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Computations of the breakup of a liquid bridge are used to establish the limits
of applicability of similarity solutions derived for different breakup regimes. These
regimes are based on particular viscous–inertial balances, that is, different limits of
the Ohnesorge number Oh. To accurately establish the transitions between regimes,
the minimum bridge radius is resolved through four orders of magnitude using
a purpose-built multiscale finite element method. This allows us to construct
a quantitative phase diagram for the breakup phenomenon which includes the
appearance of a recently discovered low-Oh viscous regime. The method used to
quantify the accuracy of the similarity solutions allows us to identify a number
of previously unobserved features of the breakup, most notably an oscillatory
convergence towards the viscous–inertial similarity solution. Finally, we discuss
how the new findings open up a number of challenges for both theoretical and
experimental analysis.
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1. Introduction

The breakup of liquid volumes is a process that is ubiquitous throughout industry
and nature. Recently, this process has attracted significant attention due to its
importance for the functioning of a range of microfluidic technologies where one
would like to be able to control the generation of uniform-sized droplets which then
become building blocks, as in three-dimensional (3-D) printers (Derby 2010), or
modes of transport for reagents, as in lab-on-a-chip devices (Stone, Stroock & Adjari
2004). In order to optimise the functioning of these technologies it is key to be able
to understand the physical mechanisms controlling the breakup process and, ideally,
to have a tool capable of predicting the response of the system to alterations in
operating conditions.

From a theoretical perspective, the breakup phenomenon has attracted interest
due to both its technological importance and its status as a free-surface flow which
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exhibits finite-time singularities (Eggers 1997). In the former case, motivated by a
desire to describe engineering-scale systems, the focus has been on capturing the
global dynamics of the process using multiphysics computational fluid dynamics
(CFD) codes, with the actual breakup usually under-resolved due to the inherently
multiscale nature of the problem. In contrast, in the latter case most interest has
revolved around using asymptotic methods to study the micromechanics of the
breakup process, with the larger-scale flow often not considered. Potentially, the
advances made in understanding the micromechanics could be fed into large-scale
CFD codes in order to exploit the advantages of both approaches, but this is yet to
be achieved.

The failure of CFD packages to reliably capture breakup phenomena has been
highlighted in Fawehinmi et al. (2005) for drop formation, where the appearance
of satellite drops depended on grid resolution, and Hysing et al. (2009) for a
two-dimensional (2-D) rising bubble in a regime where breakup was anticipated.
In Hysing et al. (2009), six different codes were tested for the same problem and
all gave different results ranging from no observed breakup through to multiple
bubble detachments. In other words, the codes were unreliable for this process. The
conclusion of the authors provides motivation for the current work: ‘Although the
obtained benchmark quantities were in the same ranges, they did not agree on the
point of break up or even what the bubble should look like afterwards, rendering
these results rather inconclusive. To establish reference benchmark solutions including
break up and coalescence will clearly require much more intensive efforts by the
research community’.

Computational approaches cannot, in principle, resolve the thinning of a liquid
volume down to the point at which breakup occurs, when the thread is infinitesimally
small. Instead, at some point the pre-breakup process must be terminated, by ‘cutting’
the liquid thread joining two volumes, and a post-breakup state must be initiated
based on the final solution in the pre-breakup phase. Whilst some computational
codes do this process ‘automatically’, notably those using Eulerian meshes such as
volume-of-fluid, there is no guarantee that this approach accurately represents the
physical reality. Theoretical approaches to this problem have been considered in
different regimes and are described in Eggers (2014). To implement an appropriate
post-breakup solution, one must identify which pre-breakup regime the process is in,
based on the scale for the cutoff. Therefore, knowing what regime a given breakup
process is in and determining the transitions between these regimes are critical for
the topological change to be correctly handled. The complexity of this procedure has
been revealed in Castrejón-Pita et al. (2015); see § 2.2.3 for details, where multiple
regimes were discovered for each breakup event.

Here, by computing the pre-breakup solution to the smallest possible scales that our
simulation will allow, we will measure the accuracy of various similarity solutions
proposed in the literature and, importantly, establish their limits of applicability. To
do so, rather than just identifying power-law behaviour, methods will be developed
to determine the regions of phase space where similarity solutions proposed for the
different ‘regimes’ accurately approximate the full solution. The procedure is intended
to leave no ambiguity as to when a certain regime is encountered. This attempt at a
more rigorous approach will lead us to discover previously unobserved features of the
breakup process that open up several new avenues of enquiry.

2. Regimes and transitions in the breakup phenomenon
This article focuses on the breakup of incompressible Newtonian liquids with

constant viscosity µ and density ρ, which have a constant surface tension σ at
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FIGURE 1. Illustration of breakup in the liquid bridge geometry using the (dimensionless)
coordinate system (r, z), with the black lines showing the computational domain. The
minimum radius of the thread is rmin, which can change vertical position as the breakup
proceeds if satellite drops are formed (b), and the inward normal to the free surface is n.

their liquid–gas interface and are surrounded by a dynamically passive gas. The
breakup is considered axisymmetric with the axis of the thread along the z-axis
of a cylindrical coordinate system (r, z), as shown in figure 1 for a liquid bridge
geometry, with characteristic length scale R. In general, the flow is governed by the
Navier–Stokes equations, but when inertial forces are weak the dominant balance of
viscous and capillary forces gives a characteristic speed of breakup of U = σ/µ so
that the capillary number Ca=µU/σ = 1. Then the appropriate dimensionless number
characterising breakup is the Ohnesorge number Oh, which is obtained by substituting
U into the Reynolds number Re= ρUR/µ= ρσR/µ2=Oh−2. The Ohnesorge number
is the square root of the ratio of a viscous length scale `µ = µ2/(ρσ) to the
characteristic scale of the system R. Then Oh−1 = 0 is Stokes flow and Oh = 0
gives inviscid flow.

The scales used so far are based only on global quantities. To analyse the breakup
process locally it is useful to introduce a time-dependent local Reynolds number
Relocal(t) = ρUzLz/µ based on instantaneous axial scales Uz(t) and Lz(t) (which will
be larger than, or comparable to, radial scales). The practicalities of calculating this
quantity are discussed in § 5.1. This local parameter will indicate the dominant forces
during a breakup event and hence should identify the flow regime.

2.1. Regimes of breakup
Near breakup much research has focused on finding similarity solutions for the
different regimes, all of which are categorised in § 4 of Eggers & Villermaux (2008).
A summary of the key results is provided here, with particular attention paid to the
dependence of the minimum thread radius rmin, the maximum axial velocity wmax and
the local Reynolds number Relocal on the time from breakup τ = tb − t, where tb is
the breakup time. Quantities have been made dimensionless with characteristic scales
for lengths, velocities and time of R, σ/µ and µR/σ .

2.1.1. The inertial regime
In the ‘inertial regime’, henceforth the I-regime, where there is a balance between

inertial and capillary forces, dimensional analysis (Keller & Miksis 1983; Brenner
et al. 1997) of inviscid flow (Oh= 0) gives as τ→ 0 that

rmin = AI(Oh τ)2/3, Relocal ∼ (τ/Oh2)1/3, wmax ∼ (Oh2/τ)1/3, (2.1a−c)
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where AI is a constant of proportionality, given in Eggers & Villermaux (2008) as AI≈
0.7. Notably, computations performed in the inertial regime have never listed AI and
so it will be of interest to determine this value so that (2.1) is precisely determined
and becomes a predictive tool. It will be useful to note, in terms of rmin, that Relocal∼
Oh−1 r1/2

min and wmax ∼Oh r−1/2
min .

A feature of the inertial regime is the ‘overturning’ of the free surface, observed
in both experiments (Chen, Notz & Basaran 2002) and simulations in this regime
(Schulkes 1994), which invalidates attempts at a slender description of the thread. In
Day, Hinch & Lister (1998) it was predicted that at breakup the free surface forms a
double-cone shape with angles of 18.1◦ and 112.8◦ with the z-axis. This phenomenon
has been observed experimentally in Castrejón-Pita et al. (2012) and computationally
in Wilkes, Phillips & Basaran (1999).

2.1.2. The viscous regime
The solutions derived for both the viscous and viscous–inertial regimes, henceforth

referred to as the V-regime and the VI-regime, were derived in a one-dimensional
approximation of the Navier–Stokes equations which relies on the thread remaining
‘slender’ as the breakup is approached. For a free surface represented by r = r(z, t)
this means that the gradient of the free surface must remain small, ∂r/∂z� 1.

