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ON THE NUMBER OF VERTICES
WITH A GIVEN DEGREE
IN A GALTON–WATSON TREE
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Abstract

Let Yk(ω) (k ≥ 0) be the number of vertices of a Galton–Watson tree ω that have k
children, so that Z(ω) := ∑

k≥0 Yk(ω) is the total progeny of ω. In this paper, we will
prove various statistical properties ofZ and Yk . We first show, under a mild condition, an
asymptotic expansion of P(Z = n) as n → ∞, improving the theorem of Otter (1949).
Next, we show that Yk(ω) := ∑k

j=0 Yj (ω) is the total progeny of a new Galton–Watson
tree that is hidden in the original tree ω. We then proceed to study the joint probability
distribution ofZ and {Yk}k , and show that, asn → ∞, {Yk/n}k is asymptotically Gaussian
under the conditional distribution P(· | Z = n).
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1. Introduction

Let � = {pn}∞n=0 be a probability distribution on nonnegative integers and let {Xn}∞n=0
(X0 = 0) be the Galton–Watson process (or the discrete-time branching process) with the
offspring distribution�. Various long-time behaviors of the integer-valued Markov chain {Xn}
form the main subject matter of classical treatises of Galton–Watson processes (e.g. [2], [14],
[17], [27]). There, the random tree structure, which is obvious in the intuitive description of
the process, is rather implicit or even entirely omitted from the exposition. In this paper, we
are interested in the typical shape of the random tree, which we will call the Galton–Watson
tree, obtained as the ‘trajectory’of the branching mechanism that gives rise to the process {Xn}.
Namely, a Galton–Watson tree is the random graph each of whose vertices gives birth to a
random number of children, according to the probability distribution � and independently of
each other. Two vertices are adjacent if and only if one is the parent of the other. Let Z be
the total number of vertices, or the total progeny, of the Galton–Watson tree and let Yk be the
number of vertices having k children. Motivated by the classical pioneering work by Otter
[24], which does not yet seem to have been fully appreciated, we will investigate in some
detail the asymptotic behavior of the probability distribution of Z, and of Yk := ∑k

j=0 Yj ,
k = 0, 1, 2, . . . , the number of vertices having at most k children. It will be seen that Yk is the
total progeny of a Galton–Watson tree that is hidden in the original tree. We will also prove a
central limit theorem for the distribution of (Y0, Y1, . . . ) conditioned onZ. As a corollary of this
theorem, the central limit theorem due to Mahmoud [22] for vertices of uniform binary trees will
be reproduced. Our proofs are based on the analysis of generating functions, and we rely entirely
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230 N. MINAMI

upon the Lagrange inversion formula in obtaining explicit formulae for various probabilities,
and upon the classical saddle point method in obtaining their asymptotic expressions.

In order to prepare a solid basis for our work, it is necessary to give a precise description of
‘trees’ and to introduce a suitable σ -field F as well as a probability measure P on the space �
of such trees. In this work we follow the convenient and elegant construction of the probability
space (�,F ,P) due to Neveu [23]. (It should be remarked, however, that an alternative
construction of the probability space of a Galton–Watson tree had already been given by Otter
himself [24]. This turns out to be equivalent to that of Neveu (see [21]), and even has some
advantages when one takes � to be topological space.)

Now, let U be the totality of finite sequences u = j1j2 · · · jn of strictly positive integers.
We can write U = ⋃

n≥0 N
n, where N = {1, 2, . . . } and N

0 = {φ}, φ standing for the empty
sequence. A tree ω is by definition a subset of U satisfying the following three conditions:
(a) φ ∈ ω; (b) if uj ∈ ω then u ∈ ω; and (c) for each u ∈ ω, there is a nonnegative integer
νu(ω) such that uj ∈ ω ⇔ 1 ≤ j ≤ νu(ω). Here, for two sequences u = j1j2 · · · jn and
v = k1k2 · · · kp, we write uv for their conjunction: uv = j1j2 · · · jnk1k2 · · · kp. In particular,
uj = j1j2 · · · jnj for j ∈ N. Thus, ω is a graph with vertices u ∈ ω and edges of the form
(u, uj). Condition (a) says that ω always contains the special vertex φ, the root of ω, while
condition (b) expresses the essential feature of a tree. Condition (c) says that our ω is what
is called an ordered tree in combinatorics. The integer νu(ω) is the number of children of
the vertex u ∈ ω, and we follow Otter in calling it the ‘type’ of the vertex u. For notational
convenience, we will sometimes write νω(u) instead of νu(ω).

For each u ∈ U , let�u = {ω ∈ � : ω � u} be the set of trees containing u as their common
vertex, and let F be the σ -field generated by the family {�u, u ∈ U}. For n = 1, 2, . . . , we let
Fn be the σ -field generated by �us with |u| ≤ n, |u| being the length of the sequence u. For
each u ∈ U , we also define the translation Tu : �u → � by Tu(ω) = {v ∈ U : uv ∈ ω}.

Now, let (�∗,F ∗,P∗) = ∏
u∈U(Z+,�) be the product over U of the discrete probability

space (Z+,�), the σ -field F ∗ being generated by the coordinate maps ν∗
u , u ∈ U , and let the

measurable map ψ : (�∗,F ∗) → (�,F ) be defined by

ψ(ω∗) = {u = j1 · · · jp : jk+1 ≤ ν∗
j1···jk (ω

∗), 0 ≤ k < p}.

If we define P := P∗ ◦ ψ−1 then, for each n, {Tu(ω), u ∈ ω, |u| = n} are independent
under the conditional distribution P(· | Fn), and obey the same law P. Moreover, if we set
Xn(ω) := �{u ∈ ω : |u| = n}, n = 0, 1, 2, . . . , then {Xn}n≥0 forms the Galton–Watson
process with offspring distribution � such that X0 = 1. See [23] for the precise statement of
this proposition. Here, �B means the cardinality of a finite set B.

In this setting, our Z and Yk can be expressed as

Z(ω) =
∑
u∈U

1�u(ω) and Yk(ω) = �{u ∈ ω : νu(ω) = k} =
∑
u∈U

1�uk\�u(k+1) (ω),

so that they are certainly F -measurable. For k = 0, uk in the second formula is understood to
mean uφ = u.

Since we are interested in the probability distribution ofZ andYk , we will assume throughout
this work that p0 > 0, in which case we haveZ < ∞ with positive probability. We also assume
that p0 +p1 < 1 in order to avoid the trivial case, which can be treated separately if necessary.

The outline of the paper is as follows. In Section 2, we consider the asymptotic behavior
of P(Z = n) as n → ∞. Under a certain condition on the generating function of �, we will
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show that P(Z = n) has an asymptotic expansion as n → ∞. If we take its main term, we
can reproduce Otter’s result (Theorem 4 of [24]). We also give some partial results when the
above-mentioned condition fails to hold. In Section 3, we show that Yk(ω) can be viewed as
the total progeny of a random tree structure, which we will call an abstract Galton–Watson
tree and which is hidden in the original tree ω. We then investigate the asymptotic behavior
of P(Yk = n) as n → ∞, for k = 0, 1, 2, . . . . In Section 4, we give some explicit formulae
for the joint distribution of Yk , k ≥ 0, conditioned on the event {Z = n}. We then consider its
limiting behavior as n → ∞, in Section 5, and prove a central limit theorem for the Yk .

2. Asymptotic results for P(Z = n)

2.1. Preliminaries

Let f (z) = ∑∞
n=0 pnz

n be the generating function of the offspring distribution � =
{pn}∞n=0, and let ρ ≥ 1 be its radius of convergence. As announced in the Introduction,
we assume that p0 > 0 and p0 + p1 < 1, so that f (0) > 0 and f (z) is strictly convex on
[0, ρ). Furthermore, let P (z) = ∑∞

n=1 P(Z = n)zn = E[zZ] be the generating function of the
total progeny Z. Note that Z ≥ 1, since a tree ω always contains the root φ. From the relation

Z(ω) = 1 +
νφ(ω)∑
j=1

∑
u∈U

1�ju(ω) = 1 +
νφ(ω)∑
j=1

Z ◦ Tj (ω) (1)

and the conditional independence, given F1, of Z ◦ Tj , j = 1, . . . , νφ(ω), we obtain

P (z) =
∞∑
k=0

P(νφ = k)E[z1+Z◦T1+···+Z◦Tk | νφ = k]

= z

∞∑
k=0

pk(E[zZ])k = zf (P (z)).

