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i . Introduction. A graph G is an ordered pair (V, E) 
where V is a set of objects called ver t ices , and E is a set 
of unordered pairs of ver t ices (v,vf ) in which each such pair 
can occur at most once in E, and if (v,vf ) c E then v 4 v1 . 
The order of G is the cardinality of the set V, and the 
degree 6(v) of an element v € V is the number of elements 
of E which contain v. G is said to be regular of degree d 
if 5(v) = d for each v € V. G is a complete graph if E con­
tains every pair of elements of V. A graph H = (V1 , E !) is a 
part ial graph of G = ( V , E ) if V Ç v and E ! Ç E. H is a 
res t r ic t ion of G if H is a part ial graph of G in which 
V! = V. Let S = { e , . . . , e } be a subset of E such that 

e. = { v . , >v.} for i < j < i . Then S is called an a rc of G 
J J - i J - -

of length I (from v to v ) in case the ver t ices 
v , v , . . . , v are all distinct. The two ver t ices v and v 

a re said to be connected if there exists an arc from v to v . 
• 0 ! 

In case £ 4- 1 is the order of G and S is an arc of length I , 
then it is called a Hamilton arc of G. In case v and v 

0 I 
are the only two identical ver t ices of the above a rc and G has 
order i , then S is called a Hamilton circuit of G. G is 
connected if every pair {v , v } of its ver t ices is connected. 

The connectedness relation of ver t ices in G is readily 
seen to be an equivalence relation, so that it parti t ions G into 
a set {G } of connected graphs. Each such G is called a 

c c 
component of G. A k-equi-cardinal res t r ic t ion of G 
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(designated as a ker of G) is a res t r ic t ion of G in which 
each component of the res t r ic t ion is of order k. For a graph 
G to have a ker , obviously the order of G must be some 
multiple of k. Also, only k > 2 are of interest . 

The problem we consider here is to find the minimum 
degree d such that every regular graph of order n = mk and 
degree > d has a k-equi-cardinal res t r ic t ion . 

The concept of a ker of G is related to that of a (k-1)-
factor of G discussed by Tutte [ l ] and others . In par t icular , 
when k = 2 a ker of G is identical to a 1-factor of G, but 
this re lat ionship does not ca r ry over for general k. 

2. The Problem. As stated previously, we wish to 
de termine a minimum degree d such that every regular graph 
of order n = mk and degree > d has a ker . The following 
proper t i es will be useful. 

P roper ty 1: A connected graph either has a Hamilton circuit 
or i ts maximal a r c s have length £ satisfying £ >_ 6(v ) + 6(v ) 

where v and v a re ver t ices connected by such an a r c . 
0 1 y 

(Theorem 3. 4. 3, p. 55 of Ore [2]. ) 

P roper ty 2: If the order of G is a multiple of k and G 
contains a Hamilton a r c , then G has a ker . 

Proof: Lret the G components of order k be subgraphs 

consisting of successive ver t ices and edges along the Hamilton 
a r c . 

Proper ty 3: If G is a regular graph of degree d ^ —— , 

where n is the order of G, then G contains a Hamilton a rc . 

Proof: Suppose G was not connected; then the largest possible 

degree for a regular graph would be obtained by having G con­

sis t of two complete subgraphs, each containing — ver t i ces . 

In this case d =— - 1 = —r— * Thus G is connected if 

d^—r—. Finally, from property 1 G has a Hamilton circuit , 
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and thereby a Hamilton a r c , or else an arc of length 
n-1 n-1 a , . , . 

I > _ _ + _ _ = n . i which is also a Hamilton a r c . 

For oar problem, propert ies 2 and 3 determine that every 

regular graph of degree d > —— , where n = mk, has a ker . 

n- i 
Thus we need consider only the cases with d < —— . 

Case 1: m even 

Here n = mk, so that - = - k is divisible by k. Thus 

— - 1 and —• + 1 a re not divisible by k. Let G consist of 
£» ù 

two components G and G^, where GJ is the complete graph 
1 2 1 

on -r - 1 ver t ices and G is obtained from the complete graph 

on — + 1 ver t ices by deleting the edges of one Hamilton circuit . 

Then G is regular of degree d = -r - 2, Obviously G does 

not contain a ker , since the orders of G and G_ a re not 
1 2 

divisible by k. Thus the minimum degree d for our problem 
n _ , n . . n - 1 . 

is T * 2 < d < — (since for even m, —— is not an integer). 
ù **"* £§ Ù 

We now consider the remaining case here for which d =— - 1. 
5 2 

We shall show that G must contain a ker. 

Suppose G has degree "r - 1 but does not contain a ker. 

If G is not connected, then for regularity G must consist of 

two complete subgraphs, each of order ~ , but this graph 

obviously contains a ker (—• = — k); thus G is connected. Now 

by property 1, G either has a Hamilton circuit (and this is 
impossible by property 2 under the assumption that G does 
not contain a ker) or else its maximal a rc s a re of length 

I > (7 - 1) + (7 - 1) =n - 2. If I =n - 1 then G has a ker 

so we must have I = n - 2. Let v , . . . , v be the successive 
1 n-1 

ver t ices along such an a rc and let v be the only remaining 
n 

ver tex of G. 
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Suppose G has an edge (v. ,v ) where j = qk + r , 
J n 

q and r a re integers and 1 < r < k. Then a ker of G can 
be formed as follows: The first q segments (v , . . . , v ), 

^ I ' - ' - ' ^ W * •••' (V(q-Dk+l V ° f t h e n'2 l 6 n g t h 

path can form components of order k; (v , , , . . . , v. JX, ,*v } 
qk+1 (q+l)k-l n 

can form a component; and successive components, starting 
with ver tex v, %, up to v can be formed along the path 

(q+l)k r n-1 s ^ 
of length n » 2, giving the desired ker . Thus each edge 
(v. ,v ) of G must be such that j is a multiple of k; j = qk. 

J n
 n 

There are ~ • 1 such ver t ices from v . , . . , v . thus 
k 1 n-1 

6(v ) ="r - 1 can be attained only for k = 2, and only when for 
n 2 

each j = 2q, 1 < q < -r - 1, (v., v ) is an edge of G. It 
— — 2 j n 

remains to show that for k = 2, d =— - 1, the graph G con­

tains a ker . Now G cannot contain an edge (v . ,v . ) , 
i J 

l < i , j < n - l , in which both i and j a r e odd; for if so 
(v., v ) could form a component of a ker with the other com-

* J 
ponents as follows: (v , v ) , . . . , (v. ,v . ) f(v. , v . _ ) , . . . , 

1 2 i-2 i - l l+l i+2 
(v. ,v . ),(v. ,v ),(v v ) , . . . , ( v ,v ), where we 

j - 3 j - 2 j - 1 n j-f l , j+2 n-2 n-1 
have assumed that i < j with no loss in generality. Thus, in 
order to satisfy 6(v.) =— - 1, each odd numbered ver tex v., 

i 2 i 
1 < i < n - 1 must have an edge to each even numbered vertex. 

Under this assumption» however, 6(v } > — + 1, where v is 
p - 2 p 

any even numbered ver tex since there a re ~ odd numbered 
ve r t i ces and v has an edge connected to each such v . By 

n n P 

assumption of regulari ty of G, however, 6(v ) =— - 1, 
n P 

proving that every regular G of degree •—• - 1 contains a ker . 

Thus for m even, the minimum d for our problem is 
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Case 2: m odd 

Subcase 2a: k even. Here — is not divisible by k, 

so one can obtain a regular graph of degree — - 1 which 

contains no ker by taking two replicas of the complete graph 

on — ver t ices . Thus d = — is the solution to our problem. 

Subcase 2b: k odd. 

(i) —7- even. Here one can obtain a regular graph of 
c* ————— 

degree with two components by taking the complete graph 

on —— ver t ices together with the graph found by deleting the 

alternate edges of a Hamilton circuit from the complete graph 

on —— ver t ices . Since not both —— and —— are divisible 
"\ \ 

by k, this graph does not contain a ker . Thus < d <̂  • 
A 

and d = —— . ' . 
h» 

n+1 
(i£) odd. Here one obtains a regular graph containing 

Là 

n-5 
no ker of degree —— by deleting a Hamilton circuit from the 

complete graph on —— ver t ices and deleting al ternate edges 
4 

of a Hamilton circuit from the complete graph on —— ve r t i ces . 
«,, n-5 . n -1 _. . 
Thus —— < d < —— . Since n is odd, there is no regular 
graph on n nodes of odd degree, in part icular of degree —— . 

Thus d =—r- . 

The following table summarizes the solution d to our 
problem where the order of G is n = mk. 
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m 

even 

odd 

k even 

k odd 

n+1 ! 
even 

d 

I-1 

n 

1 • "*' 
! n-l 

2 

n+l I n-3 

2 1 2 

Table 1: Minimum d Such That All Regular 
Graphs of Degree > d Contain a Ker . 

In the proofs many of the regular graphs not containing 
a ker were non-connected graphs. Little is known about the 
problem if one adds the hypothesis that the graph be connected. 
Regular connected graphs which do not contain k e r s , for k = 2, 

can be formed for a degree which is somewhat less than — 

using a s t ruc ture having one cent ra l ver tex . A simple example 
with d = 3 , n = 16 is shown below, but it is not known whether 

or not — i s near the minimum degree for which every regular 

connected graph contains a 2-equi-cardinal res t r ic t ion . 
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Figure 1 

A Connected Regular Graph Having 
No 2-Equi-Cardinal Restriction 
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