefficients of the Taylor expansions of all the matrix elements of
p(P(X, Y)) are also Q-linear combinations of multiple zeta values.

We construct a horizontal section s with the following properties.

(1) All the elements of lim,_,o(x”®)s(x)) can be expressed as (n — 3)-dimensional
Selberg integrals by taking a limit for some of o; — 0.

(2) All the elements of lim,_,;((I — x)"Ps(x)) can be expressed as (n — 2)-dimen-
sional Selberg integrals by taking the same limit o; — 0.

The argument on the limit for x - 0, x > 1 and o; — 0 in Section 5 gives the
proof of the main theorem.

2. Preliminary
2.1. THE DRINFELD ASSOCIATOR

In this section, we recall known facts about the Drinfeld associator. Let
R = C{{X, Y)) be the completion of the noncommutative polynomial ring in sym-
bols X and Y with respect to its total degree on X and Y. Let V"= R. Then X and
Y act on V as left multiplication and under this action, X and Y are regarded as ele-
ments of End¢(FV). Now we consider the differential form @ on C — {0, 1} with coef-
ficients in End¢(V) defined by

X Y
o =—dx 4+ ——dx,
X x—1

where x is a coordinate on C. Let E(x) = exp( fi; ) be the solution of the differential
equation for Endc¢(V)-valued function dE(x) = wE(x) with the initial condition
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E(xo) = 1. Then by the standard argument for iterated integrals, exp( f;o ) 1s expres-
sed as

exp(/a))zl—l—/yw—i—/ywwjtu-. (2.1)
RY)) RY) Xo

Here we used the convention for iterated integrals defined by the inductive relation

/pqwl"'wn=/pq<w1(41)/pql w2"'wn>-

The expression (2.1) implies exp( f :0 w) € C{{(X, Y))*, and the shuffle relation for iter-
ated integrals implies that £ = exp( f;o ) is a group-like element, i.e.

A(E) = E® E in C{{X, Y))®C((X, Y)),
where the comultiplication

A CUX, Y)) = C{{X, ))®C((X, Y))
is given by

AX)=X®1+1®X and A(N)=YQR1+1®7.
The set

G={Ag) =g®g|geCUX, 1))

is called the set of group-like elements and closed under the multiplication. By the
theory of differential equation only with regular singularities, the limit

0 Y X
lim exp (/ — dx) exp (/ w)
x—1 x X— 1 Xo

exists. In the same way, the limit

. Oy X VY
o=t oo [ asern( o) e [ Sex)
p 9 g X —_ »

exists and belongs to C{{X, Y))*. The element ®(X, Y) in C{(X, Y)) is called the
Drinfeld associator. Since

0 )
exp < / Y dx) and exp ( f X dx)
cx—1 1 X

are elements in é, and G is a closed subset of C{{X, Y))*, the limit ®(X, Y) is an ele-

ment in G.
We recall relations between the multiple zeta values and the coefficients of the
Drinfeld associator. Let &y, ..., k, be integers such that k; > 1 fori=1,...,n and

ky=2.Set k= (ky,...,k,). The series

1
() =Lk, k)= Y
&

my<mp<---<my, nmy-m LNy
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is called the multiple zeta value of index k = (ki, ..., k,). The number |k|=>"7 | k;
is called the weight of the index k. Let L,, be the finite-dimensional Q vector sub-
space of C generated by {(k), with |k|= w. The following iterated integral expression
of the multiple zeta value is fundamental.

ey [ Gy drdy avdx v dv e
DR A x1—xx x1l—-x x x1—x"
— —_ —_—

knfl /C,,,lfl /([71

By using this expression and the shuffle relation, we have L, - L,,, C L, 4,,. Using
this fact, we define the homogeneous multiple zeta value ring (homogeneous MZV
ring for short) H in C({(X, Y)) by

H= & ® L, - W.
w = 0 Wiword of length w on X,Y

The following proposition is due to Le and Murakami [5].

PROPOSITION 2.1. ®(X, Y) € H.

It is very useful to specialize this universal result to a special class of representa-
tions of C{{X, Y)). Let R be a homogeneous complete ring generated by degree 1 ele-
ments oy, ..., d, over Q, i.e. R is topologically generated by degree 1 homogeneous
elements «y, ..., o, with homogeneous relations and is complete under the topology
defined by the total degree. The formal decomposition of R with respect to its degree
is denoted by R = é¢1> oR4. Let Rc be the completion of R ® C with respect to the
topology defined by the total degree. A ring homomorphism p:C{(X, Y)) —
M(r, Rc) is called a homogeneous rational representation of degree 1 if and only
if all the matrix elements of p(X) and p(Y) are homogeneous elements of degree 1
in R. The homogeneous MZV ring Hg for R is defined by Hg = éad> o(Rs ® Ly).
The following corollary is a direct consequence of Proposition 2.1.

COROLLARY 22. Let p: C{{X,Y)) = M(r, Rc) be a homogeneous rational
representation of degree 1. Then all the matrix elements of p(®O(X, Y)) are elements
Of HR.