Thus, w = P (z) satisfies the functional equation w = zf (w). Since we are assuming that
f (0) 
= 0, we can apply the Lagrange inversion formula (see, e.g. [16]) to show that P(Z = n),
the nth coefficient of the power series P (z), is given by

P(Z = n) = 1

n
Res

[(
f (z)

z

)n]
= 1

2π in

∮ (
f (z)

z

)n
dz, (2)

where
∮

denotes contour integration along a circle surrounding the origin. Equation (2) shows
that P(Z = n) is the coefficient of zn−1 of the power series f (z)n, divided by n. However,
f (z)n is the generating function of the nth convolution power�∗n of� and, hence, nP(Z = n)

is equal to the probability that the first generation of our Galton–Watson process consists of
n− 1 individuals when there are n individuals in the zeroth generation. In other words, if we
let {q(n,m)}n,m≥0 be the transition probability of the Galton–Watson process with offspring
distribution �, we then have

P(Z = n) = 1

n
q(n, n− 1). (3)

By a purely probabilistic argument, Dwass [9] (see also [17]) obtained this seemingly
nontrivial relation. The basic functional equation P (z) = zf (P (z)) seems to date back to
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the work of Hawkins and Ulam (see the footnote on page 32 of [14]), and was independently
rediscovered by Good [10] and Otter [24], the latter noting (2) at the same time. This was also
rediscovered by Boyd [3], who used it to give an alternative proof of (3).

The class of distributions on natural numbers that are obtained as distributions of the total
progeny of Galton–Watson trees coincides with the class of ‘Lagrange distributions’ treated
systematically by Consul and Shenton [4]. Good [11] generalized the Lagrange inversion
formula to multivariable functions, and discussed its relation to multitype branching processes.
(See also [12].)

Now, let α ≥ 1 be the radius of convergence of the power series P (z), and let a = P (α−).
We then have the following relations.

Proposition 1. Under the conditions p0 > 0 and p0 + p1 < 1, we have

(i) a ≤ ρ,

(ii) α and a are finite,

(iii) f (a)/a = 1/α,

(iv) f ′(a) ≤ 1/α,

(v) f ′(a) = 1/α if a < ρ, and

(vi) if, conversely, f ′(ζ ) = f (ζ )/ζ for some 0 < ζ < ρ, then a < ρ and ζ = a.

Proof. All the statements except (vi) are proved in Lemma 4 and Theorem 3 of [24]. To
show (vi), suppose that a = ρ, in which case ρ is finite. Then, as z increases from 0 to α,
P (z) strictly increases from 0 to ρ. Hence, there exists a z0 ∈ (0, α) such that ζ = P (z0). If
we put z = z0 in the formulae zf (P (z)) = P (z) and zf ′(P (z))P ′(z) + f (P (z)) = P ′(z),
which is obtained by differentiating the former with respect to z, then, by f ′(ζ ) = f (ζ )/ζ , we
obtain P ′(z0)+ f (ζ ) = P ′(z0), whence f (ζ ) = 0. However, this is a contradiction, because
f (z) is increasing and f (0) = p0 > 0. Thus, we must have a < ρ and, by (iii) and (v),
f ′(z) = f (z)/z is satisfied also at z = a. However, since (zf ′(z) − f (z))′ = zf ′′(z) > 0 on
(0, ρ), this z is unique, so that ζ = a.

From now on, we will refer to the condition contained in statement (vi) as Condition A.
Since (zf ′(z)− f (z))|z=0 = −p0 < 0, it is obviously equivalent to the condition that

lim
z↑ρ(zf

′(z)− f (z)) > 0. (4)

It is also easy to see that Condition A holds if and only if the function f (z)/z attains a unique
minimum in (0, ρ), which is equal to f (a)/a.

When, on the other hand, Condition A fails, we have ρ = a < ∞, and f (z)/z is decreasing
on (0, a]. Hence, the number a is always characterized by the relation

f (a)

a
= inf

0<z<ρ

f (z)

z
, (5)

whether or not Condition A holds.
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The following proposition shows some trivial a-priori estimates for P(Z = n).

Proposition 2. (i) Let d = d(�) be the greatest common divisor of all n ≥ 0 such that pn > 0.
Then P(Z = n) = 0 if n 
= 1 (mod d).

(ii) We have

lim sup
n→∞

P(Z = n)1/n = f (a)

a
,

where a is given by (5).

Proof. (i) This is part of Theorem 4 of [24]. Here we give an alternative proof, to emphasize
that it has nothing to do with Condition A.

In the expansion

(
f (z)

z

)n
=

∑
j1,j2,...,jn≥0

pj1pj2 · · ·pjnzj1+j2+···+jn−n,

we have pj1pj2 · · ·pjn > 0 only when all of j1, j2, . . . , jn are integer multiples of d. Hence, if
n 
= 1 (mod d) we then have j1 +j2 +· · ·+jn−n 
= −1 for any such j1, j2, . . . , jn, so that the
residue at the origin of (f (z)/z)n vanishes and so, by (2), does P(Z = n). This proves part (i).
The assertion (ii) is obvious from the Cauchy–Hadamard formula for the radius of convergence
of power series and from part (iii) of Proposition 1. Note that we have 0 < f (a)/a ≤ 1, since
1 ≤ α < ∞.

2.2. Asymptotic expansion of P(Z = n) as n → ∞
The following is an improvement of Theorem 4 of [24].

Theorem 1. Under Condition A, P(Z = n) has an asymptotic expansion of the form

P(Z = n) ∼
∞∑
k=1

ck

(
f (a)

a

)n
n−k−1/2

as we let n → ∞ keeping n = 1 (mod d). Here, a and d are the numbers discussed in
Propositions 1 and 2, respectively, and, in particular,

c1 = d

√
f (a)

2πf ′′(a)
.

Proof. Throughout the proof, we assume that n = 1 (mod d). Condition A means that we
can take the contour |z| = a in the integral of (2). Noting that f (z) depends only on zd , we
can rewrite (2) as

P(Z = n) = ad

2πn

∫ π/d

−π/d
exp(nψ(θ)) eiθ dθ, (6)

where we let ψ(θ) = log[f (a eiθ )/a eiθ ]. From f ′(a) = f (a)/a, it is easy to verify that
ψ(0) = log[f (a)/a], ψ ′(0) = 0, andψ ′′(0) = −a2f ′′(a)/f (a) < 0. Thus, we are in a typical
situation in which the Laplace method yields the asymptotic expansion (see [5] and [6]). Since
the technique is standard, we will only sketch the outline, omitting the details.
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Pick a δ ∈ (0, π/d) sufficiently small that, for |θ | ≤ δ, we have the inequality Reψ(θ) ≤
−ηθ2, for some η > 0, and the expansion

ψ(θ) = log
f (a)

a
−Kθ2 +

∞∑
k=3

Bkθ
k,

where we have let ψ ′′(0) = −2K . In fact, if we let ρk := pka
k/f (a) then �a := {ρk}k≥0 is a

probability distribution on Z+ whose characteristic function is f (a eiθ )/f (a). Hence, if κk is
the kth cumulant of the distribution �a , we then have the relation Bk = ikκk/k!.

It is easy to show that |f (a eiθ )| < f (a) for θ ∈ [−π/d, π/d] \ {0} (see the lemma below),
so that

�δ := sup
δ≤|θ |≤π/d

∣∣∣∣f (a eiθ )

a eiθ

∣∣∣∣ < f (a)

a
. (7)

Hence,

P(Z = n) = ad

2πn

∫ δ

−δ
exp{nψ(θ)} eiθ dθ + O(n−1�nδ )

= ad

2πn

(
f (a)

a

)n ∫ δ

−δ
exp(−nKθ2) exp(iθ + nθ3β(θ)) dθ + O(n−1�nδ ) (8)

for large n, where we have set β(θ) := ∑
k≥3 Bkθ

k−3.
Following [6], we introduce the power series

P(ω, θ) = exp(iθ + ωβ(θ)) =
∑
�,m≥0

c�mω
�θm

and the polynomial

PA(ω, θ) =
∑

�+m≤A
c�mω

�θm.

We then have
P(ω, θ)− PA(ω, θ) = O(ωA+1)+ O(θA+1)

as |ω| + |θ | → 0.
We now replace δ by τn := n−1/3 in the integral in (8). The resulting error can be estimated

to be O(n−2/3 e−ηn1/3
). Then we insertPA(nθ3, θ) in place of exp(iθ+nθ3β(θ)) = P(nθ3, θ).