For the V-regime, the similarity solution for Stokes flow (Oh−1= 0) was derived in
Papageorgiou (1995a,b) and is given by

rmin = 0.0709τ , Relocal ∼ τ 2β−1/Oh2, wmax ∼ τ β−1, (2.2a−c)

where β ≈ 0.175. Recently, Eggers (2012) showed that this is the only similarity
solution of infinitely many possible ones which remains stable to small perturbations.
The free-surface profile associated with this similarity solution remains symmetric
about the pinch point and the local profile depends on an external length scale (i.e. it
is not ‘universal’), so that it is a self-similar problem of the second kind (Barenblatt
1996). The persistence of the V-regime for high-viscosity liquids has been observed
experimentally in McKinley & Tripathi (2000).

2.1.3. The viscous–inertial regime
As τ → 0, from (2.1) and (2.2) we find in the I-regime that Relocal → 0 and in

the V-regime that Relocal→∞. This contradicts the initial assumptions behind their
derivations (Lister & Stone 1998). Therefore, neither the I- nor the V-regime is valid
right up to breakup, and a regime where viscous and inertial effects are in balance,
so that Relocal∼ 1, must be considered. In this VI-regime, the Navier–Stokes equations
are required. It was shown in Eggers (1993) that for the VI-regime a ‘universal’ set
of exponents exist for which

rmin = 0.0304τ , Relocal ∼ 1, wmax = 1.8Oh τ−1/2, (2.3a−c)

with a highly asymmetric free-surface shape joining a thin thread to a much steeper
‘drop-like’ profile. It was later demonstrated in Brenner, Lister & Stone (1996) that
this solution is the most favourable of a countably infinite set of similarity solutions.
Notably wmax=max(w) is the maximum velocity out of the thin thread (w> 0 in what
follows), rather than max|w|, which scales in the same way but has a pre-factor 3.1
(Eggers 1993). In terms of rmin this gives wmax = 0.3Oh r−1/2

min .
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Capillary breakup 33

2.2. Transitions between regimes
It has been established that whichever regime the breakup process starts in, it
will eventually end up in the VI-regime. However, it is possible that the transition
from either the V- or the I-regime will occur at such small scales that this regime
is irrelevant, at least from a practical perspective. For example, experiments in
Burton, Rutledge & Taborek (2004) for millimetre-sized mercury drops show that
the similarity solution in the I-regime adequately describes the breakup down to the
nanoscale. Therefore, determining the transitions between the regimes is an important
part of understanding the breakup process.

Phase diagrams which identify the regions of (Oh, rmin) space associated with
different regimes have been constructed for the related problem of drop coalescence
in Paulsen et al. (2012), Paulsen (2013) and Sprittles & Shikhmurzaev (2014b) –
though, intriguingly, these publications disagree on the number of regimes – whereas
for the breakup phenomenon an equivalent diagram is currently lacking. Most progress
in this direction has been made in Castrejón-Pita et al. (2015), where sketches of
two characteristic phase space trajectories were presented (in their figure 1E). Here,
we provide a systematic exploration of (Oh, rmin) space in order to construct a phase
diagram for breakup which is equivalent to those obtained for coalescence. To do so,
the scalings proposed for the transitions between the various regimes as rmin, τ → 0
are considered.

2.2.1. Viscous to viscous–inertial transition (V→VI)
When Oh � 1, the V-regime adequately describes the initial stages of breakup.

However, the inertial term in the Navier–Stokes equations does not remain negligible
as rmin → 0 and so a transition to the VI-regime occurs at a bridge radius rV→VI

min .
In Basaran (2002) and Eggers (2005), by balancing the solutions in the V- and
VI-regimes, i.e. by taking Relocal ∼ 1 in (2.2), it was shown that this should occur
when

rV→VI
min ∼Oh2/(2β−1) ∼Oh−3.1, (2.4)

However, experimental evidence in Rothert, Richter & Rehberg (2003) appears to
contradict this result, finding instead that rV→VI

min is constant, i.e. independent of Oh.
Investigating these regimes computationally should provide new insight into the
transition.

2.2.2. Inertial to viscous–inertial transition (I→VI)
When Oh� 1 the Euler equations accurately capture the initial stages of breakup

until the local Reynolds number in (2.1) drops to Relocal∼ 1, which occurs when τ ∼
Oh2 so that

rI→VI
min ∼Oh2. (2.5)

This cross-over was first confirmed computationally in Notz, Chen & Basaran (2001)
and experimentally in Chen et al. (2002) for the case of a water–glycerol mixture with
Oh= 0.16, but has never been studied systematically across a range of Oh.

2.2.3. The discovery of multiple regime transitions in Castrejón-Pita et al. (2015)
From the predicted transitions of (2.4) and (2.5) the phase diagram may be

expected to look qualitatively like figure 2(a). In this figure, to see which regimes
are encountered during breakup at a given Oh, one follows a vertical line (at the
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FIGURE 2. (Colour online) Phase diagrams of Ohnesorge number Oh against minimum
bridge radius rmin: (a) expected phase diagram; (b) computed phase diagram. The paths
of typical breakup events are given by arrowed lines 1 and 2, which show how different
regimes are encountered as rmin decreases. At higher Oh (path 2) a V→VI transition
is both expected and computed, whilst at lower Oh (path 1), a single I→VI transition
was expected but a more complex behaviour was computed, with a low-Oh V-regime
encountered before the VI-regime, so that I→V→VI transitions are found, as discovered
in Castrejón-Pita et al. (2015). The dashed lines show the scaling of the transitions
between the different regimes as rmin→ 0, with I→V and V→VI transitions scaling as
rmin ∼Oh2 and V→VI occurring when rmin ∼Oh−3.1.

given Oh) from the top axis downwards (through decreasing rmin), e.g. see paths
1 and 2. For small Oh (path 1) one has an I-regime crossing into a VI-regime
when rmin ∼ Oh2, whilst for large Oh (path 2) one has a V-regime crossing into the
VI-regime at rmin ∼Oh−3.1.

However, a recent publication by Castrejón-Pita et al. (2015) shows that the picture
can be more complex: the breakup can pass transiently through multiple different
regimes. For example, Castrejón-Pita et al. (2015) show that, counter-intuitively, at
Oh = 0.23 there is no I→VI transition but rather an I→V→VI transition, so that
a new unexpected low-Oh V-regime is encountered. Similarly, a high-Oh I-regime is
observed. This behaviour is sketched out qualitatively in a phase diagram (their figure
1E) showing how Relocal varies as breakup is approached for different values of Oh.

In this work, we will use computations to build the first fully computed and
quantitatively constructed phase diagram for the breakup so that the nature of the
transitions can be established. To orientate the reader over the forthcoming sections,
figure 2(b) gives a preview of the computed phase diagram, in a form that is only
asymptotically accurate as rmin → 0 but serves to neatly illustrate the computed
flow transitions. The result shows clearly how the new phase diagram differs from
the expected behaviour (figure 2a) due to the appearance of the low-Oh V-regime
sandwiched between the I- and VI-regimes, so that path 1 now first encounters
an I→V transition. In contrast to Castrejón-Pita et al. (2015), no evidence for the
high-Oh I-regime can be seen. These features will be considered in further detail
over the forthcoming sections.

In §§ 7–9 we will show how the phase diagram in figure 2(b) was actually
constructed, but before doing so we must specify the problem considered.

3. Problem formulation
A liquid bridge geometry (figure 1) is used with the liquid trapped between two

stationary solid discs of (dimensional) radius R a distance 2R apart and surrounded
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Capillary breakup 35

by a dynamically passive gas. This set-up allows us to isolate the breakup dynamics,
limit the elongation of the domain (e.g. in contrast to dripping phenomena) and
retain an experimentally realisable set-up. A future work will consider the effects of
geometry through elongation by allowing the plates to move apart. The contact line
where the liquid–gas free surface meets the solid remains pinned at the disc’s edge
throughout. Assuming gravitational effects are negligible allows us to consider a plane
of symmetry at z= 0 of a cylindrical polar coordinate system (r, z, θ) so that, using
R as a characteristic scale for lengths, the solid is located at dimensionless position
z= 1 and the free surface is pinned at (r, z)= (1, 1). The extension to include gravity
is not a difficult one, but it does not add significant value to a study focused on the
small-scale breakup.

Using U= σ/µ as a scale for velocity, T =R/U as a scale for time and µU/R for
pressure, the (dimensionless) Navier–Stokes equations are

∇ · u= 0,
∂u
∂t
+ u · ∇u=Oh2

∇ · P, (3.1a,b)

where the stress tensor is

P =−pI + [∇u+ (∇u)T]. (3.2)

Here, u and p are, respectively, the velocity and pressure in the liquid, and the
Ohnesorge number is Oh=µ/√ρσR.

On the free surface, whose location f (r, z, t) = 0 must be obtained as part of the
solution, the kinematic equation

∂f
∂t
+ u · ∇f = 0 (3.3)

is applied alongside the usual balance of fluid stresses with capillarity in the directions
tangential and normal to the free surface:

n · P · (I − nn)= 0, n · P · n=∇ · n, (3.4a,b)

where n is the inward normal, I is the metric tensor of the coordinate system and p
is taken relative to the (constant) gas pressure.