3. Selberg Integrals
3.1. COMBINATORIAL ASPECTS

Let [n]={l1,...,n}. A graph I' consists of sets of vertices V' and edges Er. We
assume that every edge has two distinct terminals. Moreover, we assume that for
any two vertices p and ¢, there exists at most one edge whose terminals are p and
q. An edge is written as (p, g), where p and ¢ are its terminals. For a graph T', we
can associate a one-dimensional simplicial complex by the usual manner and we
use the standard terminologies, for example, connected component, tree, and so
on. Moreover, if the order of Er is specified, it is called an ordered graph. A specified
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vertex in a connected component is called the root of the component. If roots are
specified for all the components, the graph is called a rooted graph. The set of the
roots of a rooted graph I' is denoted by R = Rr. For two sets V, R such that
RcV, we define Q(VmodR) by /\"(Q}V/p*Q}R), where Xy = {(x);cp |
x; # xj for i #j}, Xr ={(Xi);eg | Xi # x; for i #j}, and p is the natural projection
Xy — Xg. Then it is easy to see that Q" #%(’mod R) is an Oy, module of rank 1
generated by Ajcp_grdx;. For an edge e = (p, q), p, ¢ € Vr, we define

w, = dlog(x, — x,) € Q'(V'mod R).
For an ordered tree, we define wr as
Or = W, A -+ A @, In Q(V'mod R),

where Er = {e;,...,e,} and e¢; < --- < e,. It is easy to see the following lemma.

LEMMA 3.1. Assume #E =#V —#R. Then I is a tree if and only if or # 0

Let R be a subset of [r] such that {1,2} C R. We define an order <« on [n] by
l«KnK - K3«2 We define D(R) by {(x1,...,X;)cr | xi < x; for i «j}. For
two subsets ¥ and R of [r] such that R C V, the fiber of the map D(V) — D(R) at
(x:)icr € D(R) is denoted by D(V/R, x;);cg- Let a;j (i,j € V) be positive real numbers.
We choose a branch of ®(V) = Hi<<j(xj—xi)“f-/ on D(V) with ® € R;. For an
ordered rooted graph I' whose root set is R, we define a function
St = Sr(V/R, x)ieg on D(R) by

Sr(V/R, xi)ieR:/ (V) l—[ ol jOOT (3.1

D(V/R.X)icr (ij)eEr

If R is fixed, it is denoted by Sr. Then St is a function of (x;);c. and «; ;. The free
abelian group generated by the ordered rooted graphs whose root set and the vertex
set are R and V, is denoted by I'(V, R). For an element y = > arI" in I'(V, R), we
define S, by S, = > arSr. The function S, is called the Selberg integral for 7.
Before the statement of the main theorem, we introduce several combinatorial
notions. For two natural numbers #n, r such that 2 <r <n, we set R=1[r] and
V' = [n]. For an ordered rooted graph I', whose vertex set and root set are [#] and [r],
we define an element I' A (n + 1, i) in ['([n 4 1], [r]) for i € [n] by the following recipe.

(1) Choose a subset 4 of edges whose elements re adjacent to i. (4 may be an empty
set.)

(2) Replace the number i by n+ 1 for all the edges contained in 4 chosen in (1).

(3) Make a graph I'4 by adding the edge (n+ 1, i) to the graph made in (2) and
extend the original ordering to the ordering of I'4 such that (n + 1, i) is the big-
gest edge.

(4) Consider the sum ), I'4 of Ty, where 4 runs through all the subsets of edges
adjacent to i. This summation is denoted by I' A (n + 1, i).
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We extend the operation A(n+ 1, i,41) from ['([n], [r]) to T'([n + 1], [r]) by linearity.
For an element y € I'((/],[r]) and (/+1,i1),...,(n, i), where i €[], ..., 0, €
[n— 1], we define y A (I + 1, ii31) A - - - A (n, 1) inductively by
YAU+ 1 i) A A (ny i)
=@ AU+ Lig) A A= 1 0n1) A (1, ). (3.2)

The graph T with VT = R and Er = ¢ is denoted by #(R). A graph is denoted by
erey - - - ep, where the set of edges is {e; <e; < -+ < ey} .

EXAMPLE 3.2. If R={1,2},i3 =2,i4 = 2, then
ARYANGB2DDANA2)=(12,3)A4,2)=(2,3)4,2)+ (4,3)4, 2).

We state the main theorem. Let H, be the homogeneous MZV ring for
Q0o 01k 92,1003 < i jik < it

THEOREM 3.3 [Main Theorem]. Let R = {1, 2}. For any iz € [2],...,i, € [n—1],
put y =0B(R) A @B, i3) A--- A (n,iy). Then S,([n]/[2], 0, 1) is a holomorphic function of
oij, and is an element of H,.

3.2. THE DIFFERENTIAL EQUATION SATISFIED BY THE SELBERG INTEGRAL

First we compute the higher direct image of local system for the morphism
. X, = X,_; defined by (x1,...,x,) = (x1,...,Xx,_1), where X,, = {(x1,...,x,) |
x; # x; for i # j} is the moduli space for n-distinct points in C. Let 4;; € M(d, C)
be matrices for 1 < i #j < n satisfying the following relations:

(1) Ai; =4
(2) [Aij, Ak,] = 0 for all distinct 7,7, k, /.
3) [A,',j + Aj i, A;r] = 0 for all distinct 7, j, k.