The bound of the error introduced by this replacement is given by

ad

2πn

(
f (a)

a

)n
× O

(∫ τn

0
exp(−nKθ2){(nθ3)A+1 + θA+1} dθ

)

= O

(
1

n

(
f (a)

a

)n
n−1−A/2

)
,

which absorbs the other, smaller error terms. Thus, for any A ≥ 0, we have

P(Z = n) = ad

2πn

(
f (a)

a

)n[∫ τn

−τn
exp(−nKθ2)PA(nθ

3, θ) dθ + O(n−1−A/2)
]
.
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Finally, we extend the integral to the whole real line with the error, which can be estimated to
be O(e−αn1/3

) for some α > 0. Thus, we arrive at

P(Z = n) = ad

2πn

(
f (a)

a

)n[ ∑
�+m≤A

c�mn
�

∫ ∞

−∞
exp(−nKθ2)θ3�+m dθ + O(n−1−A/2)

]

= ad

2π

(
f (a)

a

)n[ ∑
�+m≤A

γ�mK
−(3�+m+1)/2n−1−(�+m+1)/2 + O(n−2−A/2)

]
, (9)

where γ�m = 0 if �+m is odd, and γ�m = �((3�+m+ 1)/2)c�m if �+m is even. If we take
A = 2k − 1, k = 1, 2, . . . , then the error term becomes O(n−k−3/2), while the final term in
the sum is a constant multiple of n−k−1/2. The validity of (9) for all A > 0 thus implies that
we have the asymptotic expansion

P(Z = n) ∼ ad

2π

∞∑
k=1

( ∑
�+m=2(k−1)

γ�mK
−(3�+m+1)/2

)(
f (a)

a

)n
n−k−1/2

as n → ∞. The coefficient for k = 1 is

ad

2π
γ00K

−1/2 = ad

2π
c00�(

1
2 )

(
a2f ′′(a)
2f (a)

)−1/2

= d

√
f (a)

2πf ′′(a)
.

Lemma 1. If 0 < p0 < 1 we then have |f (r eiθ )| < f (r), given that 0 < r < ρ and
0 < |θ | ≤ π/d.

Proof. Let A := {k ≥ 1 : pk > 0}. Since we have, for any k ∈ A, the inequality

|f (r eiθ )| ≤ |p0 + pkr
k eikθ | +

∑
n
=0,k

pnr
n,

where
|p0 + pkr

k eikθ |2 = p2
0 + p2

kr
2k + 2p0pkr

k cos kθ,

all we have to do is to verify that cos kθ < 1 for some k ∈ A. When A = {d}, this is obvious
from the assumption on θ . When A contains at least two numbers, take distinct k, k′ ∈ A such
that gcd(k, k′) = d . Then, there are integers m and m′ such that mk + m′k′ = d. Now, if we
had cos kθ = cos k′θ = 1, then kθ = 2π� and k′θ = 2π�′ for some integers � and �′. Hence,
we would have θd = θ(mk + m′k′) ∈ 2πZ, contradicting the assumption on θ . Thus, either
cos kθ < 1 or cos k′θ < 1.

2.3. Some partial results when Condition A fails

When Condition A fails to hold, we have, in view of Proposition 1, ρ = a < ∞ and f (ρ) =
f (a) = a/α < ∞. We also have f ′(ρ) = f ′(a) ≤ 1/α < ∞; in fact, f ′(ρ) ≤ f (ρ)/ρ. On
the other hand, f (ρ)/ρ = f (a)/a ≤ 1/α ≤ 1 since α ≥ 1. In particular, f (z) = f (x + iy)
is C1 with respect to (x, y) on the closed disk {|z| ≤ ρ} and, hence, we can take the circle
{|z| = ρ} as the contour of integration in (2), so that

P(Z = n) = ρd

2πn

∫ π/d

−π/d
exp(nψ(θ)) eiθ dθ,

where we let ψ(θ) = log[f (ρ e−iθ /ρ eiθ )]. We will consider two cases separately.
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2.3.1. The case f ′(ρ) = f (ρ)/ρ. In this case, we will assume that f (4)(ρ) < ∞. As before,
we have ψ ′(0) = 0 and

−2K := ψ ′′(0) = ρ2 f
′′(ρ)
f (ρ)

< 0,

so that
ψ(θ) = ψ(0)−Kθ2 + iβθ3 + φ(θ), (10)

where iβ = ψ(3)(0)/3!, β ∈ R, and φ(θ) = O(θ4) as θ → 0. (The function φ(·) should not
be confused with the symbol for the empty sequence.) Moreover, ψ(0) = log[f (ρ)/ρ] is the
maximum value of Reψ(θ). Now we can proceed as in Section 2.2, to obtain

P(Z = n) = ρd

2πn

{∫ δ

−δ
exp(nψ(θ)) eiθ dθ + O(�nδ )

}

= ρd

2πn

{∫ τn

−τn
exp(nψ(θ)) eiθ dθ + O

((
f (ρ)

ρ

)n ∫ δ

τn

e−ηnθ2
dθ

)
+ O(�nδ )

}
,

where δ, �δ , τn, and η have the same meaning as before. Since∫ δ

τn

e−ηnθ2
dθ = O(n−2/3 e−ηn1/3

),

it absorbs the error term O(�nδ ). Hence, taking (10) and τn = n−1/3 into account, we can write

P(Z = n) = ρd

2πn

(
f (ρ)

ρ

)n{ ∫ τn

−τn
exp(−Knθ2+iβnθ3+nφ(θ)) eiθ dθ + O(n−2/3 e−ηn1/3

)

}

= ρd

2πn

(
f (ρ)

ρ

)n{ ∫ τn

−τn
exp(−Knθ2+iβnθ3) eiθ dθ

+ O

(∫ τn

0
e−Knθ2

nφ(θ) dθ

)
+ O(n−2/3 e−ηn1/3

)

}
.

From φ(θ) = O(θ4), we obtain the estimate∫ τn

0
e−Knθ2

nφ(θ) dθ = O(n−3/2).

On the other hand,∫ τn

−τn
exp(−Knθ2 + iβnθ3 + iθ) dθ

=
∫ τn

−τn
e−Knθ2

cos(βnθ3 + θ) dθ

=
∫ τn

−τn
e−Knθ2

dθ + O

(∫ τn

−τn
e−Knθ2

(n2θ6 + θ2) dθ

)

= 1√
n

∫ ∞

−∞
e−Kz2

dz+ O(n−3/2)

and, thus,

P(Z = n) =
√

f (ρ)

2πf ′′(ρ)

(
f (ρ)

ρ

)n
n−3/2(1 + O(n−1)).
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2.3.2. The case f ′(ρ) < f (ρ)/ρ. In this case, we will assume that f (k)(ρ) < ∞ for some
k ≥ 3. As before, ψ(0) = log[f (ρ)/ρ] is the maximum value of Reψ(θ). Moreover, we have

ψ ′(0) = i
ρf ′(ρ)− f (ρ)

f (ρ)
=: −iβ,

with β > 0, and

ψ ′′(0) = ρf ′(ρ)
f (ρ)2

(ρf ′(ρ)− f (ρ))− ρ2 f
′′(ρ)
f (ρ)

< 0.

Thus, letting −2K = ψ ′′(0), we can write

ψ(θ) = ψ(0)− iβθ −Kθ2 + φ(θ),

with φ a Ck function satisfying φ(θ) = O(θ3) and φ(0) = φ′(0) = φ′′(0) = 0.
We now estimate, with the same notation as before,

P(Z = n) = ρd

2πn

{∫ τn

−τn
exp(nψ(θ)) eiθ dθ + O

((
f (ρ)

ρ

)n
n−2/3 e−ηn1/3

)}
.

If we let

Jn :=
∫ τn

−τn
exp(nψ(θ)) eiθ dθ

then

Jn =
(
f (ρ)

ρ

)n 1√
n

∫ n1/6

−n1/6
e−iβ

√
nzFn(z) dz,

where

Fn(z) := exp

[
−Kz2 + nφ

(
z√
n

)
+ i

z√
n

]
.

Now, it is easy to see that we can find constants A,C > 0, independent of n, so that, for
j = 0, 1, . . . , k and |z| ≤ n1/6, we have∣∣∣∣ dj

dzj
Fn(z)

∣∣∣∣ ≤ A e−Cz2
.

Integrating by parts k times, we obtain

Jn =
(
f (ρ)

ρ

)n 1√
n

{ k∑
j=1

(−1)j−1
[

e−iβ
√
nz

(−iβ
√
n)j

dj−1

dzj−1Fn(z)

]z=n1/6

z=−n1/6

+ (−1)k
∫ n1/6

−n1/6

e−iβ
√
nz

(−iβ
√
n)k

dk

dzk
Fn(z) dz

}

=
(
f (ρ)

ρ

)n 1√
n

× O(n−k/2)

and, consequently,

P(Z = n) = O

((
f (ρ)

ρ

)n
n−3/2−k/2

)
as n → ∞.
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For illustration, consider the case ρ = 1, so that f (ρ)/ρ = 1. The condition f ′(ρ) <
f (ρ)/ρ means that our Galton–Watson tree is subcritical. What has just been proved shows
that

P(Z = n) = O(n−3/2−k/2)

if f (k)(1) < ∞ (k ≥ 3). If, for example, pn ∼ e−δnγ with δ > 0 and 0 < γ < 1, then
f (k)(1) < ∞ for all k ≥ 3 and, consequently, P(Z = n) decays faster than any power of n.
However, one still has

lim sup
n→∞

P(Z = n)1/n = 1,

by Proposition 2.

3. The distribution of Yk

3.1. Yk as the total progeny of a hidden Galton–Watson tree

In this section, we consider Yk(ω) := ∑k
j=0 Yj (ω), the number of those vertices of the

Galton–Watson tree ω having at most k children, Y0(ω) being in particular the number of
‘leaves’ of ω.

Let

Q(z) ≡ Qk(z) := E[1{Yk<∞} zYk ] =
∞∑
n=1

P(Yk = n)zn

be the generating function of the distribution of Yk . (Note that, from our assumption that
p0 > 0, we have P(Y0 > 0) = 1. Thus, P(Yk = 0) = 0 for all k ≥ 0.)

Since we have

Yk(ω) = 1{νφ≤k}(ω)+
νφ(ω)∑
j=1

(Yk ◦ Tj )(ω),

we can proceed, just as in Section 2.1, to write

Q(z) = E

[
z

1{νφ≤k}
νφ∏
j=1

(1{Yk<∞} ◦Tj )(zYk ◦ Tj )
]

= E

[
z

1{νφ≤k} E

[ νφ∏
j=1

(1{Yk<∞} zYk ◦ Tj )
∣∣∣∣ F1

]]

= E

[
z

1{νφ≤k}
νφ∏
j=1

E[1{Yk<∞} zYk ]
]

= zE[1{νφ≤k} Q(z)νφ ] + E[1{ν>k} Q(z)νφ ]

= z

k∑
j=0

pjQ(z)
j + f (Q(z))−

k∑
j=0

pjQ(z)
j .

Thus, w = Q(z) solves the equation

z

k∑
j=0

pjw
j = w − f (w)+

k∑
j=0

pjw
j ,
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or
z = w

gk(w)
,

where we have set

gk(w) = w
∑k
j=0 pjw

j

w − f (w)+ ∑k
j=0 pjw

j
.

For later use, let us further define

hk(w) =
k∑
j=0

pjw
j and ϕk(w) =

∑
j>k

pjw
j−1.

Then

gk(w) = hk(w)

1 − ϕk(w)
. (11)

We will now prove that gk(w) is the generating function of a probability distribution�(k) :=
{p(k)n }∞n=0 that satisfies our basic assumptions, namely that p(k)0 > 0 and p(k)0 + p

(k)
1 < 1.

To this end, let us write

gk(w) = hk(w)

∞∑
n=0

ϕk(w)
n

=
(
hk(w)

hk(1)

)
hk(1)

∞∑
n=0

ϕk(1)
n

(
ϕk(w)

ϕk(1)

)n
.

If we set

H(w) := hk(w)

hk(1)
,

G(ζ ) := hk(1)
∞∑
n=0

ϕk(1)
nζ n,

ψ(w) := ϕk(w)

ϕk(1)
,

then H , G, and ψ are the generating functions, respectively, of P(νφ ∈ · | νφ ≤ k), the
geometric distribution with parameter ϕk(1) = P(νφ > k), and P(νφ − 1 ∈ · | νφ > k).
Consequently, if X,N, S1, S2, . . . are independent, integer-valued random variables, and if
X, N , and Sj have H , G, and ψ as their respective generating functions, then gk(w) =
G(ψ(w))H(w) is the generating function of the random variable

N∑
j=1

Sj +X.

Obviously, gk(0) = p0 for k ≥ 1 and gk(0) = p0/(1 − p1) for k = 0, whence p(k)0 =
gk(0) > 0. From the facts that

g′
k(w) = h′

k(w)(1 − ϕk(w))+ hk(w)ϕ
′
k(w)

(1 − ϕk(w))2
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and ϕk(1)+ hk(1) = 1, we obtain

g′
k(1) = h′

k(1)+ ϕ′
k(1)

hk(1)
= 1 + f ′(1)− 1

hk(1)
.

This shows that g′
k(1) is less than 1, equals 1, or is greater than 1 if and only if f ′(1) satisfies

the same condition. On the other hand, we have

g′
k(0) =

⎧⎪⎨
⎪⎩
p0p2/(1 − p1)

2 (k = 0),

p1 + p0p2 (k = 1),

p1 (k > 1).

Hence, for k > 1, p(k)0 + p
(k)
1 = gk(0) + g′

k(0) = p0 + p1 < 1, by one of the assumptions.
Similarly, for k = 1,

g1(0)+ g′
1(0) = p0 + p1 + p0p2 < 1.

To consider the case k = 0, let q2 = ∑
n≥2 pn > 0. Then,

p0(1 − p1 + p2) = (1 − p1 − q2)(1 − p1 + p2)

≤ (1 − p1 − q2)(1 − p1 + q2)

= (1 − p1)
2 − q2

2

< (1 − p1)
2

and, hence,

g0(0)+ g′
0(0) = p0

1 − p1
+ p0p2

(1 − p1)2
= p0(1 − p1 + p2)

(1 − p1)2
< 1.

Finally, if t > 0 satisfies f (t) = t then hk(t)+ tϕk(t) = t for any k ≥ 0, that is,

gk(t) = hk(t)

1 − ϕk(t)
= t.

These considerations can be summarized in the following theorem.

Theorem 2. For any k ≥ 0, the distribution of Yk is equal to that of the total progeny of
the Galton–Watson tree with offspring distribution �(k) = {p(k)n }∞n=0. Like the original � =
{pn}∞n=0, �(k) satisfies the conditions p(k)0 > 0 and p(k)0 + p

(k)
1 < 1. The new Galton–Watson

tree is subcritical, critical, or supercritical if and only if the original one is so. Moreover,
the extinction probabilities of both Galton–Watson trees, which are solutions, respectively, of
f (t) = t and gk(t) = t , coincide.

Corollary 1. P(Z = ∞, Yk < ∞) = 0 for any k ≥ 0.

Proof. Obviously {Z < ∞} ⊂ {Yk < ∞}, but the probabilities of the events, being the
extinction probability of the old and that of the new Galton–Watson tree, respectively, are equal.

We have thus shown the existence of a Galton–Watson tree whose total progeny has the same
distribution as Yk . This would be sufficient for most applications, but it is natural to ask if the
new Galton–Watson tree can be constructed as a functional of the original tree ω, so that its
total progeny coincides with Yk(ω). We will now show that this is actually the case, but before
doing so we need to formulate an abstract notion of Galton–Watson tree. To begin with, let us
generalize the notion of tree itself.
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Definition 1. Let G = (V ,E) be a directed graph, where V is a finite or countable vertex set
and E ⊂ V × V . We will call G an abstract tree if the following five conditions hold.

1. For any u ∈ V , (u, u) /∈ E. That is, G has no loops.

2. There is a special vertex u0 ∈ V such that (u, u0) /∈ E for all u ∈ V . We call u0 the
‘root’ of G.

3. For any v ∈ V \{u0}, there is one and only one u ∈ V such that (u, v) ∈ E. In particular,
G is an oriented graph.

4. The (nondirected) graph Gs = (V ,Es), obtained by letting Es := {{u, v} : (u, v) ∈
E or (v, u) ∈ E}, is connected.

5. For any u ∈ V , the set WG(u) = {v ∈ V : (u, v) ∈ E} is finite and totally ordered.

Let us first show that an abstract treeG = (V ,E) is isomorphic to a tree ω ∈ � in the sense
of Neveu (and, equivalently, of Otter). From part 4, we see that for an arbitrary u ∈ V , there
is a path connecting u0 and u in the graph Gs . Let u0u1 · · · un−1un, where we let un = u, be
such a path that has minimum length. By part 1, we have ui−1 
= ui for i = 1, . . . , n and, by
part 2, we must have (u0, u1) ∈ E. Let k be the maximum of those j = 1, . . . , n for which
(ui−1, ui) ∈ E for all i < j . If k < n we then have (uk−1, uk) ∈ E and (uk+1, uk) ∈ E,
yielding uk−1 = uk+1 by virtue of part 3. Then u0u1 · · · uk−1uk+2 · · · un would also be a
path in Gs of length n − 2 connecting u0 and u, contradicting the minimality of n. Hence,
k = n and we must have (ui−1, ui) ∈ E for i = 1, . . . , n. If there existed another path
u0v1 · · · vn−1vn, where vn = u, connecting u0 and u in Gs then, by the same argument, we
would have (u0, v1) ∈ E, (v1, v2) ∈ E, . . . , (vn−1, vn) ∈ E. Hence, we must have vj = uj
for j = n− 1, n− 2, . . . , 1, by part 3.

Thus, the shortest path connecting u0 and u in Gs is unique, and connects u0 and u also in
G. By part 3, it is actually the unique path connecting u0 and u in G. Thus, for each u ∈ V ,
there corresponds a unique path u0u1 · · · un (un = u) in G. Since ui ∈ WG(ui−1) and since
WG(ui−1) is in one-to-one correspondence with the set {1, 2, . . . , νG(ui−1)}, where we set
νG(v) = �WG(v) for v ∈ V , this path can be represented without ambiguity by a sequence of
integers j1j2 · · · jn ∈ U . If we write τG(u) = j1j2 · · · jn for u ∈ V , then ω = τG(V ) ⊂ U

obviously satisfies the conditions (a), (b), and (c) stated in the Introduction, and so ω ∈ � and
τG is a graph isomorphism between two trees G and ω.

In order to randomize the notion of abstract tree, we fix a nonempty countable set S and let
GS be the totality of abstract treesG = (V ,E) such thatV ⊂ S. Define a mapping τ : GS → �

by letting τ(G) = τG(V ) for G = (V ,E) ∈ GS , and let G be the σ -field on GS generated by
the mapping τ .

Now let (�̃, F̃ , P̃) be a probability space. A random S-tree is by definition a mapping
G : �̃ → GS which is F̃ /G-measurable. This condition is obviously equivalent to saying that
the composition τ ◦G : �̃ → � is F̃ /F -measurable. When the image P = P̃ ◦ (τ ◦G)−1 is
the distribution of a Galton–Watson tree, we will say that our random S-treeG(·) is an abstract
Galton–Watson tree.

Returning to our Galton–Watson tree (�,F ,P) with offspring distribution � = {pn}∞n=0,
we first note that our assumption p0 > 0 implies that P(

⋂∞
n=1�u1n) = 0 for each u ∈ U ,

where we denote by 1n = 11 · · · 1 the sequence consisting of n consecutive 1s. Hence, if we
let �̃ = ⋂

u∈U
⋃∞
n=1(�u1n)

c we then have �̃ ∈ F and P(�̃) = 1. Restricting F and P to �̃,
we obtain a new probability space (�̃, F̃ , P̃).
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For k ≥ 0 and for each ω ∈ �̃, set

Vk(ω) = {u ∈ U : u ∈ ω and νω(u) ≤ k} ⊂ U.

Then Yk(ω) = �Vk(ω). We are now going to show that, by suitably defining the adjacency
relation on Vk(ω), this can be turned into an abstract Galton–Watson tree whose offspring
distribution is�(k). To make the idea transparent, while avoiding notational complications, we
will give the full details of its construction only for k = 0, in which case V0(ω) is the set of end
points, or ‘leaves’, of ω, and give a brief sketch for the general case k ≥ 1.

To begin with, let us make V0(ω) into an abstract tree, which we will denote G0(ω), in the
following way. Since ω ∈ �̃, we have

n0(ω) := max{p ≥ 0 : 1p ∈ ω} < ∞.

We write u0(ω) = 1n0(ω), which will play the role of the root of G0(ω). Now, if n0(ω) = 0
or νω(1p) = 1 for all p < n0(ω), then u0(ω) has no children and V0(ω) = {u0(ω)}. If
νω(1p) > 1 for some 0 ≤ p < n0(ω), then those vertices u ∈ V0(ω) of the form u = 1pa1m,
where 0 ≤ p < n0(ω), 1 < a ≤ νω(1p), and m = max{j ≥ 0 : 1pa1j ∈ ω}, are by definition
children of u0(ω). In general, u ∈ V0(ω) has the form

u = 1p1a11p2a2 · · · 1pN aN1m =: ũ1m, (12)

where pi ≥ 0, i = 1, . . . , N , 1 < ai ≤ νω(1p1ai · · · 1pi ), and m = max{j ≥ 0 : ũ1j ∈ ω}.
Whenm = 0 or νω(ũ1j ) = 1 for all 0 ≤ j < m, the vertex u has no children, while in the case
νω(ũ1j ) > 1 for some 0 ≤ j < m, it has children of the form v = ũ1ib1� ∈ V0(ω), where
0 ≤ i < m, 1 < b ≤ νω(ũ1i ), and � = max{p ≥ 0 : ũ1ib1p ∈ ω}. If we let E0(ω)

be the totality of such parent–child pairs (u, v), then the resulting directed graph G0(ω) =
(V0(ω), E0(ω)) obviously satisfies parts 1 and 2 of Definition 1. To verify part 3, consider

v = 1p1a1 · · · 1pN aN1ib1� =: ṽ1ib1� ∈ V (ω) (13)

with N ≥ 0. Since v ∈ ω and since ω is a tree in the sense of Neveu, we have ṽ1ib ∈ ω.
Replacing b by 1, we also have ṽ1i+1 ∈ ω. Hence, if we let m = max{p ≥ 0 : ṽ1p ∈ ω} then
0 < m < ∞ and u := ṽ1m ∈ V0(ω) is the uniquely determined parent of v, i.e. (u, v) ∈ E0(ω).

If N > 0 in (13) then, by the same procedure, we can in turn find the parent of u, and so on.
Thus, starting from a vertex v ∈ V0(ω) of the form (13), we can find uN, uN−1, . . . , u1 such
that (ui−1, ui) ∈ E0(ω) for i = 1, . . . , N + 1, where we set uN+1 = v. Since this is true for
all v ∈ V0(ω), we see that part 4 of Definition 1 holds, too. Finally, for each u ∈ V0(ω), let
Wω(u) ⊂ V0(ω) be the totality of its children. If u is of the form (12), i.e. u = ũ1m, then from
the consideration above, we have

�Wω(u) =
m∑
i=0

(νω(ũ1i )− 1)+ < ∞. (14)

Moreover, we can arrange the members ofWω(u) into natural lexicographic order, under which
Wω(u) is totally ordered. Namely, given two typical vertices v = ũ1ib1� and v′ = ũ1i′b′1�′
of Wω(u), we define v < v′ if i < i′ or if i = i′ and b < b′. Thus we have shown that
G0(ω) = (V0(ω), E0(ω)) is an abstract tree for each ω ∈ �̃.

For example, consider the tree ω ∈ � shown in Figure 1, for which Y0(ω) = 4. The
corresponding tree G0(ω) is isomorphic to the one shown in Figure 2. In Figure 3, it is shown
how the tree G0(ω) grows in the original tree ω.
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Figure 1: The tree ω.

G0 ( )ω ∼=

Figure 2: The tree G0(ω).

(a) (b) (c)

Figure 3: HowG0(ω) grows in ω. Diagram (a) shows the zeroth generation; diagram (b) the zeroth and
first generations; and diagram (c) the zeroth, first, and second generations.

Thus, we have constructed a mapping G0(ω) defined for ω ∈ �̃ and taking its values
in GU , the totality of abstract trees whose vertex sets are subsets of U . We will now show
that G0 : �̃ → GU is a random U -tree in the sense previously defined. This amounts to
showing that (τ ◦G0)

−1(�u) ∈ F̃ for each u ∈ U . This we will do by induction on the length
of the sequence u.

First consider the case |u| = 1, i.e. suppose that u = j for some j ∈ N. Then,

(τ ◦G0)
−1(�j ) = {ω ∈ �̃ : �Wω(u0(ω)) ≥ j}.

By letting m = n0(ω) and ũ = φ in (14), we can write, for each j ≥ 1,

{ω ∈ �̃ : �Wω(u0(ω)) ≥ j} =
∞⋃
n=1

⋃
k0+···+kn−1≥j,ki≥0

Cn,k0,...,kn−1 , (15)

where, for n ≥ 1 and k0, k1, . . . , kn−1 ≥ 0, we write

Cn,k0,...,kn−1 = {ω ∈ �̃ : n0(ω) = n, νω(1i ) = 1 + ki, i = 0, 1, . . . , n− 1}
= {ω ∈ �̃ : νω(1i ) = 1 + ki, i = 0, 1, . . . , n− 1, νω(1n) = 0}, (16)

which obviously belongs to F̃ , proving that (τ ◦G0)
−1(�j ) ∈ F̃ .
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Suppose that we have shown that (τ ◦ G0)
−1(�v) ∈ F̃ for v ∈ U with |v| = n − 1.

Then, picking a sequence u = j1j2 · · · jn ∈ U with j1 ≥ 1, since we can write �u =
{νφ ≥ j1} ∩ T −1

j1
(�j2···jn) we have, noting (15), that

(τ ◦G0)
−1(�u) =

∞⋃
n=1

⋃
k0+···+kn−1≥j1

Cn,k0,...,kn−1 ∩ (Tj1 ◦ τ ◦G0)
−1(�j2···jn).

Given n ≥ 1 and k0, k1, . . . , kn−1 ≥ 0 with
∑n−1
i=0 ki ≥ j1, choose � ≥ 1 and 1 < a ≤ 1 + k�

so that j1 = k0 + · · · + k�−1 + (a − 1). Then, on the set Cn,k0,...,kn−1 , we obviously have
Tj1 ◦ τ ◦G0 = τ ◦G0 ◦ T1�a . Hence, we obtain

(τ ◦G0)
−1(�u) =

∞⋃
n=1

⋃
k0+···+kn−1≥j1

Cn,k0,...,kn−1 ∩ {(T1�a)
−1((τ ◦G0)

−1(�j2···jn))}.

However, since Cn,k0,...,kn−1 ∈ F̃ , as was already shown; since (τ ◦ G0)
−1(�j2···jn) ∈ F̃ ,

from the assumption; and since the translation Tv : �̃ ∩�v → �̃ is measurable, we must have
(τ ◦G0)

−1(�u) ∈ F̃ .
Finally, let us prove that the probability measure Q = P̃ ◦ (τ ◦ G0)

−1 induced on (�,F )
is the distribution of the Galton–Watson tree with offspring distribution�(0) = {p(0)n }∞n=0. For
this purpose, we note that the following general criterion holds.

Proposition 3. Let P be a probability distribution on (�,F ) and let � = {pn}∞n=0 be that on
Z+. Then, for P to be the distribution of the Galton–Watson tree with offspring distribution�,
it is necessary and sufficient that P(νφ = k) = pk for k ≥ 0 and that

P

( k⋂
j=1

T −1
j (Bj )

∣∣∣∣ νφ = k

)
=

k∏
j=1

P(Bj )

for any k ≥ 1 and B1, . . . , Bk ∈ F .

Proof. For the proof of necessity, see Section 3 of [23]. To show that the condition is
sufficient, let us define, for any finite tree t ∈ � and for any � = (λe : e ∈ G0(t)) ∈ Z

G0(t)+ ,

[t;�] := {ω ∈ � : νu(ω) = νu(t) for u ∈ � (t) and νe(ω) = λe for e ∈ G0(t)},
where � (t) := {u ∈ t : νu(t) > 0} is the totality of the ‘inner points’ of the tree t . Subsets
of � of this form were called ‘neighborhoods’ by Otter [24]. By the equivalence of the two
constructions of the probability space for Galton–Watson trees due to Otter and Neveu (see
[21]), it is enough to verify that

P([t;�]) =
( ∏
u∈� (t)

pνu(t)

)( ∏
e∈G0(t)

pλe

)
. (17)

Given t and � = (λe : e ∈ G0(t)) as above, let �j = (λe : e ∈ G0(Tj t)) for j = 1, 2,
. . . , νφ(t), which together form a partition of �. Then, it is easily seen that

[t;�] = {ω ∈ � : νφ(ω) = νφ(t)} ∩
νφ(t)⋂
j=1

T −1
j ([Tj t;�j ])
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holds. Thus, from the assumption,

P([t;�]) = P(νφ = νφ(t))P

(νφ(t)⋂
j=1

T −1
j ([Tj t;�j ])

∣∣∣∣ νφ = νφ(t)

)

= pνφ(t)

νφ(t)∏
j=1

P([Tj t;�j ]).

Repeating this argument to rewrite P([Tj t;�j ]), and so on, we arrive at (17).

Let us apply this criterion to our measure Q. From (14) and (16), we see that

Q(νφ = k) =
∞∑
n=0

∑
k0+···+kn−1=k,ki≥0

P(νω(1i ) = 1 + ki, 0 ≤ i < n, and νω(1n) = 0).

But our P was defined to be the image, under the mappingψ , of the product measure P∗ = �U .
Moreover, on the set

{ω∗ ∈ �∗ : ν∗
1i (ω

∗) = 1 + ki, 0 ≤ i < n, ν∗
1n(ω

∗) = 0},
which is a subset of ψ−1(�1n), we have ν1i (ψ(ω

∗)) = ν∗
1i
(ω∗), i = 0, 1, . . . , n. Thus we

have, from independence,

P(νω(1i ) = 1 + ki, 0 ≤ i < n, νω(in) = 0)

= P∗(ν∗
1i = 1 + ki, 0 ≤ i < n, ν∗

1n = 0)

= p0

n−1∏
i=0

p1+ki

= p0(1 − p0)
n
n−1∏
i=0

P(νφ − 1 = ki | νφ > 0)

and, hence,

Q(νφ = k) =
∞∑
n=0

p0(1 − p0)
n

∑
k0+···+kn−1=k

n−1∏
i=0

P(νφ − 1 = ki | νφ > 0) = p
(0)
k ,

verifying the first part of the criterion. Next, for k ≥ 1 and B1, . . . , Bk ∈ F , we write

Q

(
{νφ = k} ∩

k⋂
i=1

T −1
i (Bi)

)

= P

(
{νφ ◦ τ ◦G0 = k} ∩

k⋂
i=1

(Ti ◦ τ ◦G0)
−1(Bi)

)

=
∞∑
n=1

∑
k0+···+kn−1=k

P

(
Cn,k0,...,kn−1 ∩

k⋂
�=0

1+ki⋂
a=2

(T1�a)
−1((τ ◦G0)

−1(B�,a))

)
,
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where we have written B�,a instead of Bj when j = k0 + · · · + k�−1 + (a − 1) holds. By the
same reasoning as above, we have

P

(
Cn,k0,...,kn−1 ∩

n−1⋂
�=0

1+ki⋂
a=2

(T1�a)
−1((τ ◦G0)

−1(B�,a))

)

= P∗
(

{ν∗
1i = 1 + ki, 0 ≤ i < n, ν∗

1n = 0} ∩
n−1⋂
�=0

1+ki⋂
a=2

(T ∗
1�a)

−1((τ ◦G0 ◦ ψ)−1(B�,a))

)

=
(
p0

n−1∏
i=0

p1+ki
) n−1∏
�=0

1+ki∏
a=2

P∗((τ ◦G0 ◦ ψ)−1(B�,a))

= P(Cn,k0,...,kn−1)

k∏
j=1

Q(Bj ).

Here T ∗
v : �∗ → � is the translation on �∗ defined by ν∗

v ◦ T ∗
u = ν∗

uv (see [23]). Hence,
summing over n and the ki , we finally obtain

Q

(
{νφ = k} ∩

k⋂
j=1

T −1
j (Bj )

)
= Q(νφ = k)

k∏
j=1

Q(Bj ).

This completes the proof that our G0(ω) is an abstract Galton–Watson tree defined on
(�̃, F̃ , P̃) and having �(0) as its offspring distribution.

Having given a full account of the hidden Galton–Watson tree corresponding to Y0, let us
now give a brief sketch of the construction of the abstract Galton–Watson tree corresponding
to Yk for k ≥ 1. Again by the definition of �̃, for each ω ∈ �̃ there is a finite n0(ω) such that
νω(1i ) > k for i < n0(ω) and νω(1n0(ω)) ≤ k. Then u0(ω) := 1n0(ω) ∈ Vk(ω), and this vertex
will play the role of the root of the tree Gk(ω) in which we are interested. In contrast to the
case of k = 0, u0(ω) can bear two types of children, described as follows.

Type I. When n0(ω) ≥ 1, vertices of the form v = 1�b1�′ are children of u0(ω), where
0 ≤ � < n0(ω), 1 < b ≤ νω(1�), and �′ = 0 if νω(1�b) ≤ k, while

�′ = 1 + max{i ≥ 0 : νω(1�b1i ) > k}
if νω(1�b) > k.

Type II. When νω(1n0(ω)) > 0, vertices of the form v = 1n0(ω)a1m are children of u0(ω),
where 1 ≤ a ≤ νω(1n0(ω)) and m = 0 if νω(1n0(ω)a) ≤ k, while

m = 1 + max{i ≥ 0 : νω(1n0(ω)a1i ) > k}
if νω(1n0(ω)a) > k.

The parent–child relationship between general vertices in Vk(ω) is defined similarly, giving
Vk(ω) the structure of an abstract tree Gk(ω). It is actually an abstract Galton–Watson tree
whose offspring distribution is the distribution of the independent sum of the random numbers
of the two types of children, namely �(k).

For illustration, consider again the tree ω drawn in Figure 1, for which Y1(ω) = 5. G1(ω)

is seen to be isomorphic to the tree depicted in Figure 4. In Figure 5, it is shown how the tree
G1(ω) grows in ω from the zeroth generation (the root) to the third generation.
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G1 ( )ω ∼=

Figure 4: The tree G1(ω).

(a) (b) (c) (d)

Figure 5: HowG1(ω) grows in ω. Diagram (a) shows the zeroth generation; diagram (b) the zeroth and
first generations; diagram (c) the zeroth, first, and second generations; and diagram (d) the zeroth, first,

second, and third generations.

3.2. Asymptotic behavior of the distribution of Yk

By Theorem 2, the analysis of the asymptotic behavior of P(Yk = n) asn → ∞ is essentially
reduced to that of P(Z = n) with a proper choice of offspring distribution. In fact, if we let σk
be the radius of convergence of the power series gk(w) and if we define bk ∈ (0, σk] by (5),
that is, by the relation

inf
0<w<σk

gk(w)

w
= gk(bk)

bk
,

then we immediately obtain the following result.

Proposition 4. (i) Let d(�(k)) be the greatest common divisor of all those n ≥ 0 such that
p
(k)
n > 0. Then P(Yk = n) > 0 only for all those n such that n = 1 (mod d(�(k))).

(ii) lim supn→∞ P(Yk = n)1/n = gk(bk)/bk .

(iii) If 0 < bk < σk then the following asymptotic expansion holds as we let n → ∞, keeping
n = 1 (mod d(�(k))):

P(Yk = n) ∼
∞∑
j=1

c
(k)
j

(
gk(bk)

bk

)n
n−j−1/2,

where

c
(k)
1 = d(�(k))

√
gk(bk)

2πg′′
k (bk)

.

There is no simple relation between d(�) and d(�(k)). In fact, d(�(k)) is not determined
solely by d(�), but we can prove the following proposition.
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Proposition 5. The greatest common divisor d(�(k)) is given by

d(�(k)) = gcd[{0 ≤ j ≤ k : pj > 0} ∪ {j ≥ k : pj+1 > 0}].

Proof. Note that

d(�(k)) = max{� ≥ 1 : gk(e2π i/�) = 1},
while gk(w) = 1 is equivalent to hk(w) = 1 − ϕk(w), i.e. to the condition

�k(w) :=
k−1∑
j=0

pjw
j + (pk + pk+1)w

k +
∞∑

j=k+1

pj+1w
j+1 = 1.

Therefore,

d(�(k)) = max{� ≥ 1 : �k(e2π i/�) = 1}

=
{

gcd[{0 ≤ j ≤ k : pj > 0} ∪ {k} ∪ {j ≥ k : pj+1 > 0}] if pk + pk+1 > 0,

gcd[{0 ≤ j ≤ k : pj > 0} ∪ {j ≥ k : pj+1 > 0}] if pk + pk+1 = 0,

which gives the desired result.

Now we will give a condition, in terms of � = {pn}∞n=0 and ρ, to ensure that 0 < bk < σk .
Due to (11), our consideration is divided into four cases.

Case 1. ϕk(ρ−) > 1. In this case, there is a σk ∈ (0, ρ) such that ϕk(σk) = 1. This σk is the
radius of convergence of the power series gk(w), and we have gk(σk−) = ∞. Consequently,
bk ∈ (0, σk).
Case 2. If ϕk(ρ−) = 1 then σk = ρ < ∞ and gk(σk) = ∞. In this case, also, we have
bk ∈ (0, σk).
Case 3. If 0 < ϕk(ρ−) < 1 then we have σk = ρ < ∞ and gk(σk−) < ∞.

Case 4. Finally, if ϕk(ρ−) = 0 then gk(w) = f (w) and we trivially have bk = a.

In the last two cases, both bk < σk and bk = σk are possible.

Proposition 6. The inequalities 0 < bk < σk hold if and only if

lim
z↑ρ{(z− f (z))h′

k(z)− (1 − f ′(z))hk(z)} > 0.

Proof. Define

�k(z) := (z− f (z))h′
k(z)− (1 − f ′(z))hk(z).

Then

zg′
k(z)− gk(z) = �k(z)

(1 − ϕk(z))2
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and, after some computation, we get

�k(z) =
k∑
�=0

(�− 1)p�z
� +

∞∑
j=k+1

k∑
�=0

(j − �)pjp�z
j+�−1

=
k∑
�=1

(�− 1)p�z
� +

k∑
�=1

∞∑
j=k+1

(j − �)pjp�z
j+�−1 + p0

( ∞∑
j=k+1

jpj z
j−1 − 1

)
, (18)

which shows, in particular, that �′
k(z) > 0 for z > 0.

From the preliminary consideration preceding the proposition and the condition (4) applied
to gk(z), we first see that 0 < bk < σk if and only if ϕk(ρ−) ≥ 1, or ϕk(ρ−) < 1 and
limz↑σk �k(z) > 0.

Hence, if 0 < bk < σk and ϕk(ρ−) < 1, we have that σk = ρ and

lim
z↑ρ �k(z) = lim

z↑σk
�k(z) > 0.

On the other hand, in the case ϕk(ρ−) ≥ 1, we have that ϕk(σk) = 1, i.e.

∞∑
j=k+1

pjσ
j−1
k = 1.

Since p0 + p1 < 1, this implies that

∞∑
j=k+1

jpjσ
j−1
k > 1,

so that �k(σk) > 0, by (18). Since ρ ≥ σk , this implies that �k(ρ−) ≥ �k(σk) > 0.
Conversely, suppose that�k(ρ−) > 0. If, in addition, ϕk(ρ−) ≥ 1 then we have 0 < bk <

σk as we already saw, and if ϕk(ρ−) < 1 then, since σk = ρ,

lim
z↑σk

{zg′
k(z)− gk(z)} = 1

(1 − ϕk(ρ−))2�k(ρ−) > 0,

that is, 0 < bk < σk , by (4).

Since Yk ↑ Z as k → ∞, the number gk(bk)/bk governing the exponential behavior of
P(Yk = n) is expected to increase with k. This is actually the case, as the following proposition
shows.

Proposition 7. For each k ≥ 0, we have

gk(bk)

bk
≤ gk+1(bk+1)

bk+1
≤ f (a)

a
. (19)

If f (z) is critical (i.e. f ′(1) = 1) or subcritical (f ′(1) < 1) with ρ = 1, then each member is
equal to 1. If pk+1 = 0 then gk(z) = gk+1(z) and the first inequality is actually an equality.
If, further, p� = 0 for all � > k, then gk(z) = f (z) and we have equality also in the second
inequality. In all other cases, the inequalities are strict.