At the liquid–solid boundary, no-slip and impermeability conditions are applied, u=
0 and the free surface is pinned at the contact line f (1, 1, t)= 0.

3.1. Initial conditions and initiation of breakup
The dynamics of breakup is studied by generating a thread shape that is taken to the
edge of its Rayleigh–Plateau stability limit (Slobozhanin & Perales 1993; Lowry &
Steen 1995), so that small perturbations will trigger breakup. The movie ‘FullBreakup’
in the supplementary material available at http://dx.doi.org/10.1017/jfm.2016.276
shows a typical breakup event resulting from this approach. In this way, the breakup
dynamics can be computed independently of a driving force such as the flux from a
nozzle, as in jetting, or the pull of gravity, as in dripping (Rubio-Rubio, Sevilla &
Gordillo 2013). This reduces the dimensionality of the system to just one controlling
parameter Oh so that constructing a phase diagram becomes a tractable task.

The required initial thread shape can be generated by either solving the Young–
Laplace equation for the free-surface position (Fordham 1948; Brown & Scriven 1980;
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Thoroddsen, Takehara & Etoh 2005) or using the finite element code, described below,
in a quasi-static mode, to generate this shape by gradually removing fluid from the
thread in a manner similar to the experimental set-up described in Meseguer & Sanz
(1985). The latter method is used, as this also enables the shape on the stable–unstable
boundary to be established. The result is the first profile in figure 3(a). The instability
can be triggered either by continuing to gradually remove fluid from the thread or
by very slowly moving the plates apart, and both approaches were shown to produce
indistinguishable results, thus confirming that the only control parameter is Oh.

4. Multiscale finite element computations
The mathematical model formulated in § 3 is for an unsteady free-surface flow

influenced by the forces of inertia, viscosity and capillarity. To study this system over
the entire range of Oh requires computational methods.

4.1. Previous computational studies
The breakup of liquid volumes has been studied computationally using the Stokes
(Gaudet, McKinley & Stone 1996; Pozrikidis 1999), Euler (Schulkes 1994; Day et al.
1998) and Navier–Stokes equations for both Newtonian (Ashgriz & Mashayek 1995;
Popinet 2009) and non-Newtonian (Li & Fontelos 2003; Bhat et al. 2010) liquids.
Considerable progress has been made by the group at Purdue University using
finite element methods for axisymmetric flows such as dripping (Ambravaneswaran,
Phillips & Basaran 2000), jetting (Ambravaneswaran et al. 2004), drop-on-demand
(Chen & Basaran 2002) and liquid bridge breakup (Suryo & Basaran 2006) with an
array of different physical effects such as non-Newtonian fluids (Yildirim & Basaran
2001), surfactant dynamics (McGough & Basaran 2006) and electric field effects
(Collins et al. 2008). These algorithms were the first to demonstrate a number of
experimental features such as overturning of the free surface for a viscous fluid
(Wilkes et al. 1999), transitions between scaling regimes (Chen et al. 2002) and the
identification of multiple regime transitions (Castrejón-Pita et al. 2015).

Notably, it has been shown that with sufficient care, the results of sharp interface
methods, such as those implemented at Purdue, can sometimes be recovered by
the diffuse interface approach, in which topological changes are easier to handle
computationally. In particular, the diffuse interface method developed in Yue et al.
(2004) was shown in Zhou, Yue & Feng (2006) to accurately recover the sharp
interface results of Wilkes et al. (1999). Furthermore, in Zhou et al. (2006), the
flexibility of the diffuse interface method was demonstrated by computing compound
drop formation, where additional complexity arises from the need to track two free
surfaces. Despite these advances, we will implement a sharp interface approach (see
§ 4.2) whose reliability and accuracy has been repeatedly confirmed.

Despite the numerous successes of computational schemes in accurately predicting
many of the global features of breakup, there have been fewer investigations of
the local dynamics and its comparison with the similarity solutions. One of the
most impressive works in this direction is Suryo & Basaran (2006), where scales
comparable to those resolved in the current work (rmin < 10−4) were captured and the
scaling behaviour of both Newtonian and power-law liquids was investigated. Other
progress includes results in Notz et al. (2001) and Chen et al. (2002), where I→VI
transitions were shown, and Castrejón-Pita et al. (2015), in which multiple transitions
were observed (see § 2.2.3). Our work will build on these previous investigations
by systematically quantifying the accuracy of the similarity solutions across the
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entire parameter space (of Newtonian liquids) in order to build the first quantitatively
constructed phase diagram for breakup.

In principle, computations are the ideal tool with which to map a phase diagram
for the breakup process and to investigate in which regions each of the similarity
solutions is accurate; a similar procedure was used for the coalescence phenomenon
in Sprittles & Shikhmurzaev (2014b). The difficulty of this procedure is that many
decades of rmin are required in order to reliably determine the scaling behaviour
of different regime boundaries (if they exist). Although one may hope to compute
rmin until its behaviour falls into the VI-regime, in practice this may occur at scales
below the possible computational resolution, e.g. rmin < 10−5 (Burton et al. 2004).
Therefore, establishing the range of applicability of the similarity solutions using
computations and then using these solutions to carry the dynamics to scales below
realisable computational resolution seems to be a promising strategy for capturing
breakup.

4.2. Computational approach
A focus of this work is to resolve the spatial and temporal dynamics of the pinch-off
process to the smallest scales possible in order to compare with the similarity
solutions proposed in the literature for the final stages of breakup. The approach
used is based on the finite element framework originally developed in Sprittles &
Shikhmurzaev (2012b, 2013) to capture dynamic wetting problems and subsequently
used to study the coalescence of liquid drops (Sprittles & Shikhmurzaev 2012a,
2014a), including two-phase calculations (Sprittles & Shikhmurzaev 2014b); drop
impact phenomena (Sprittles & Shikhmurzaev 2012a); the detachment of bubbles
from an orifice (Simmons, Sprittles & Shikhmurzaev 2015); and dynamic wetting in
a Knudsen gas (Sprittles 2015). These flow configurations are all inherently multiscale,
either due to the disparity of length scales in the problem formulation or because of
the dynamics of the process itself, which generates small scales during its evolution,
as is the case for breakup phenomena. The framework allows the global flow in
these problems to be resolved alongside localised smaller scales, without relying on
particular limits of Oh.

As a step-by-step user-friendly guide to the implementation of this computational
framework has been provided in Sprittles & Shikhmurzaev (2012b), only the main
details will be recapitulated here alongside some aspects which are specific to the
current work. The code uses the arbitrary Lagrangian Eulerian scheme, based on the
method of spines (Ruschak 1980; Kistler & Scriven 1983), to capture the evolution
of the free surface in 2-D or 3-D axisymmetric flows. In order to keep the problem
computationally tractable, the mesh is graded so that small elements can be used near
the pinch-off region whilst larger elements are used where scales associated with the
global flow are present.

The mesh starts with ≈4000 triangular elements (≈500 surface nodes) and then
adaptively refines as the breakup progresses by adding spines whenever elements
become too deformed. At the end of the computation, the number of elements is in
the range 7000–50 000 (800–7000 surface nodes), depending on the particular breakup
requirements. For example, for a computation at Oh= 10−3, the mesh is refined due
to the formation of a ‘corner’ in the free surface (see figure 15), resulting in 869
surface nodes with a minimum surface element length of 3 × 10−5. In contrast, at
Oh = 0.16, refinement is required due to the formation of a thin thread of liquid
(figure 9) which requires 5263 surface nodes with surface elements in this region all
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having length ≈10−4. Overturning of the free surface is permitted by using angled
spines (i.e. not only horizontal) whose slope varies along the thread.

Refinement of the mesh is restricted by controlling the smallest permitted element
size hmin, which affects the final number of elements. Reducing hmin allows the code
to converge to smaller rmin so that more of the breakup is recovered. By reducing hmin
from 10−2 down to 10−5, convergence of the scheme under spatial refinement has been
established, with each decrease in hmin revealing more of the solution (smaller rmin)
but producing curves which are graphically indistinguishable from those obtained on
cruder meshes, where both solutions exist.

The result of the spatial discretisation is a system of nonlinear differential algebraic
equations of index two (Lötstedt & Petzold 1986), which are solved using the
second-order backward differentiation formula, whose application to the Navier–Stokes
equations is described in detail in Gresho & Sani (1999). The time step automatically
adapts during a simulation to capture the appropriate temporal scale at each instant.

In the problem considered, the smallest scale that needs resolving is the minimum
neck radius rmin, and eventually this becomes so small that accurate converged
solutions can no longer be obtained. For the entire range of Oh considered,
computations remain accurate down to rmin = 10−4 and in certain cases they can
go as far as rmin = 10−5.