These relations are called the infinitesimal pure braid relations. The matrix valued
1-form

w = Z A,',jleg(.X,' — Xj)
I<i<j<n

defines an integrable connection V on (’)f(n ={v="(vy,...,v9)} by Vo = dv — wv. Let
v be a horizontal section of the connection V on D([n]), i.e. dv = wv. Fori € [n — 1],

and (xy,...,x,_1) € D([n — 1]), we define w; as
A,
w; = / 2L pdx,.
D(n)/[n—11x1,....xy—1) Xn — Xi
Then wy; is a function on (xy, ..., x,—1) € D([n — 1]). We have the following proposi-

tion. (See [1].)
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PROPOSITION 3.4. (1) wy + -+ w,_; =0.
(2) Let W =" (wy, ..., wy_1). Then W satisfies the differential equation

dw= >

A;.J(dxi — dx/) W

3

1 <i<j<n—1 xi_xj
where
Ay L A 0
A= ¢ Aj+ Ay —Ani S kS (3.3)
: _Anj Alj + Am‘
0 e A;
Proof. (1) By the equality
v -l An]'
i V_y,
0xy, X

and Stokes’ theorem, we have the required equality.
(2) By using the differential equation for v, we have

] Ay
—|—v
ox; \x, — X;

_ Anj Z Al‘kv + A[jU + Am'l)
Xn — Xj kst Xi—= Xk Xi—Xj Xi— X

A,‘kA,U‘U AnjU Am‘l] + (Ag'/' + Am‘)l)
Xi— X)X — X)) xi— x| Xp— X Xo—Xx; )

kziin
By the commutativity condition of 4;;, we have
Gl Aix

1
gwj = § X — x wi + X — {(Az] + Ani)wj - Anjwi}
! k#ijl<k<n—1"1 k AT A

for i # j. Using the relation in (1), we have
d 0
— W= — Z —Wj.
9 i ST 0%
Therefore we obtain the statement of (2). |
Remark 3.5. If the set of matrices {4} satisfies the infinitesimal pure braid rela-

tions, then the set {A;j} defined by (3.3) also satisfies the infinitesimal pure braid
relations for n — 1. Therefore the connection V' on (O®))®"=D given by

(dx,' — de)A;j W

Xl'—Xj

VW =dw —

1 <i<j<n—1

is integrable.
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Let 7, be the local system of horizontal sections of the connection V and V, |

(... ) its restriction to the fiber *l(x?, oo, X ) of m: X, - X,—1. Then the
Euler Poincaré characteristic of Vi a0, ) is —(rankV)-(n —2). There-
fore under certain nonresonance condition, dim Hl(n M, ..., X0 )), Vo) is equal

to rankV - (n — 2). By a direct computation, the submodule

i=1

n—1
(M)redz w =! Wiy oo, w1 | W,'EOEBd, Zwi:()}

turns out to be a sub connection of M = ((O®*)®"~D V). As a consequence, the
space of horizontal sections of (M)™ is equal to the higher direct image of ¥ under
the projection n. This construction is compatible with the sub local system in V.

We apply this inductive formula to compute the differential equations satisfied by
Selberg integrals. Note that the similar computation is executed in [1] with a different
choice of base of de Rham cohomology. In Section 5.2, we show that for our base,
the Selberg integrals are holomorphic with respect to «;;. This base is nothing but the
fB-nbc base introduced in [3].

Let R be a ring. For a set of elements a = {a,,}, < ,, <« satisfying the infinitesimal
pure braid relation, we define a set of elements Ind(a) = {Ind(a);}; <;cj<k—1 in
M(k — 1, R) by

a; L . 0

Ind(a); = Sty L .

—ag  aj+ag
0 .. .. a;

Let 2<r<n be integers and V,, be a C vector space of dimension
r(r+1)---(n—1) whose coordinates are given by v;,, ; for 1 <iy <r,...,1
<i,<n—1. We define A? = {A( Weicicp for p=r,....,n—1 by AP —
Ind(A?*Y) and 4} = oy;.

We define the Vk,n-valued functions S ®(xy, ..., xx) on D([k]) inductively by
AN QD)
Yk
Joaes/i.x gy T SO < X)X
S® =

A(
A+l A (k+1)
fD([/«+1]/[k1,x,»),e[k] S S0 X)X

fork=r,...,n—1 and

S(") — 1_[ ( X )“u

I<igji<n

Note that the components of S*) are indexed by {(iy1, ..., i,) | ix € [k — 1]}. We have
the following corollary of Proposition 3.4.
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COROLLARY 3.6. The Vi ,-valued function S® satisfies the following differential
equation ds® = Q,.S®  where

k
APd(x; — x))

Xi = Xj

Qr =

1<i<j<k

The next proposition is used in the proof of the Main Theorem 3.3.

,,,,,

ZSf,~+|,...,fp,|,l‘;,,fp+| ,,,,, i =0. (3.4)

-
zﬁ_l

Proof. If p=r+1, then it is nothing but the first statement of Propo-
sition 3.4. Suppose p > r+ 1. Then the (i.41, ..., i,—1)-part of S™ is a linear com-
bination of

p—1 p—1 1
f [T 400 T =87 dwe - dper. (3.5)
=1 J=r1 N T X
Since the set {(aip"“’i")1| ZZ,_:II ap. i, = 0} is stable under the action of A%)s (3.5) satis-
fies the relation >3/~ ay i, = 0. ]
P

DEFINITION 3.8. We define

p—1

Zv(ik+]a'--’ipa-"7il1):O}'

i=1

V;fi = {U(i/(+la ceesUp)