Finally, we have

lim
k→∞

gk(bk)

bk
= f (a)

a
. (20)

https://doi.org/10.1239/aap/1113402407 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1113402407


250 N. MINAMI

Proof. First note that

gk+1(z)− gk(z) = z(z− f (z))(hk+1(z)− hk(z))

(z− f (z)+ hk(z))(z− f (z)+ hk(z))
. (21)

For the moment, we suppose that there exist q1 and q2 such that f (qi) = qi , i = 1, 2, and that
0 < q1 < q2 ≤ ρ. Since

ϕk(q2) = 1 − hk(q2)

q2
< 1,

we have q2 ≤ σk and, thus, gk(z) is well defined on [q1, q2]. However, for z ∈ [q1, q2] we
have f (z) ≤ z and, hence, gk+1(z) ≥ gk(z) holds on [q1, q2], by (21). By the convexity of
f (z)/z and gk(z)/z, and by f (qi)/qi = gk(qi)/qi = 1, i = 1, 2, we see that a and bk belong
to [q1, q2].

Now, since we have hk(z) ↑ f (z), we also have that gk(z) ↑ f (z) on [q1, q2] as k → ∞.
By Dini’s lemma (see, e.g. [15]), this convergence is uniform on the compact interval [q1, q2].
That is, for any ε > 0, gk(z)/z > (f (z)/z)− ε holds for all z ∈ [q1, q2] and for all sufficiently
large k. Taking z = bk and z = a, we obtain

f (a)

a
≥ gk(a)

a
≥ gk(bk)

bk
>
f (bk)

bk
− ε ≥ f (a)

a
− ε

for large k. This shows that limk→∞ gk(bk)/bk = f (a)/a.
Now suppose that f (z) is supercritical and let q be the extinction probability: f (q) = q.

Then we can take q1 = q, q2 = 1 and (19) and (20) are proved in this case. When f (z) is
critical, or subcritical with ρ = 1, we have

a = f (a) = bk = gk(bk) = 1

and there is nothing to be proved. Next, consider the case where f (z) is subcritical (i.e.
f ′(1) < 1), ρ > 1, but f (z) < z for 1 < z < ρ. In this case we have, in particular, ρ < ∞
and f (ρ) < ∞, and gk(z) ↑ f (z) holds uniformly on [1, ρ]. Thus, the above argument can be
applied to prove that gk(bk)/bk ↑ f (a)/a.

Finally, suppose that f (z) is supercritical, or subcritical with ρ > 1, and that pk+1 > 0.
Then hk+1(z) > hk(z) for z > 0 and, hence, we have gk+1(z) > gk(z) on (q1, q2) or on (1, ρ).
Thus,

gk+1(bk+1)

bk+1
>
gk(bk+1)

bk+1
≥ gk(bk)

bk

and the (first) inequality is strict.

4. The joint distribution of Z and Yk

4.1. Generality

For complex numbers u, vj (j = 0, 1, . . . ) satisfying |u|, |vj | ≤ 1, let

w := G(u; v0, v1, . . . ) := E

[
Z < ∞; uZ

∞∏
j=0

v
Yj
j

]
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be the joint probability generating function ofZ, Y0, Y1, . . . .Here,
∏∞
j=0 v

Yj
j is actually a finite

product since
∑∞
j=0 Yj = Z < ∞. Due to the relations (1) and

Yk(ω) = 1{νφ(ω)=k} +
νφ(ω)∑
j=1

Yk(Tj (ω)),

we can proceed, using the formula of Neveu (page 202 of [23]), to write

w = E

[
Z < ∞; u1+∑νφ

j=1 Z◦Tj
∞∏
k=0

v
1{νφ=k} + ∑νφ

j=1 Yk◦Tj
k

]

= uE

[( νφ∏
j=1

1{Z<∞} ◦Tj
)( ∞∏

k=0

v
1{νφ=k}
k

){ νφ∏
j=1

(
uZ

∞∏
k=0

v
Yk
k

)
◦ Tj

}]

= uE

[ ∞∏
k=0

v
1{νφ=k}
k E

[ νφ∏
j=1

(
1{Z<∞} uZ

∞∏
k=0

v
Yk
k

)
◦ Tj

∣∣∣∣ F1

]]

= uE

[ ∞∏
k=0

v
1{νφ=k}
k

νφ∏
j=1

E

[
Z < ∞; uZ

∞∏
k=0

v
Yk
k

]]

= uE

[ ∞∏
k=0

v
1{νφ=k}
k wνφ

]

= u

∞∑
k=0

pkvkw
k.

Thus, if we define

�(w) = �(w; v0, v1, . . . ) :=
∞∑
k=0

pkvkw
k,

then w is a solution of the equation w = u�(w). If we assume that v0 
= 0 then �(0) =
p0v0 
= 0, and we can again apply Lagrange inversion to obtain the formula

E

[
Z = n;

∞∏
k=0

v
Yk
k

]
= 1

2π in

∮ {
�(w)

w

}n
dw (22)

for the coefficients of the power series

w =
∞∑
n=1

E

[
Z = n;

∞∏
k=0

v
Yk
k

]
un.

Now, if Z(ω) = n we then have Yk(ω) = 0 for k ≥ n. Moreover,
∑n−1
k=0 Yk(ω) =

1 + ∑n−1
k=1 kYk(ω) = n. Hence, for nkj ≥ 0, j = 1, . . . , r , with r ≥ 1 and 0 ≤ k1 < · · · < kr ,

the probability P(Z = n, Ykj = nkj , j = 1, . . . , r) is nonzero only if

nkj = 0 for kj ≥ n, µ :=
r∑
j=1

nkj ≤ n, and ν :=
r∑
j=1

kjnkj < n (23)
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and, in such a case, we obtain from (22) that

P(Z = n, Ykj = nkj , j = 1, . . . , r)

=
(∏
k≥0

1

nk!
)

∂µ

∂v
nk1
k1
∂v
nk2
k2

· · · ∂vnkrkr
E

[
Z = n;

∏
k≥0

v
Yk
k

]

= 1

2π in

(∏
k≥0

1

nk!
)

∂µ

∂v
nk1
k1
∂v
nk2
k2

· · · ∂vnkrkr

∮ {
�(z; v0, v1, . . . )

z

}n
dz

= 1

2π in

(∏
k≥0

1

nk!
) ∮

1

zn

n!
(n− µ)!

( r∏
j=1

p
nkj
kj

)
zνf̃ (z)n−µ dz

= (n− 1)!
(n− µ)!

(∏
k≥0

1

nk!
)( r∏

j=1

p
nkj
kj

)
1

2π i

∮
f̃ (z)n−µ

zn−ν
dz,

where we have set
f̃ (z) =

∑
{k : k 
=kj ,j=1,...,r}

pkz
k,

and the partial derivatives are evaluated as vk1 , . . . , vkr → 0 and with vk = 1 for k 
= kj ,
j = 1, . . . , r .

Thus, we have obtained the following result.

Proposition 8. For (nkj ) satisfying (23), we have

P(Z = n, Ykj = nkj , j = 1, . . . , r)

= (n− 1)!
(n− µ)!

(∏
k≥0

1

nk!
)( r∏

j=1

p
nkj
kj

)
1

2π i

∮
f̃ (z)n−µ

zn−ν
dz

= (n− 1)!
(n− µ)! (n− ν − 1)!

(∏
k≥0

1

nk!
)( r∏

j=1

p
nkj
kj

)
1

2π i

dn−ν−1

dzn−ν−1 f̃ (z)
n−ν

∣∣∣∣
z=0
. (24)

In particular, if (nk)k≥0 are such that

nk = 0 for k ≥ n,

n−1∑
k=0

nk = 1 +
n−1∑
k=1

knk = n, (25)

then

P(Z = n, Yk = nk, k = 0, 1, . . . ) = (n− 1)!
n−1∏
k=0

p
nk
k

nk! . (26)

Next, let us consider the joint factorial moments of the Yk , restricted on the event {Z = n},
which we will define as

M(n; r0, r1, . . . ) := E

[
Z = n;

∏
k≥0

Y
[rk]
k

]
,
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where, as usual, we define

n[r] =
{
n(n− 1) · · · (n− r + 1) for r ≤ n,

0 for r > n,

for nonnegative integers n and r , so that, in particular, n[0] = 1 and n[1] = n for any n ≥ 0,
and rk > 0 only for a finite number of ks. More specifically, we will assume that rk = 0 for
k ≥ n, in view of (23), and set r = ∑n−1

k=0 rk . Now it is easy to compute, using (22), that

M(n; r0, r1, . . .) = ∂r

∂v
r0
0 ∂v

r1
1 · · · ∂vrn−1

n−1

E

[
Z = n;

∏
k≥0

v
Yk
k

]∣∣∣∣
v0=v1=···=1

= 1

2π in

∮
1

zn

∂r

∂v
r0
0 ∂v

r1
1 · · · ