ON EQUI-CARDINAL RESTRICTIONS OF A GRAPH
J.C. Beatty and R. E. Miller

(received December 6, 1963)

1. Introduction. A graph G 1is an ordered pair (V,E)
where V 1is a set of objects called vertices, and E is a set
of unordered pairs of vertices (v,v') in which each such pair
can occur at most once in E, and if (v,v'}e E then v # v'.
The order of G 1is the cardinality of the set V, and the
degree ©6(v) of an element v € V is the number of elements
of E which contain v. G is said to be regular of degree d
if §(v) =d for each ve V. G is a complete graphif E con-
tains every pair of elements of V. A graph H=(V',E') is a
partial graph of G=(V,E) if V'CV and E'CE. H isa
restriction of G if H is a partial graph of G in which
V! =V. lLet S= {ei,...,el} be a subset of E such that

ej:{vj 1,vj} for 1<j<t. Then S iscalledanarcof G

of length { (from Yo

. ,vl are all distinct. The two vertices v_ and v

to vl ) in case the vertices
v,V ,.

0 1 )
are said to be connected if there exists an arc from vo to vl .
In case g+ 1 is the order of G and S is an arc of length ¢,
then it is called a Hamilton arc of G. In case vO and v

{
are the only two identical vertices of the above arc and G has

order ¢, then S is called a Hamilton circuit of G. G is
connected if every pair {VO’v[ } of its vertices is connected.

The connectedness relation of vertices in G is readily
seen to be an equivalence relation, so that it partitions G into
a set {Gc} of connected graphs. Each such Gc is called a

component of G. A k-equi-cardinal restriction of G
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(designated as a ker of G) is a restriction of G in which
each component of the restriction is of order k. For a graph
G to have a ker, obviously the order of G must be some
multiple of k. Also, only k> 2 are of interest.

The problem we consider here is to find the mirimum
degree d such that every regular graph of order n =mk and
degree > d has a k-equi-cardinal restriction.

The concept of a ker of G is related to that of a (k-1)-
factor of G discussed by Tutte [1] and others. In particular,
when k=2 a ker of G is identical to a 1-factor of G, but
this relationship does not carry over for general k.

2. The Problem. As stated previously, we wish to
determine a minimum degree d such that every regular graph
of order n=mk and degree >d has a ker. The following
properties will be useful. -

Property 1: A connected graph either has a Hamilton circuit
or its maximal arcs have length { satisfying £ > 6(v0) + 6(v1 )

0
(Theorem 3. 4.3, p.55 of Ore [2].)

where v_ and vl are vertices connected by such an arc.

Property 2: If the order of G 1is a rnultiple of k and G
contains a Hamilton arc, then G has a ker.

Proof: Let the Gc components of order k be subgraphs

consisting of successive vertices and edges along the Hamilton
arc.

Property 3: If G is a regular graph of degree d > P—;—i ,
where n 1is the order of G, then G contains a Hamilton arc.
Proof: Suppose G was not connected; then the largest possible

degree for a regular graph would be obtained by having G con-
n

sist of two complete subgraphs, each containing 2 vertices.
-2
In this case d =-123 -1 :22—- . Thus G is connected if

-1
d> 9-2—- Finally, from property 4 G has a Hamilton circuit,
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and thereby a Hamilton arc, or else an arc of length

-1 -
L > P—Z_— + -23-2—1 =n-1 which is also a Hamilton arc.

For our problem, properties 2 and 3 determine that every

-1
regular graph of degree d_>_i2—— , where n=mk, has a ker.

-1
Thus we need consider only the cases with d < Eé-— i

Case 1: m even

Here n =mk, so that k is divisible by k. Thus

(N1 )]

m
2

2.4 and =

2 2
two components G1 and GZ’ where Gi is the complete graph

+ 1 are not divisible by k. Let G consist of

on - 1 vertices and G2 is obtained from the complete graph

NiB B

on — + 1 vertices by deleting the edges of one Hamilton circuit.
Then G is regular of degree d =§ - 2. Obviously G does

not contain a ker, since the orders of Gi and G_ are not

2
divisible by k. Thus the minimum degree d for our problem
. n n . n-1 | .
is 3" 2 < dEE (since for even m, > is not an integer).

. . . n
We now consider the remaining case here for which d =3 1.

We shall show that G must contain a ker.

Suppose G has degree % - 1 but does not contain a ker.