4. Combinatorial Propositions
4.1. STATEMENT OF THE COMBINATORIAL THEOREM

In this section, we present combinatorial facts which are used for the computation of
Selberg integrals. Let P, be the quotient of the free noncommutative ring C(a;;) by
the two-sided ideal generated by the infinitesimal pure braid relations. We induc-
tively define the set of matrices A% = {Af-]]f)}l <ij<k I M(k(k+1)---(n—1), P,)
by the relations: A® = Ind(A®*Y) fork =r,...,n—1 and Ag.’) = a;. We introduce
the degree of P, by dega; = 1. Then all the matrix elements of Ag{) are of degree 1
for k=r,...,n and Ag-() satisfies the pure braid relations. In other words, a ring
homomorphism P, - M(r(r+1)---(n— 1), P,) is defined by attaching Af-]'f) to
a; € P.. We inductively define the vector

1
Wi € PLUFD--D) g C[x- - x:|
i
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by the relation
(k+1)

k+1.1
X1 —X1

Wy = : (4.1)

Wit1

(k+1)
Ak
X1 =Xk

Wik+1
fork=r,...,n—2 and

14(")

nl
Xp—X1

Wp—1 =
()
=1

Xp—Xp—1

In this section, we express each coordinate of w, in terms of the combinatorics intro-
duced in Section 3.1. For an ordered rooted tree I" with the vertex set [k] and root set
R =[r], we define Agf) by

1
AB = HA}()/;)% e M(k(k+1)---(n—1), P,),
where

Er={e; <---<e} and e = (pi, q).

Here we used the notation H}:/ a; = aqia;_1 ---a; in a noncommutative ring. We
define the matrix-valued differential form #r € Q([k]mod[r]) ® M(k(k+1)---
(n—1), P,) by npr = A(rk)wr, where wr is defined in Section 3.1. For an element
7 € L([k], [r]), we define n, by n, = > arnr, where y = > rarl.

THEOREM 4.1. Let us denote the (i,11, ..., iy)-component of w, by w.(i,11, ..., iy).
Then

Willr1s o )Xy A - o AdXe =17,
where y = 0([rDA (r+ 1, i 0) A -+ A (0, 0y).

For the rest of this section, we prove Theorem 4.1.

4.2. SEVERAL LEMMATA

Let I' be an ordered rooted tree with the root set [r] and the vertex set [z — 1]. The
edge set is denoted by E = {e; < --- < ¢/}, where ¢; = (p;, ;). Suppose that p and ¢
are contained in the same connected component. Then there exists a unique path P
connecting p and ¢ in I'. We write P = {e;,, ..., e, }. The subgraph P looks like
Figure 1.
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e e e
4 Iy -
o—o 0o . ——@
p=ky ki Ky ka1 =4
Figure 1.

LEMMA 4.2. Let A(rn_l) € M(n— 1, P,) be defined as in Section 4.1

(1) If the gth component of
0

Agf_l) Anp (S Pf:l_l) (42)

0

is not zero, then p and q are contained in the same connected component, and
HhH<t<---<ty.

(2) Suppose that t| <t <---<ty,. We write the vertices of the path P as
p=ko ki, ..., ky =gq, (see Figure 1) and define B; (i=1,...,1) by

- ak,,n (l_fi = l])’

B Apg; + ng, (f 1 <1< 41 and

' e; = (pi, qi) ajacents to k; and put p; = kj),
g, (if t; < i < tiy1 and e; does not ajacent to k;).

(For the second case see Figure 2.) Then the gth component of (1) is equal to

1
Hi:l B;.

Proof. For a vector v =' (vy, ..., 0,-1) € P'~', we set Supp(v) = {i | v; # 0}.

(1) If {i, } N Supp(v) = @, then Supp(Ag?_l)v) = Supp(v) and the kth component of

Ag?*l)v is equal to a;vx for k € Supp(v).

Figure 2.
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(2) If {i,j} N Supp(v) = {i}, then Supp(A(-fz_l)v) C Supp(v) U {j} and the jth compo-
ij
nent and the ith component of Af;_l)v are equal to —a,v; and (a; + a,)vi,
respectively.

Therefore if we define S; inductively by

S = Si (if e N S; = 0),
i+1 = S; U {j} (if eir1NS; = {k} and eir1 = {J, k),

and Sy = {p}. Then Supp([]._, A Dy € Si. 1f g € S, then 1) < - - < 1,,. This proves
(1). For the claim (2), we can prove

0
1 : 1
—1
[Tagst| e [ || =aoe-TT5
i=s : j=s
0 K

if 1; < s < tj41 by induction on s using the infinitesimal pure braid relation (1) and
(2). (In case s > t,, and s < 11, Ay, = Qn, and a,k, = ayx, respectively.) This com-
pletes the proof of (2). O

Next we rewrite #([r]) A (r + 1,i,1) A --- A (n, i) by using the notion of principal
tree.

DEFINITION 4.3. For an index set / = (ix41, ..., ), (1 < i, < p — 1), we define the
ordered rooted tree P; as follows.

(1) The set of vertices is [n],
(2) the set of roots is [k], and
(3) the set of ordered edges is {(k + 1, ix11) < --- < (1, ip)}.

The tree P; is called the principal tree of the index set /.

Let p, g be two vertices contained in the same connected component of P;. The
unique shortest path connecting p, ¢ in P; is denoted by y(p, ¢) and the minimal edge
of y(p, q) is denoted by min( p, g). Then by the construction of the principal tree, we
have the following lemma.