5. Quantitatively identifying regimes
Computations are unable to resolve down to rmin = 0, i.e. the point at which the

topological change occurs, so that the precise time t = tb of pinch-off is unknown.
This can be problematic when comparing to scaling laws of the form rmin = Aτ B +
C, where τ = tb − t requires the time of breakup, as small changes in tb can have
a large effect on a curve of rmin versus τ , which is then used to determine which
regime a breakup process is in. Similar conclusions were reached for coalescence in
Thoroddsen et al. (2005). In the final regime one has C=0, otherwise for ‘transitional’
or ‘transient’ regimes C must be determined as well. In general, there is no easy
method to overcome these issues without assuming a particular functional form for
the breakup.

However, in the V- and VI-regimes it is possible to exploit rmin being a linear
function of τ (B= 1) so that the speed at which the minimum thread radius evolves
is constant, i.e. independent of both tb and C. Therefore, to identify these regimes the
‘speed of breakup’ given by ṙmin= drmin/dt can be compared to the predictions of (2.2)
that ṙmin =−0.071 and (2.3) that ṙmin =−0.030 as a function of rmin without needing
to know tb. This has the further advantage that C does not have to be fitted when a
regime is observed transiently, as in Castrejón-Pita et al. (2015).

The same approach cannot be used to identify the inertial regime where B = 2/3,
so that the speed of breakup is no longer constant. Therefore, we try a similar idea to
that above and determine an Oh-independent quantity which should be linear in the
inertial regime. This relies on C ≈ 0, so that this regime must be close to breakup.
Then, given that rmin = AI(Oh τ)2/3, we introduce lmin = Oh−1r3/2

min, which will satisfy
lmin= A3/2

I τ if the expected scaling holds. Differentiating this quantity with respect to
time gives l̇min = dlmin/dt=−A3/2

I , i.e. a time-independent constant.
A key aspect of this work is to develop techniques to quantify when the breakup

dynamics is in a certain regime (Sprittles & Shikhmurzaev 2014b). To do so, we must
define what it means to be ‘in a regime’. We choose to define a breakup process
to be in the V- or VI-regime when the speed of breakup ṙmin is within 0.015 of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

27
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.276


Capillary breakup 39

that predicted by (2.2) or (2.3), respectively. In other words, speeds in the range
ṙmin=−0.071±0.015 indicate V-regime dynamics whilst ṙmin=−0.030±0.015 for the
VI-regime. In a similar way, the inertial regime is defined by points at which l̇min is
within 0.15 of A3/2

I , where we will later see that A3/2
I = 0.5. Choosing smaller (larger)

margins to define each regime will shrink (expand) the area of a given regime in the
phase diagram but should not alter the qualitative picture. The particular values chosen
avoided regimes overlapping and enabled us to satisfactorily map the phase diagram.
The method for identifying regimes is illustrated in the Appendix.

Rather than assuming that the regimes fill all of phase space, we will be careful to
split the entrance to and exit from a particular regime. For example, the exit from the
V-regime will be labelled as rV→

min and the entrance to the VI-regime as r→VI
min , rather

than assuming a priori that these coincide at rV→VI
min .

5.1. Analysis of the regimes
To understand the dynamics in the different regimes and determine when the
assumptions behind the similarity solutions of § 2.1 are valid, local to the breakup
point we analyse the assumptions made about (i) the relative magnitudes of viscosity
and inertia and (ii) the slenderness of the thread. In practice, this means calculating
(i) the local Reynolds number Relocal and (ii) a measure for the slenderness of the
free-surface profile.

To measure these characteristics, one needs to define an appropriate axial length
scale Lz and velocity scale Uz near the pinch point. The obvious choice for Uz is
the maximum axial velocity in the thread, Uz = wmax, which will occur near, but not
at, the position where r = rmin. Therefore, a characteristic axial scale can be defined
as the vertical distance between the positions of minimum radius and maximum
velocity, so that Lz = |z(r = rmin) − z(w = wmax)|. This defines (i) the local Reynolds
number as Relocal=Oh−2 UzLz and (ii) the slenderness as the ratio of the characteristic
radial length scale Lr = rmin to Lz, so that the geometry is slender when Lr/Lz � 1.
Importantly, wmax = max(w) is used rather than max |w| (see figure 9c) to avoid
discontinuities in Lz, and hence Relocal, which occur when the position of max |w|
jumps from being above the pinch point to below it (as in the V→VI transition).

Other possible definitions of Uz and Lz exist (see Castrejón-Pita et al. 2015), so it is
not a priori clear we have made the correct choices. However, computations will show
that our definitions allow us to reproduce the expected scalings for Relocal in both the
I-regime (2.1) and the V-regime (2.2), which serves to validate our approach.

6. Overview
In §§ 7–9, respectively, the dynamics of breakup for large (Oh > 1), intermediate

(0.1 < Oh < 1) and small (Oh < 0.1) Ohnesorge numbers are analysed separately
and used to establish the limits of applicability of the different similarity solutions
described in § 2.1. This will allow us to define the regimes of breakup on a phase
diagram.

In each section, the initial focus will be on a breakup event which highlights the
features of the prominent regime, namely the V-regime (Oh= 10), VI-regime (Oh=
0.16) and I-regime (Oh= 10−3), with a movie of each breakup in the supplementary
material. In each case, snapshots of the free-surface shape, axial velocity and pressure
distributions in the breakup region will be presented. Evidence that the breakup is
in a given regime will be provided by comparing the computational results with the
similarity solution’s predictions for the evolution of the free-surface shape, minimum
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FIGURE 3. (Colour online) For Oh = 10, characteristic of the V-regime, plots show (a)
evolution of the entire free surface, (b) a close-up of the breakup region, (c) the axial
velocity at the free surface, wfs, and (d) the pressure at the free surface, pfs, at rmin= 10−1

(1, blue), rmin = 10−2 (2, red), rmin = 10−3 (3, green) and rmin = 10−4 (4, brown).

bridge radius rmin, maximum axial velocity wmax and scaling of the local Reynolds
number Relocal.

Having confirmed the existence of a regime, we then identify its boundaries on
the phase diagram to determine the regime transitions. As explained in § 5, these
boundaries are specified by calculating the values of ṙmin and l̇min as a function of rmin.
Having discovered the transitional behaviour, the local measures Relocal and slenderness
Lr/Lz (introduced in § 5.1) are studied in an attempt to rationalise these findings.

The analysis in §§ 7–9 will not only allow us to construct a phase diagram (cf.
figure 18) for the process but also open up new questions about the breakup process;
to avoid distracting from the main focus in §§ 7–9, these aspects will be considered
in more detail in § 11.

7. Viscous-dominated flow (large Oh)

For Oh= 10 free-surface profiles in figure 3(a,b) show the development of a thin
thread of liquid whose smallest minimum radius remains at z= 0 throughout, so that
no satellite drops form. The axial velocity (figure 3c) at the free surface wfs, which
is approximately r-independent, shows a rapid drainage from the thread driven by a
pressure gradient from z= 0 (figure 3d).

Evidence that this breakup is in the V-regime can be seen in figure 4(b), where
the free-surface profile obtained at rmin = 10−4 is almost indistinguishable from the
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FIGURE 4. A comparison of the computed free-surface profiles with the similarity
solutions for the (a) VI-regime and (b) V-regime. Computed profiles are at the minimum
radius rmin = 10−4 for (a) Oh= 0.16 and (b) Oh= 10, typical of breakup in the VI- and
V-regimes, respectively. These profiles compare well to the similarity solutions (dashed
lines) in (a) with (ξVI, φVI) provided in Eggers (1993), giving (r, z)= (τφVI, z0+Oh τ 1/2ξVI)
with no free parameters, and in (b) with (ξV, φV) from Papageorgiou (1995b) and Eggers
(1997), so that (r, z)= (τφV, Oh2−2β τ β`zξV) with `z = 1.85× 10−3. In (a), the height of
the pinch point z0 = 0.268 for the VI-regime is calculated using the expression in Eggers
(1993) for the drift of this point z(r= rmin)= z0 − 1.6Oh τ−1/2 (shown in figure 11 as the
dashed line).
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FIGURE 5. (Colour online) Curves are for 1: Oh= 10−3, 2: Oh= 0.16 and 3: Oh= 10.
(a) Evolution of the maximum axial velocity wmax as the minimum radius rmin decreases,
showing excellent agreement with the similarity solutions (dashed lines) from the I-regime,
wmax ∼ r−0.5

min , the VI-regime, wmax = 0.3Oh r−0.5
min , and the V-regime, wmax ∼ r−0.825

min . (b) The
minimum bridge radius rmin against time from breakup τ . Computations converge to the
similarity solutions for the I-, VI- and V-regimes, respectively, with the lower dashed line
being the similarity solution for the I-regime ((2.1) with AI = 0.63), the middle one for
the VI-regime (2.3) and the highest one for the V-regime (2.2).

similarity solution for the V-regime, and figure 5(a), in which the computed axial
velocity (curve 3) follows the predicted (singular) form wmax ∼ r−0.825

min as rmin→ 0.
Assuming that the breakup remains in the V-regime, the data can be extrapolated to

obtain the breakup time tb and, as a result, plot rmin against τ in figure 5(b) (curve 3),
where there is excellent agreement with the similarity solution of (2.2) for rmin< 10−2.

7.1. Identification of the V-regime
When Oh� 1 the breakup is expected to start in the V-regime before transitioning
into the VI-regime. Figure 6(a) shows that when Oh= 10 (curve 5), the breakup speed
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FIGURE 6. (Colour online) (a) Evolution of the breakup speed ṙmin for 1: Oh = 1, 2:
Oh= 1.5, 3: Oh= 2.5, 4: Oh= 5 and 5: Oh= 10. The similarity solution in the V-regime
(ṙmin=−0.071) is shown as a dashed line. At higher Oh (e.g. curve 5) the speed remains
at −0.071, whilst at lower values (e.g. curve 1) there is a transition towards the VI-regime
where ṙmin=−0.030. (b) Variation of the local Reynolds number for 1: Oh=0.25, 2: Oh=
0.5, 3: Oh = 1, 4: Oh = 2.5 and 5: Oh = 10. Curves show that in the V-regime Relocal
gradually increases until a critical value is achieved, at which point the V-regime is exited.
The increase of Relocal in the V-regime is shown to follow the predicted scaling from (2.2)
of Relocal ∼ r−0.65

min (lower dashed line). The transition out of the V-regime (rmin = rV→
min

marked as circles) is found to occur when Relocal ≈ 0.85 (horizontal dashed line).

ṙmin reaches the value predicted in the V-regime, −0.071, at approximately rmin= 10−2

and remains there until rmin = 10−4, i.e. until the end of the computation. For higher
Oh, curves are graphically indistinguishable from the case of Oh = 10, so this is
the Stokes flow solution. Therefore, for rmin > 10−4 the VI-regime is not observed at
large Oh.

Figure 7 shows the region of Oh–rmin phase space where V-regime dynamics is
encountered, with the circles marking the computationally determined boundaries of
this regime. The procedure for identifying this regime is shown in the Appendix
and, as discussed in § 5, it is based on the speed of breakup ṙmin remaining between
−0.071± 0.015. Next, the changes in behaviour triggering the entrance and exit from
this V-regime are considered.

7.1.1. Entrance into the V-regime
The V-regime is entered (r→V

min ) at a constant Oh-independent value rmin ≈ 10−2,
which suggests that this transition may occur when the thread can be considered
slender, so that the assumptions behind the similarity solution (2.2) become valid.
To determine whether the geometry near the breakup point is ‘slender’ or not, we
plot Lr/Lz in figure 8. For Oh = 10 (curve 5), and generally for larger Oh, initially
Lr/Lz ∼ 1 (no scale separation), but as rmin shrinks the breakup region becomes
slender. Defining the region to be slender when Lr/Lz < 0.1, it is found that for
all Oh > 1 slenderness occurs at rmin ≈ 10−2, in agreement with our result for r→V

min .
Therefore, the transition into the V-regime appears to be dictated by the geometry
of the thread.

7.1.2. Exit from the V-regime
The V-regime is left when the speed of breakup ṙmin diverges from −0.071± 0.015

(e.g. curve 1 in figure 6a). Figure 7 shows that this transition follows the proposed
scaling for V→VI that rmin = A Oh−3.1, with computations finding A= 5.5× 10−4.
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FIGURE 7. (Colour online) Phase diagram showing the existence of a V-regime where
there is a balance between viscous and capillary forces. The transition r→V

min is where the
breakup enters this regime and rV→

min is where it leaves. Computational results (circles) show
that the entrance is at a constant Oh-independent r→V

min = 0.014 (horizontal dashed line)
whilst the exit follows rV→

min = 5.5× 10−4Oh−3.1 (lower dashed line).
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FIGURE 8. (Colour online) Evolution of the slenderness of the free surface in the breakup
region for 1: Oh = 10−3, 2: Oh = 10−2, 3: Oh = 0.14, 4: Oh = 0.16, 5: Oh = 10. This
quantity, which must be small for the thread to be slender (as is required by the V- and
VI-regimes), is defined using Lr = rmin and Lz = |z(r= rmin)− z(w=wmax)|.

The transition out of the V-regime (rV→
min ) occurs when inertial effects become non-

negligible, so that (2.2) is no longer valid. Figure 6(b) shows that the increase in
Relocal follows remarkably well the scaling predicted by the similarity solution for
the V-regime that Relocal ∼ r−0.65

min . This also serves to validate our definition of Relocal.
Circles placed at rV→

min on curves in figure 6(b) show that the transition out of the
V-regime occurs when Relocal≈0.85. One may expect that at this point, where Relocal∼
1, the VI-regime will be encountered, and this will be the focus of the next section.

8. Viscous–inertial balance (intermediate Oh)
At Oh= 0.16 in figure 9(a,b) one can see the appearance of a satellite drop centred

at z=0. The close-up images show how this is driven by symmetry breaking about the
pinch point after rmin≈ 10−2 (curve 2), as observed experimentally in Rothert, Richter
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FIGURE 9. (Colour online) For Oh = 0.16 plots show (a) the entire free surface, (b) a
close-up of the breakup region, (c) the axial velocity at the free surface wfs (with wmax
when rmin= 10−3, 10−4 shown) and (d) the pressure at the free surface pfs at 1: rmin= 10−1

(blue), 2: rmin = 10−2 (red), 3: rmin = 10−3 (green) and 4: rmin = 10−4 (brown).

& Rehberg (2001). Consequently, two pinch points occur at a finite distance either
side of the symmetry plane (z= 0) with a large pressure acting to push fluid out of
the thinnest region (figure 9d). In contrast to profiles in the I-regime (cf. § 9), the
geometry near the pinch point remains slender; see curve 4 in figure 9(b) and the
slenderness data in figure 8 (curve 4).

Features that indicate the breakup is occurring in the VI-regime are as follows.
Figure 4(a) shows that the free-surface profile at rmin = 10−4 compares well with the
similarity solution (dashed line) derived in Eggers (1993) with no free parameters.
Below the pinch point (z< 0.25) in figure 4, deviations of the computed free-surface
shape from the similarity solution occur as there is no ‘far field’ in our set-up (as the
plane of symmetry is at z= 0). This also affects the velocity profiles (see figure 9c),
which agree with the similarity profiles in Eggers (1993) above the pinch point but
not below – a point that will be discussed further in § 11.2.1. However, curve 2
in figure 5(a) shows that the maximum axial velocity follows wmax = 0.3Oh r−0.5

min
from (2.3), again with no adjustable parameters.

In figure 10(a), the breakup speed is shown for Oh>0.15, values whose significance
will become apparent. In this range, all curves tend towards the value of −0.030,
indicating that breakup enters the VI-regime.

What is immediately striking about the curves in figure 10(a) is that they appear to
oscillate around the value of −0.030, converging towards it as rmin→ 0. To highlight
this behaviour, figure 10(b) compares curves for Oh = 10, which remains in the
V-regime, and Oh = 0.16, where the VI-regime is most prominent. Whilst the value
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FIGURE 10. (Colour online) (a) Evolution of the speed of breakup when Oh > Ohc.
Curves are for 1: Oh = 0.16, 2: Oh = 0.25, 3: Oh = 0.5. At Oh > Ohc curves converge
towards the similarity solution in the VI-regime given by (2.3), i.e. ṙmin = −0.030.
(b) Different dynamics are observed for the breakup speed in the VI- and V-regimes with
1: Oh = 0.16, 2: Oh = 10. For these values of Oh, the computed solutions converge in
an oscillatory (1) and a monotonic (2) manner towards similarity solutions in the VI- and
V-regimes, given by (2.3) and (2.2), respectively, which are the lower and upper dashed
lines.
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FIGURE 11. (Colour online) Evolution of the vertical position of the pinch point, i.e.
minimum thread radius z(r = rmin), indicating the formation of satellite drops once the
pinch point moves away from the centre line z(r= rmin) > 0. Curves are for 1: Oh= 10−3,
2: Oh = 0.16, 3: Oh = 0.5 and 4: Oh = 1. The dashed line shows the expression from
Eggers (1993) at Oh= 0.16 for the drift of the pinch point, z(r= rmin)= z0 − 1.6Oh τ−1/2

with z0 = 0.268.

of −0.071 is approached monotonically from below by curve 2, the approach of
curve 1 towards −0.030 is entirely different. The motion in the VI-regime is clearly
oscillatory in the radial direction, and on closer inspection of figure 5(a) and figure 11
oscillations in axial quantities wmax (and hence Relocal in figure 6b) and z(r= rmin) can
also be seen. Having identified this behaviour, it can also be recognised in the plot
of rmin against τ in curve 2 of figure 5(b), with the bridge radius oscillating around
and converging towards the dashed line predicted by the similarity solution (2.3). As
far as we are aware, this is the first time this oscillatory behaviour has been observed
and it will be discussed further in § 11.2.
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FIGURE 12. (Colour online) Curves are for 1: Oh= 0.14 and 2: Oh= 0.16. (a) Changes
in the evolution of the breakup speed ṙmin, against rmin, around the critical point Ohc =
0.15. Curve 1 shows the appearance of the low-Oh V-regime around rmin≈ 10−3 where the
breakup speed dips to ṙmin ≈−0.071, in contrast to curve 2 where the speed immediately
tends towards the value from the VI-regime of −0.030. (b) The local Reynolds number
Relocal for the same values of Oh shows that the low-Oh V-regime coincides with a drop
in Relocal. The dashed line Relocal = 0.85 is the value below which V-regime dynamics is
to be expected.

Figure 12(a) focuses on the narrow range Oh = 0.14 − 0.16 to highlight a sharp
transition in the dynamics of breakup which occurs at a critical Ohc≈ 0.15. For Oh=
0.16 > Ohc (curve 2), the transition into the VI-regime occurs at rmin ≈ 10−2, whilst
for Oh= 0.14< Ohc (curve 1) the transition into this regime is delayed until rmin ≈
4 × 10−4. Remarkably, we will show that this is due to the existence of a ‘low-Oh
V-regime’, first discovered in Castrejón-Pita et al. (2015), which precedes entry into
the VI-regime for Oh<Ohc. In figure 12(a) for Oh= 0.14 (curve 1), it can be seen
that this recently discovered regime is entered when r→V

min = 3× 10−3 and exited again
when rV→

min = 6× 10−4, during which period the speed of breakup is in the V-regime
range of −0.071± 0.015.

The transition in flow behaviour at Ohc is also seen from the free-surface shapes
in the vicinity of the breakup region. In figure 13(b) significant differences in the
breakup geometry are shown for Ohnesorge numbers just below (Oh=0.14) and above
(Oh= 0.16) the critical value. At rmin= 10−4, for Oh= 0.16 (curve 1a) a long slender
thread of length ≈0.22 connects the hemispherical volume above (z> 0.27) to a small
satellite drop below (z<0.05), whilst at Oh=0.14 (curve 1) the thread is much shorter
at ≈0.07. Consequently, the satellite drops formed in each case differ considerably,
with Oh= 0.16 forming a much fatter drop connected to a longer thin thread.

The free-surface profile in the low-Oh V-regime (curve 2) does not have the slender
symmetric shape in the breakup region that is characteristic of the conventional V-
regime, which suggests that this regime is encountered in a weaker sense than the
high-Oh V-regime which satisfies all expected characteristics (see § 7). Using more
stringent criteria for how the regimes are defined could result in this becoming a
region of phase space where none of the similarity solutions are accurate; however,
our definition is based on the breakup speed alone and this identifies it as a low-Oh
V-regime.

8.1. Identification of regimes
In figure 14 the VI- and low-Oh V-regimes are shown on a phase diagram. The
extreme change in behaviour at Ohc = 0.15 is clearly visible.
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FIGURE 13. (Colour online) (a) Evolution of the free surface for Oh= 0.14, showing the
development of a corner-like geometry (curve 3) while the flow is in the low-Oh V-regime
followed by the development of a thin thread once the VI-regime is entered (curve 4). (b)
Comparison of free-surface shapes below the critical point, at Oh= 0.14 (curves 1, 2), and
above it, at Oh= 0.16 (curves 1a, 2a), for 1, 1a: rmin = 10−4 and 2, 2a: rmin = 10−3.
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FIGURE 14. (Colour online) Phase diagram showing the low-Oh V-regime and the VI-
regime. The transition r→VI

min follows the scaling rmin= 2.3× 10−4Oh−3.1 (curve 1) for Oh>
Ohc = 0.15. For Oh < Ohc the low-Oh V-regime appears and is bounded by curves 2:
rmin = 0.2Oh2 and 3: rmin = 10Oh2 as rmin→ 0.

8.1.1. Entrance into the VI-regime for Oh>Ohc

For Oh > Ohc, the transition into the VI-regime follows the expected scaling for
V→VI of rmin=B Oh−3.1, with B= 2.3× 10−4. Curves 1–3 in figure 6(b) show that as
expected Relocal increases until it reaches ≈1, a value characteristic of the VI-regime.
The sharp changes in the gradients of these curves at the point where Relocal is a
maximum marks the beginning of the formation of satellite drops, i.e. the axial shift
of the minimum bridge radius to z(r= rmin) > 0, as can be seen from figure 11. This
signals the appearance of satellite drops and entry into the VI-regime. Although Lr/Lz

increases at this point (figure 8), the thread remains slender. Once in the VI-regime,
we do not see any evidence of an exit from this regime.
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8.1.2. Entrance into the low-Oh V-regime for Oh<Ohc

When Oh<Ohc, appearance of the VI-regime is delayed by the presence of a low-
Oh V-regime. The entrance to this new regime follows a rmin∼Oh2 scaling as rmin→0,
which is characteristic of the I→VI transition, although here, as shown in § 9, this is
an I→V transition.

Figure 12(b) corroborates the argument for a low-Oh V-regime by showing, counter-
intuitively, that once Oh<Ohc lower values of Relocal are recovered. For example, for
Oh = 0.16 there is a dip to Relocal = 0.59, whilst for Oh = 0.14 it falls as low as
Relocal = 0.18. For Oh= 0.14, there is then a substantial period (4× 10−4 < rmin < 7×
10−3) during which Relocal remains at a value characteristic of the V-regime (Relocal <
0.85). Identifying the V-regime from the breakup speed in figure 12(a) results in a
slightly smaller period (6 × 10−4 < rmin < 3 × 10−3), a mismatch which appears to
be caused by an initial lack of slenderness in the thread (figure 8), with Lr/Lz < 0.1
only once rmin < 9× 10−4. This may explain why although ṙmin ≈−0.071 in the new
regime, there is no asymptotic approach to this value but rather a transient passing
through speeds associated with a V-regime.

Entrance into the low-Oh V-regime is triggered by the minimum radius moving
away from z= 0 as a satellite drop is formed. This is accompanied by other features
that are characteristic of an I-regime, namely a corner-like free-surface shape (curve
3 in figure 13a) and a decrease in the axial length scale Lz due to the position
of maximum velocity approaching the pinch point. However, in the newly created
breakup region the axial velocity Uz is still relatively small, so that UzLz (i.e. Relocal) is
not large enough to trigger I-regime dynamics and instead a V-regime is encountered,
a feature discovered in Castrejón-Pita et al. (2015). What remains unclear is why this
mechanism persists at smaller Oh and prevents transitions from the I-regime directly
into the VI-regime.

8.1.3. Entrance into the VI-regime for Oh<Ohc

As can be seen from figure 14, the transition out of the low-Oh V-regime is quickly
followed by a transition into the VI-regime for Oh< Ohc. This boundary appears to
follow a rmin∼Oh2 scaling as rmin→ 0, although for Oh> 4× 10−2 it is approximately
constant. The ∼Oh2 scaling was predicted for the I→VI transition and observed above
for the entrance into the low-Oh V-regime. However, why this scaling is followed for
V→VI is unclear.

9. Inertia-dominated flow (small Oh)

In figure 15 flow profiles for Oh= 10−3 are shown. As seen in § 8, a satellite drop
is formed, but now the free surface forms a corner at the pinch point (figure 15b).
In a narrow region nearby a rapid increase in wfs and pfs (figure 15c,d) can be seen.
Notably, w is no longer r-independent. Below the pinch point the free surface forms
an angle close to 18.1◦ (predicted for the I-regime in Day et al. (1998)) with the z-
axis (dashed line), but there is no agreement with the predicted angle above (112.8◦),
which is found to be 78◦. Therefore, no ‘overturning’ of the free surface is observed,
as discussed further in § 11.3.

The maximum axial velocity is shown in figure 5(a) to scale as ∼r−1/2
min as predicted

by the similarity solution (2.1). In contrast to the other two regimes, the radial velocity
−ṙmin scales in the same way and is close to wmax when multiplied by a factor of 5,
showing that in the I-regime there is no separation of scales in the r and z directions.
This is supported by observations that the thread is not slender as pinch-off is
approached, as can be seen from curve 1 in figure 8.
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FIGURE 15. (Colour online) For Oh= 10−3 plots are for (a) the entire free surface, (b) a
close-up of the breakup region (with dashed line showing the angle 18.1◦ from the z-axis
predicted in Day et al. (1998)), (c) the axial velocity at the free surface, wfs, and (d) the
pressure at the free surface, pfs, at 1: rmin= 10−1 (blue), 2: rmin= 10−2 (red), 3: rmin= 10−3

(green) and 4: rmin = 10−4 (brown).

Recalling that regions where l̇min is approximately constant result in a rmin ∼ τ 2/3

scaling indicative of the I-regime, curve 1 in figure 16(a) shows the appearance of
this regime for Oh= 10−3 around 10−3 < rmin < 10−2. Computations show that l̇min =
−A3/2

I ≈−0.5 so that AI = 0.63, which can be used to extract the breakup time and
plot rmin against τ in curve 1 of figure 5(b). The value of AI is close to that given in
Eggers & Villermaux (2008) of 0.7.

9.1. Identification of the I-regime

Using l̇min to define the I-regime, and starting from the point at which the satellite
drop is formed, i.e. rmin < 3× 10−2 (figure 11), where the geometry of the I-regime
starts to take shape, the boundaries of the I-regime are shown in figure 17.

9.1.1. Entrance into the I-regime
Similar to the V-regime, transitions into the I-regime r→I

min are due to geometry, with
a certain time required for the thread to form the corners which are characteristic of
this regime. As one can see from curves 1 and 2 in figure 8, the breakup region is
not slender and Lr/Lz ≈ 0.6 remains approximately constant as rmin→ 0.
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FIGURE 16. (Colour online) Curves are for 1: Oh= 10−3, 2: Oh= 4× 10−3 and 3: Oh=
10−2. (a) Identification of the I-regime, which is defined when l̇min=−0.5± 0.15 (dashed
lines). (b) Evolution of the local Reynolds number: transition points out of the I-regime
at rmin = rI→

min are marked as circles and show that this transition occurs when Relocal ≈
14 (horizontal dashed line). The decrease of Relocal in the I-regime follows the predicted
scaling from the similarity solution (2.1) that Relocal ∼ r0.5

min.
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FIGURE 17. (Colour online) Phase diagram showing the I-regime. The transition into
this regime r→I

min is constant, ≈0.019, whilst the exit rI→
min scales as Oh2 with rmin= 45Oh2.

9.1.2. Exit from the I-regime
The exit from the I-regime rI→

min occurs when viscous effects become significant and
the local Reynolds number drops below a critical value. Figure 16(b) shows that the
reductions in Relocal follow the ∼r0.5

min scaling predicted for the I-regime (2.1), which
confirms that our definition of Relocal is a good one. It is found that the I-regime
is exited when Relocal ≈ 14. From § 8 we know that at this point the breakup will
transition into the low-Oh V-regime, and figure 17 shows that this entire boundary
follows an ∼Oh2 scaling.

10. A phase diagram for breakup

Having computed transitions into and out of the three regimes across parameter
space, the results can be stitched together to produce the phase diagram shown in
figure 18. Notably, once a regime is reached, which is around rmin ≈ 10−2 across Oh,
the transitions between regimes are relatively sharp, so that there are not vast regions
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FIGURE 18. (Colour online) Phase diagram for the breakup phenomenon which stitches
together results from figure 7, figure 14 and figure 17, where specific expressions for the
transitions between regimes can be found.

of parameter space where none of the scaling laws are applicable. There are also no
overlaps between the regimes, partially due to our choices of how to define being ‘in’
each regime. Consequently, rather than worry about transitions into and out of the
different regimes, it is now sensible to talk about transitions between different regimes.
This is how figure 18 was converted to produce the neat phase diagram figure 2(b)
in § 2.2.3, where (i) transitions between the regimes are provided and (ii) only the
asymptotic form of these transitions as rmin→ 0 are kept (i.e. using only the dashed
lines in figure 18). It is of course possible that there is further complexity in the phase
diagram below rmin= 10−4. Here, analytical work is required as computational studies
are inherently confined to a finite resolution below which the breakup behaviour can
only be implied.

The most surprising results are the appearance of a low-Oh V-regime which prevents
I→VI transitions and the dramatic change in behaviour around a critical value Ohc=
0.15. For Oh> Ohc the scaling for the V→VI transition follows that expected from
theory (rV→VI

min ∼Oh−3.1), whilst both the transitions from the I-regime into the low-Oh
V-regime and the exit into the VI-regime follow the rmin ∼ Oh2 scaling predicted for
the I→VI transition, but only as rmin→ 0. Notably, it was shown that many of the
transitions between regimes can be predicted from our measures Relocal and Lr/Lz.

An experimentally verifiable prediction for the existence of a sharp transition at
Ohc = 0.15 is that going from Oh = 0.16 down to Oh = 0.14 decreases the length
of the thin liquid thread which connects the satellite drop to the main volume by a
factor of three; see figure 13(b).

11. Discussion
Computations using a multiscale finite element method have allowed us to

accurately construct a phase diagram for breakup and determine the transitions
between different regimes. During the analysis, a number of features have been
encountered which are worthy of further attention, and these are now considered.

11.1. Unexpected transitional behaviour
The possibility of multiple flow transitions was suggested in Eggers (2005) and first
observed in Castrejón-Pita et al. (2015). The low-Oh V-regime can be seen in figure 2
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of Castrejón-Pita et al. (2015) at similar values of Oh to those found here. However,
in contrast to Castrejón-Pita et al. (2015), no evidence of a transient high-Oh I-regime
(their figure 4 for the case of Oh=1.81) has been observed. This could be because our
method of defining the I-regime does not pick up transient regimes far from breakup;
however, as can be seen from figure 18, our phase diagram is full for rmin < 10−2 so
that any I-regime that has been missed will not appear in the later stages of breakup.
Moreover, for all cases where a high-Oh I-regime could exist, Relocal remained at
values well below that seen for the I-regime, where Relocal>14, giving strong evidence
for the absence of a high-Oh I-regime.

To make unambiguous conclusions about the dominant forces as breakup is
approached, one could directly extract the size of the inertial and viscous forces from
the computed terms in the Navier–Stokes equations and compare their magnitudes in
the breakup region. This would be a more advanced method for calculating Relocal
that may provide additional insight into the transitions between different regimes.
However, we have found such measurements difficult to obtain in the breakup region
due to the tiny elements found there and the singular nature of the dynamics. Such
issues are amplified when determining second derivatives of the velocity, which itself
is only approximated quadratically across each element, in order to calculate the
viscous forces. This will be the focus of some of our future work in this area.

An intriguing possibility is that the low-Oh V-regime is responsible for the
transitional behaviour observed in Rothert et al. (2003), where water–glycerol
mixtures in the approximate range 0.06 < Oh < 3 were shown to transition V→VI
at a constant rmin rather than following the predicted scaling rmin ∼ Oh−3.1. Given
the relatively low Oh considered in these experiments, it seems possible that it
was the low-Oh V-regime that was being encountered rather than the usual one.
Furthermore, figure 18 shows that in the range 0.04 < Oh < 0.14 the transition
from the low-Oh V-regime into the VI-regime (rV→VI

min ) is approximately constant.
Unfortunately, no direct comparison to Rothert et al. (2003) is possible due to the
different flow configurations used, so at present we can only speculate about the
possible observation of a low-Oh V-regime in their experiments.

11.2. Oscillatory convergence to the VI-regime
Figure 10(b) clearly illustrated that convergence towards the V- and VI-regimes is
fundamentally different: at Oh= 10 the bridge speed increases monotonically towards
the value predicted by the similarity solution in the V-regime of −0.071, whilst for
Oh = 0.16 the bridge speed converges in an oscillatory manner towards the speed
predicted by the similarity solution in the VI-regime of −0.030 (preliminary results for
the case where the plates confining the liquid bridge move apart are similar except the
VI-regime is entered earlier, i.e. at larger rmin). The results are reinforced by figure 19,
which shows the same oscillations when ṙmin is plotted against the time from breakup
τ . Notably, the wavelength of the oscillations is approximately constant in logarithmic
time ln τ , a natural choice of variable, used e.g. in Eggers (1997), in the derivation
of similarity solutions for breakup. Our results suggest that the similarity solutions in
both the V- and VI-regimes are stable to perturbations, but that in the former case the
associated eigenvalues of the perturbation are negative and purely real whilst in the
latter case they are complex with negative real part.

For the V-regime our findings agree with those in Eggers (2012), where it is shown
that out of an infinite hierarchy of similarity solutions, only (2.2) is stable with purely
real eigenvalues. Our findings for the VI-regime are entirely new and have not been
predicted computationally, analytically or experimentally. The likely reasons for this
are as follows:
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FIGURE 19. (Colour online) Speed of breakup ṙmin against time from breakup τ for the
case of Oh= 0.16, where oscillations characteristic of the VI-regime can be observed most
strongly.

(1) Computations. Very few simulations have captured the small scales resolved
in our work for the axisymmetric Navier–Stokes system. However, in cases
where they have, e.g. in Castrejón-Pita et al. (2015), the focus has been on
rmin against τ , whereas the oscillations are most clear when plotting ṙmin against
τ or rmin. What is surprising is that this behaviour has not been observed in
slender jet codes which recover the similarity solution in Eggers (1993). Our
own preliminary simulations indicate that the same oscillations can be observed
in this setting too.

(2) Analysis. The current situation is summarised in p. 39 of Eggers & Villermaux
(2008): thus far no one has analytically calculated the eigenvalues of the Navier–
Stokes system for breakup. Consequently, it is unknown (i) whether the similarity
solution is stable and (ii) if the associated eigenvalues are purely real or complex.
The framework for the stability analysis is provided in appendix B of Brenner
et al. (1996) and progress on similar flows has been achieved in Bernoff, Bertozzi
& Witelski (1998), but extending these results to the Navier–Stokes pinch-off
remains an open problem.

(3) Experiments. As with computations, so far the focus has been on rmin against τ ,
where the oscillations can be missed, so that converting some of this data
into ṙmin against τ or rmin would be useful. However, here one faces the
additional complication of noisy data, which could make the accurate extraction
of derivatives a tricky procedure. Despite this, the oscillations observed are quite
significant; at Oh = 0.16, between rmin = 10−3–10−2 the bridge speed doubles,
from −0.02 to −0.04 (figure 10b). If the length scale is R= 1 mm this occurs
when the dimensional bridge radius is around 1–10 µm, i.e. near the limits of
optical resolution. Therefore, there is hope that experimental data can identify
these changes.

11.2.1. Bumps on the VI similarity solution
Interestingly, continuing some of our simulations in the VI-regime beyond our

self-imposed minimum radius of rmin = 10−4 resulted in the growth of a number
of interesting features which, as far as we can see, appear unrelated to the
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FIGURE 20. (Colour online) Curves are for Oh = 0.16 at 1: rmin = 2 × 10−4, 2: rmin =
1.5× 10−4, 3: rmin = 10−4 and 4: rmin = 5× 10−5: (a) bumps on the free-surface profiles;
(b) axial velocity distribution.

aforementioned oscillations. These should be treated with caution, as the accuracy of
the numerical scheme is close to its limit at such small radii, but the features appear
to be robust.

As can be seen from figure 20(a) for Oh= 0.16, at around rmin= 5× 10−5 the free
surface has developed waves close to the pinch point. These feature in plots of axial
velocity in figure 20(b), where one can see that the maximum absolute velocity (which
will have w< 0) shifts from around z= 0.08 (in curve 1) to z= 0.23 (curve 4). The
velocity profile in curve 4, with the maximum absolute velocity near the pinch point,
is closer to that predicted by the similarity solution in Eggers (1993).

It is possible these bumps could be related to the iterated instabilities observed
experimentally in Brenner, Shi & Nagel (1994) and interpreted as successive
instabilities of the similarity solution of Eggers (1993). In this work, the instability
was attributed to thermal fluctuations which were added to the lubrication formulation.
However, it was pointed out that because this formulation only approximates the
full Navier–Stokes system, such external noise may be unnecessary. The iterated
instabilities have been seen computationally in McGough & Basaran (2006) for a
surfactant-covered jet, but our results suggest that the instabilities can be generated
without requiring additional effects such as noise or surfactants.

There could also be a relation to the destabilisation of similarity solutions due
to finite-amplitude perturbations observed in Brenner et al. (1996), with intriguing
similarities between our figure 20(a) and their figure 5 for the evolution of an unstable
similarity solution.

11.3. Overturning of the free surface in the I-regime

Figure 15 showed that at Oh= 10−3 no overturning of the free surface was observed
and, as far as we are aware, this does not contradict any previous findings in the liquid
bridge geometry. Although simulations in Suryo & Basaran (2006) show overturning
in the same geometry, this phenomenon only occurs for non-Newtonian cases. In
contrast, for drop formation from an orifice, experimental studies show cases that
do (Castrejón-Pita et al. 2012) and do not (Brenner et al. 1997) exhibit overturning,
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whilst simulations using the inviscid equations do show this feature (Schulkes 1994)
and those using slender jet theory are unable to (Brenner et al. 1997).

The most comprehensive computational study of overturning is given in Wilkes
et al. (1999), where the finite element method is used to study the effect of Oh
and the Bond number Bo (i.e. gravitational forces) on this phenomenon. It is shown
that the critical Oh at which overturning is observed and the angles which the
free-surface shape makes with the z-axis at the pinch point depend on Bo, which
alters the geometry of the breakup. Furthermore, the angles recovered vary, with a
maximum angle of 95◦ observed, in contrast to the value of 112.8◦ predicted from
the inviscid theory (Day et al. 1998).

In the drop formation geometry, threads of arbitrary large lengths can be formed,
whereas in our set-up the liquid is confined between two stationary plates. This
appears to be the reason why no overturning has been observed even in cases of
small Oh which fall below the overturning limit in Wilkes et al. (1999). In particular,
rather than a thread connected to a free drop, our geometry has a short thread (the
satellite drop) connected to a hemispherical volume pinned to a plate.

11.4. Implications for breakup in CFD
Computational approaches that ‘go through’ the topological change of breakup all rely
on cutting the thread, either manually (as in finite element methods) or automatically
(as in volume-of-fluid approaches – VoF) once it reaches a specific rmin, which may
be implicitly related to the grid size (as in VoF). Therefore, it is of interest to know
how accurate this approach is and what could be lost from a premature truncation. To
do so, for the sake of argument consider a scheme with a fixed resolution (mesh size)
of 1h= 5× 10−3, giving a (relatively large) grid of 200× 200 for our problem, which
cuts the thread wherever rmin <1h.

The most obvious feature that can be lost from the cutoff is the satellite drop,
as seen in Fawehinmi et al. (2005). Looking at figure 11, satellite drop formation,
indicated by z(r = rmin) becoming non-zero, can clearly be seen for both Oh = 0.16
(curve 2) and Oh = 0.5 (curve 3). This occurs when the symmetric V-regime
transitions into the asymmetric VI one, as can be seen clearly from free-surface
profiles at Oh = 0.16 in figure 9. For Oh = 0.16 the pinch point moves when
rmin ≈ 10−2, whilst for Oh = 0.5 this does not happen until rmin ≈ 10−3. Therefore,
using our cutoff, at Oh= 0.16 the thread would be cut near to the correct pinch point,
whilst for Oh= 0.5 the thread would be severed at z= 0 so that the formation of a
satellite drop would be missed. Most worryingly, in the latter case the post-breakup
state would be entirely wrong, as instead of having two breakup points a distance
1z= 0.35 apart (giving three distinct volumes) there would be just one at the centre
of the drops (and hence two volumes). Notably, for R = 1 mm the minimum radius
rmin = 10−3 corresponds to a dimensional radius of 1 µm, so that these are truly
macroscopic quantities.

To capture the features of breakup, such as satellite drops, one has to either (i)
develop codes with huge levels of resolution/refinement, which will be extremely
costly (particularly in 3-D) due to the multiscale nature of this phenomenon, or (ii)
intelligently utilise the similarity solutions to take the codes through the topological
change and up to a suitable post-breakup state. Such a scheme would be complex,
but could lead to increased accuracy at a lower computational cost. By identifying
in which regions of parameter space the different similarity solutions are accurate
and devising methods to analyse in which flow regime a given breakup is occurring
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we have taken just some of the first steps in the development of such a scheme.
Forthcoming works will extend these results to cases in which there is a strong
externally driven elongation of the thread and/or interface formation physics which
creates a singularity-free breakup; see Shikhmurzaev (2007).
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Appendix. Identification of regimes
In figure 21, the calculation of the boundaries of the viscous regime is shown for

the case of Oh=1. The V-regime is defined by speeds −0.086< ṙmin<−0.056 (dashed
lines). The transition into this regime is found to occur when r→V

min = 1.4× 10−2 and
the exit from this regime is when r→V

min = 6.1 × 10−4. Once these values have been
calculated they are placed on the phase diagram, as shown in figure 7 (as circles), to
define the V-regime.

 0
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10–110–210–310–4
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 regime

FIGURE 21. (Colour online) Demonstration of method for calculating boundaries of the
viscous regime for the case of Oh= 1, where r→V

min denotes the transition into this regime
and rV→

min is the exit.
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