If G is not connected, then for regularity G must consist of
two complete subgraphs, each of order —1-21 , but this graph

m
obviously coatains a ker (% = Ek);' thus G is connected. Now

by property 4, G either has a Hamilton circuit (and this is
impossible by property 2 under the assumption that G does
not contain a ker) or else its maximal arcs are of length

£>G-1+G-1)=n-2 If £ =n-1 then G hasa ker
so we must have ¢ =n - 2. Let vi, cee,V 1 be the successive
N-
vertices along such an arc and let v_ be the only remaining
_ n

vertex of G.
3711
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Suppose G has an edge (vj,vn) where j=qk+ 1,

q and r are integers and 1<r<k. Thenakerof G can
be formed as follows: The first q segments (v

Ve vad o Mgyt
path can form components of order k; (v

1’9'-:vk))
.,vqk) of the n - 2 length

qk+1’ " "'(q+1)k-1’vn)

can form a component; and successive components, starting

with vertex v(q+1)k up to vn_1 can be formed along the path

of length n - 2, giving the desired ker. Thus each edge
(vj,vn) of G must be such that j is a multiple of k; j =qk.

n .
There are x° 4 such vertices from Vi' i,V thus

n-1’
6(vn) =_r2_1 - 1 can be attained only for k =2, and only when for

each j =2q, 1§q5§- 1, (vj,vn) is an edge of G. It

n
remains to show that for k=2, =3 - i, the graph G con-
tains 2 ker. Now G cannot contain an edge (vi,vj),

1<i, j<n-1, inwhichboth i-and j are odd; for if so
(v.,v.) could form a component of a ker with the other com-
1]

Vi Vi)

v ), where we
n-1

ponents as follows: (vi'VZ)’ eaes (vi-Z'vi-i
(v,

j-3 o1, Va2t g
have assumed that i <j with no loss in generality. Thus, in

order to satisfy 6(vi) =£21- - 1, each odd numbered vertex Vo
1 <i<n -1 must have an edge to each even numbered vertex.
Under this assumption, however, 6(vp)_>_§ + 4, where v s
any even numbered vertex since there are % odd numbered
vertices and v has an edge connected to each such v_. By
assumption of regularity of G, however, 6(vp) =-§ -1,
proving that every regular G of degree % - 1 contains a ker.
Thus for m even, the minimum d for our problem is

n
d-z-i.
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Case 2: m odd

Subcase 2a: k even. Here % is not divisible by k,
so one can obtain a regular graph of degree % - 1 which
contains no ker by taking two replicas of the complete graph

n - . n . .
on 3 vertices. Thus d =3 is the solution to our problem.

Subcase 2b: k odd.

+1
(1) =2 even. Here one can obtain a regular graph of
2 : g grap

-3
degree _n_z_ with two components by taking the complete graph

on —— vertices together with the graph found by deleting the

alternate edges of a Hamilton circuit from the complete graph

+1 -1 1
on 2-2-— vertices. Since not both 'nZ and 33— are divisible
by k, this graph does not contain a ker. Thus 1-2—:1 <d 32.2—1
and a=221 '
==

+1
(ii) 9-2—— odd. Here one obtains a regular graph containing

no ker of degree '-!3;—5- by deleting a Hamilton circuit from the

complete graph on B;—i vertices and deleting alternate edges

of a Hamilton circuit from the complete graph on = vertices.

-5 -

Thus _n_z_ <d ‘<_-n—2—1; . Since n is odd, there is no regular

graph on n nodes of odd degree, in particular of degree %3 .
n-3

Thus d = >

The following table summarizes the solution d to our
problem where the order of G is n =mk.
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m d
. n
--1
even 2
n
| k even E
odd nel n-1
l 2 2
k odd
n+1i n-3
—z odd =

Table 4: Minimum d Such That All Regular
Graphs of Degree > d Contain a Ker.

In the proofs many of the regular graphs not containing
a ker were non-connected graphs. Little is known about the
problem if one adds the hypothesis that the graph be connected.
Regular connected graphs which do not contain kers, for k=2,

can be formed for a degree which is somewhat less than 2

using a structure having one central vertex. A simple example
with d =3, n=16 is shown below, but it is not known whether

Sn . I :
or not 3 1is near the minimum degree for which every regular

connected graph contains a 2-equi-cardinal restriction.

374

https://doi.org/10.4153/CMB-1964-034-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1964-034-7

Figure 1

A Connected Regular Graph Having
No 2-Equi-Cardinal Restriction
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