LEMMA 4.4. Let us write a path y( p, q) connecting p, q in Py as in Figure 1: Suppose
that e, is the minimal edge of y(p,q). Then t| > -+ > t; < -+ < 1y,

A graph I is called a support of y = > arI if ar # 0. The set of supports of y is
denoted by Supp(y). Let p, g € [n] be vertices contained in the same connected
component in P;. We set y =@({1,...,k}) A(k+1,i1) A+ A(n,i,). By the con-
struction of 7y, if I' € Supp(y) and (p, ¢) is an edge in I', then (p, ¢) is the mth edge
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of I', where ¢,, = min( p, g). (To define min( p, ¢), we used the principal tree P;.) Con-
versely, for any pairs (p+1, gk+1)s - - - » (Pn, ¢n) such that

(1) p; and ¢; are contained in the same connected component of P;, and
(2) min(p;, ¢;) is the jth edge (j, i;) of Py,

we have ar = 1 for I' = (pry1, qrv1) -+ - (Pn, gn).- We use the distributive notation
{(Pra1s @) + (Pl Dy N Prs2, Gres2) -+ (Pus )

= (Prrts Q) (P2 Gk2) === (Pas Gn) + Py G ) (Prs2s Gis2) - == (s G)-

Here the right hand side has a meaning as a formal linear combination of ordered
graphs. The following proposition is nothing but a restatement of the definition of A.

PROPOSITION 4.5. Let S; =37\ < -y < pnmin(p.gy=e; in p,( P+ @)- Then
BAL, ..o rDAGE+ L i) Ao A1, 0y) = Spit - Syin - -+ Sh.

We finish this subsection by computing Res,, _,\, (or) for an ordered rooted tree
I'={e+1,...,e,} € Supp(y), where y=0({1,....,kD) Ak+1,i1) A+ A(n,iy).
Until the end of this subsection we assume I' € Supp(y) and (n, k) is an edge of T'.
Put R_={K'|(mKk)el,min(n k') <min(n,k)} and R, ={k"|nk)el,
min(n, k) = min(n, k)}. We introduce a labeling on Ry = {k) =iy, ko, ..., ky = k}
such that min(n, ky) > --- > min(n, k;). Set e¢,, = min(n, k;). For the figure of princi-
pal tree see Figure 3. If s > 2, we put P = P(I', k) as the power set of R, — {ky, kg }.
For an element p € P, we define the graph I'(p) € I'([n — 1],[r]) as follows. For
i=2,...,s, put m(p,i) =max{j| k; € pU{ki},j < i}. The t;th edge of I'(p) is equal
to (ki, ki), where m = m(p, i). The jth edge is the same as ' if j £ t;, n (i =2,...,5).
The set of ordered graphs {I'(p) | p € P(T, k)} is denoted by R(T', k), and is called the
set of residue graphs of I with respect to k.

n k kg kg kekg

k1= in

Figure 3.
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PROPOSITION 4.6. If #| Ry | = 2, then

Resy,y(@r) = > (=17 or.
peP(L,k)

Here Resy, .., @0 =1 |,—x,, Wwhere o = dlog(x, — xi) A 1.
Proof. We write dlog(x, — x,) = (p, ¢q) for short. First we prove the equality

<k, k1> tee (k, k.y—l)
= > =Dm(p.2). k)

pC{k2 vvvvv k.&—l}

by induction on the cardinality of {ki,...
{ki,...ks_»}, we have

<kv kl) e <k1 ké‘72><k1 ksfl)

= D (DTMmig.2) k) -

qC{kg ..... k.s—l}

= Y (=Dm(g,2), ko) -

qC{k2 vvvvv k.x—l}

X ((Wl(t], §—= 1)7 k%l)(ks ksfl) - <

o (m(pv §— 1)7 kS*l)(’/n(pv S)v k5>

,ky_1}. By the inductive assumption for

: (m(% §—= 1)7 k> (ka ks‘—l)

~{(m(g, s = 2), ks2) x

ksfla m(qs §— l)) <k1 }’I’l(q, §— l))

and the last expression gives the expression of {ky, ..., k;_1}. Therefore we have

Resx,,—»xk (l’l, kl) e (}’l, ks)
= (=" ki) (n, ki)

= Y (=)"m(p,2), ko) -

pClky,. k1)

This implies the proposition.

4.3. PROOF OF THEOREM 4.1

- {m(p, s = 1), ke_1)(m(p, 5), ks).

We prove Theorem 4.1 by induction. By Remark 3.5, the morphism

p: Ag’*l)r—ﬂnd(a)ij

defines a ring homomorphism from P,_; to M(n — 1, P,). We assume Theorem 4.1

for n — 1. We define Wy € P;(il)...(n_l) for
tion similar to (4.1) and

(n—1)
An—l.l

Xp—1—X1
W,y =

(n=1)
n—1.n=2
Xp—1—Xp-2

Then by the inductive assumption,
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n, = VVr(ir-Q—lv cees in—l)dxn—l ARERRAN dxr-H

for y=0{1,....tDAGE+ 1, i)A--An—1,i,_1) in P,_y ® Q(Un— 1] mod [r]).
Here W, (i,y1, ..., in_1) is the ({41, . . ., i)th component of W,. By applying the above
ring homomorphism p, we have

P(”Iy) = P( Wr(i)‘+l s e infl))dxnfl TARERRAN derrl

in M(n—1, P,) ® Q([n — 1] mod [r]). By the definition of w,, w,(i,41, ..., ;) is equal
to the i,th component of the vector

Al
Xp—X1

p(VVr(lH—l AR ) il’l—l))

Ann—1
Xp—Xp—1

Therefore by taking the residue Res,, _,,, it is enough to prove that
0

PWilirg1s - in—)) | dnk | = Resy, 1, (115) (4.3)
0 i/l
for all k=1,...,n—1, where y=0{1,.... kD Ak + 1,5 ) A---A(n,i,). We
compute the left-hand side and right-hand side by using Lemma 4.2 and
Proposition 4.6. The left-hand side of (4.3) is expressed as a linear combination of
nr, where I is in the support of y. On the other hand, the expression given in
Proposition 4.6 gives an expression of the right-hand side by a linear combination

of nr, where I' is a support of y. By comparing the coefficient of wr, it is enough
to prove the following proposition.

PROPOSITION 4.7. Assume that T € Supp(y), and k and i, are contained in the same
connected component of T.

(1) length(k, i,) = #p+ 1 if T(p) = I. Here length(k, i,) is the length of the path
connecting k and i, in T.

length(k,i,) L (@)
@) (-1 [[a= > 42

i=r+l {TeSupp()ITeR(T k)}

were B; is defined in Lemma 4.2 and R(T, k) is defined in Proposition 4.6.

Proof. Let T’ € Suppy and suppose R(I', k) > . As in Lemma 4.2, we make the
labeling of the path in I" from k to i, as e, = (n, k1), e;, = (k1, k), ..., e;, = (ks—1, k)
and k; =k, k; =i, First we claim the set L =L(I')={/|(n,]) € T’} contains
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ki, ..., ks Since Resxn_wk(l:) is not zero, I contains (n, k), 1.e. k = k; € L. If the path
connecting k and i, in the corresponding graph I(p) is ki,...,k, then
p=1ks, ..., ks_1}. Therefore L D {ky,..., k. If le L—1{k;,...,k;} and ¢ is the
minimal element satisfying min(i,, /) < min(i,, k,), then ['(p) contains an edge (/, kq)
by the definition of I'( p). That is (/, ky) € G(I', k, i,), where

G, k,i,) = {e:edge | There exists i such that e 3 k;,
min(k;_1, i) < e < min(k;, iy)}.

Therefore L — {ky, ..., kst € G, k, iy).
Conversely, for any subset L of {1, ..., n} satisfying

(1) L is contained in the same connected component of i,
(2) LD{ky,..., k), and
(3) L—Viky,....k}cCcGT,k, i),

there exists a unique I'(L) satisfying
(1) LT(L) =L,

(2) T e Supp(y), and
(3) Supp(Res,,, () >T.

Therefore
() _ Z ()
B B Z Af - Af(L)
{T|ITeR(T,k).TSupp()} Lotky,....ks}, L—{ky,....k}C G, K, in),
L is contained in the same connected component of i,
) n
— (_l)length(k,ln) l_[ Bi- ]
i=k+1

5. Proof of The Main Theorem
5.1. SOME LEMMATA FOR THE ASYMPTOTIC BEHAVIORS

In this subsection, we investigate the asymptotic behavior of solutions of a linear dif-
ferential equation with regular singularities. Let 4 € (1/x)M(d, O,), where O,
is the germs of holomorphic functions at x = 0. We are interested in the differential
equation for r x r-matrix-valued function V: dV/dx=A4V. We write
A= Rx'4+ Y7 4;x', where R, A; € M(r, C). If all the eigenvalues of R are small
enough, then the solution ¥V can be written as V' = FxRC,, where Fis an r x r-valued
holomorphic function of I+ xM(r, O,), and Cy € GL(r, C). In the rest of this sec-
tion, we assume that all the eigen values of R are sufficiently small positive real num-
bers and R is semi-simple. The eigenvalues of R are denoted by 0 < 4; < --- < 4.
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LEMMA 5.1. Let C" = &!_, W; be the eigenspace decomposition of C" with respect
to R.

(1) If w; € W;, then each component a;. of the vector FxRw; satisfies the estimation
lak| < |x|¥c, for some constant ¢ for k=1,...,r. Moreover we have
lim_, o(x % FxRw;) = w;.

(2) Let A > A. If wi € W; and all the components a; of Fx®w; satisfy |a;| < x*c for
some constant ¢, then w = 0.

(3) Let p: W; — C' be a linear map and denote by p the composite C* — W; — C..
Then we have

p (111% x‘*"Fwa) = ﬁ(lin}) x_RFwa>
for any we W.

Proof. Since F= 1+ xm,me M(r,O,), using the identity lim,_ox*xmxR =
lim,_ o x~RxmxR = 0, we get the statements. O

Let n, k be integers such that 2 < k < n and define A( ) (1<i<j<k) and the
reduced part V™4 = V4 as in Section 3.2. The restrlctlon of A(]k) to V™4 is denoted

by Af/kled For a subset S of [i, k], we define A(k) and A(k) . by
(k) (k) (k) )
AS = Z A AS red — Z AU red”

i<j,ijeS i<j,ijeS
From now on, a;; are sufficiently general small positive real numbers. For a semisim-

ple matrix A, the formal sum of eigenvalues of 4 counting their multiplicities is deno-
ted by a(A): a(A) = > (eigenvalues of 4). The set of eigenvalues is denoted by

Supp(a(4)).

PROPOSITION 5.2. Under the above notations and assumptions, A(Sk) and Agk)red are
semi-simple and

oA = Y (k=1 TN | T Dasor.

TClk+1,n]

oA D= > (k—I—1:| T (| T Dasor,
TC[k+1,n]

where ay = ij,i’jercij for a subset U C|[l,n]. For a subset T C[k+1,n],
=lk+1,n|—Tandl=#|S|—-1and (a;b) =ala+1)---(a+ b —1).

To prove the above proposition, we use the following two elementary lemmata.

LEMMA 5.3. Let X be a kN x kN-matrix. We assume that there exist semi-simple
matrices B, D € M(N, C) and matrices Cy, ..., Cx € M(N, C) such that

https://doi.org/10.1023/A:1016377828316 Published online by Cambridge University Press


https://doi.org/10.1023/A:1016377828316

SELBERG INTEGRALS AND MULTIPLE ZETA VALUES 19

0 0
1 i B
A R
-1 1i+1 —B
0 0
C C\D
A . = . ’
Cr CiD

with Supp(a(B)) N Supp(a(D)) = @. Then

(1) o(4) = (k- 1)a(B) + a(D).

(2) The (k — 1)N-dimensional subspace V* ={(v\, ..., v) | vi € CV, Sv; =0} is
stable under the action of A. Let A™Y be the restriction of A to V™. Then
o(4™Y) = (k — 1)a(B).

LEMMA 5.4. Let aj; € Px and set Ay = Ind(a); for 1 <i<j<k-1,

Ap -1 = Z Ay, a k—1]
1<i<j<k-1
= Z a; and ap g = E aj.
1<igj< k-1 1<igi<k

Then we have

0 0
4 1 i a[1.k]
=y i1 T | —apy |

0 0

ar a1ap k1)
Apg-ny| ¢ =

Aj—1 Aleke—141,k—1]

Proof. The first equality follows from the expression

ap -1+ D Ak j —aj1
—ag ap k—1) + 2 A
Ap -1 =

—dag3 —dg3
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The second equality is obtained directly by the equality
g g1 ajj
Al = S -

Afck—1 Akk—14djj

Proof of Proposition 5.2. We prove the proposition by induction. By the two
lemmata, we have

o(4Y) = (k- Do (A“‘*”) + oA ).

k k
(A hg) = (k — 1 = Do(ASTD) + 10(AS 1) 1ed):

using the homomorphism P*+D — M((k + 1)(k +2)---(n — 1), C) and the assump-
tion of the independence of o;;. O

5.2. RELATION BETWEEN SELBERG INTEGRALS AND THE DRINFELD ASSOCIATOR

In this section, we will compare vectors whose elements are given by Selberg integrals
with the Drinfeld associator. Let n > 3 be an integer and we define A(k) as in
Section 3.2. We set V= V3, = C* =D Let §=S([n]/[3], x1, x2, X3, oc,,) be a
V-valued function on x, x5, x3 whose (is, .. ., iy)-component is given by

Su1,2.3)A@ i amin) (117131, X1, X2, X3, o).

Then by Theorem 4.1 and Corollary 3.6, S satisfies the differential equation
dS = {40d log(x; — x3) + 45)dlog(xs — x3)}S.

We set S(x3) = S([n]/[3], 0, 1, x3). Then S satisfies the equation

ds _ (A<l%3>dx*+A<%> dxs )S'.
dx; X X3 —

Since all the elements of A(133>, A(233) are homogeneous polynomials of degree 1 in oy,
the representation

p: CUX, Y)) = M3 -4---(n— 1), Q[loy]])

given by p(X) = A(133), p(Y) = A(23 is a rational representation of degree 1. By the defi-
nition of the Drinfeld associator, we have

3) — _ 43
lim(1 — )5 S(x3) = p(d(X, Y)) lim x5 1 S(x3).
X— X3—>

LEMMA 5.5. (1) For ig,...,i, such that i €[k —1], we put y=0({l,2,3)hA
4, i4) A -+ A (n, iy). Then for sufficiently small x3, we have an estimation

1S,(In1/131, 0, 1, x3)| < exi™ (5.1)
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for some constant c. Here o,y is the maximal eigenvalue ), _ i<j < mijz2 % Of A(133)'
(2) For T € I'([n], [3)),

lim x5 Sr([1]/[3]. 0. 1. x3)
X3—>

{ Sr([n] — {2}/{1,3},0,1) (if there is no edges containing 2),
0 (otherwise).

Here T € T'([n] — {2}, {1, 3}) is the ordered graph obtained by deleting 2 from the
graph T.

Proof. By Proposition 5.2, we have omax = > < j<pnije % 10 prove the
statement, it is enough to prove that

/ H (xi — X)Mor |y =0,x,=I
D

I<i<j<n

satisfies the estimation of (5.1) for an ordered rooted tree I with the root set [3]. We
change the variables by x, = ¢,x3 for p =4, ..., n. Then

dé, —dé, dé,
w, = & l_[ dép, —dg, l_[ x3dép, (1+ o(1)) (5.2)

(pi,g:)€Er,not adjacent to 2 él’i - éq,- (pi,2)€Er -1
and

[T ci—opv= J] @&@=&"- x50 +o(1).

1<i<j<n I <i<j<ni j#2
Here we put & = 1, ¢; = 0. In particular, lim,,_, x; ™ || p @or = 0if I contains an
edge adjacent to 2. The signature in (5.2) arises from the substitution for separating
edges of " adjacent to 2 and those which are not adjacent to 2. If I" contains no edges
adjacent to 2, we get the second statement. O

From Lemma 5.1, we have the following corollary.

3
COROLLARY 5.6. The (i, - - -, in)th component of lim,,_,o x;A(”)S’(xg is equal to
Sy(n] = {23/{1,3},0,1) if i,#2 for p=4,....n,  where y=0{l,3HA
@4,ig) A+ A(n,iy), and O otherwise.

Proof. By the definition of y = J([3])) A (4, is) A -+ A (n, iy), if i, =2 for some p,
then all I'" € Supp(y) have an edge adjacent to 2. If i, #2 for all p, then all
I' € Supp(y) contains no edges adjacent to 2. Therefore the statement follows from
Proposition 5.5. O

Next we consider the asymptotic behavior for x3 — 1. Let I be the set

{I=(a,...,in) | i, #2,3}. By the definition of A%), the projection p: ¥ — C' to
the I-th components factors through o3 eigen projection. Therefore we have

p< lim (1 - )~ S(xg) - p< lim (1= x3)~* S(x3)>.
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by Lemma 5.1. On the other hand, it is easy to see the following lemma.

LEMMA 5.7. If' T contains no edges containing 2 and 3, then

Jim (1 — x3) 2 Sr([n)/[3], 0, 1, x3) = Sp([n] — {3}/12], 0, 1, ez,

where I" is the ordered graph obtained by deleting 3 from the graph ', and o; = o if
i,j # 2 and o5, = o + o3

DEFINITION 5.8. The vectors
. AW - . _A9 5
11m0 X3 ®S(x3) and llml(l —x3) "28(x3)
X3— X3—>

are denoted by V" and V', respectively. Then we have
p(V?) = p(p(@(X, Y)V'D) (5.3)

By Lemma 5.7, the (is, ..., i,)th component of V® with i, # 2,3 is equal to
S;0, 1, 05), where oy = o if i,j#2 and o) ; = oy + o3, where y=@({1, 2)A
4,i4) A --- A (n, i,). We compute the limit of all the components of V! for the limit
o3 — 0. For this purpose, we compute in the next subsection lim,,_.o S,(o;) for
y=0({1, 3D A&, is) A+ A(n, iy) with i, # 2.

5.3. LIMIT FOR o3; — 0

In this subsection, we change numbering from that of the last subsection. Let I be an
ordered graph with the root set [2] and vertex set [1]. We set ® = Hi<<,—(xi —x;)*, and

S(oy) = f 0.
D([n]/[2],0,1)

Before proving Proposition 5.10, we remark the following lemma.

LEMMA 5.9. Let F(x) be a continuous function defined on ( p, 1]. Suppose that F(x) is
integrable on (p, p + €. Then we have

1
lim | o(l —x)* 'Fx)dx = F(1).

o—0

p

Proof. This is a fundamental property of d-function lim,_¢a(l — x)*'. O

PROPOSITION 5.10. (1) If limy,, o S(a;7) # 0, then (1) I' contains no edges adjacent
to 2, or (2) (2, 3) is the unique edge adjacent to 2.

(2) If (2,3) is the unique edge in I adjacent to 2, then lim,, o S(a;) is equal to
Sl—/(oc;-j), where T is the ordered graph obtained by deleting the edge (2,3) and by
replacing the numbering 3 of the original edge by the new numbering 2 and ocﬁj = oy
if'i,j#2and o = o3 .
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Proof. Suppose that I" contains an edge adjacent to 2. Let p < 3 be the minimal
number such that (2, p) is an edge of I'. Set

Fpox) =[] ay I1 (o — x;)"F 0

(P9)€Er,#(2,p) I <i<np <j<ni<j(ij)#2.p)

X / (x; — X)) dx, -+ - dxs,
{xp<-<x3<l} | <i<j<p-1

where ¢; = —1 if (i, /) is an edge of I', and 0 otherwise. Then

lim Sy = / Fxp ., x)ap(1 — ),
{0<x,<--<x,<l1}

o2p—0

Therefore Sy = 0 if p # 3, or there exist at least two p’s such that (2, p) is an edge
of I'' If p=3 and there is no edge adjacent to 2 other than (2,3), then
lim,,, o St = S (o}). 0

We define S,(o;7) by > arSr(ey;), where y = > arl € I'([2], [n]).
COROLLARY 5.11. Let y =3({1,2) A B, i3) A -+ A, iy).

(1) If there exists k # 3 such that iy = 2, then limy, o S,(o;)) =0
) Ifiz=2and i, #2 for k # 3, then
11m S},-(OC,:]') — Syf(OC;-]-),

C(g,’-)()

where v is O({1,3) A (4, i) A -+ A (n, iy).

Proof of the Main Theorem 3.3. We can proceed by the induction on n. We
consider the limit of (5.3) for a3; — 0. Then all the entries of lim,, _,o(p(®(X, Y))) are
contained in H, by Corollary 2.2. By Corollary 5.11, all the entries of lim,, o V"
are contained in H,. Therefore all the entries of lim,, .o p( 1) are also contained in
H,. Therefore S,(0, 1, o) is an element of H, for y = 0({1,2})) A3, i3) A--- A (n, i)
under the restriction (R): i # 2 for all k. On the other hand, by the relation (3.4),
the restriction (R) is not necessary. This completes the proof. O
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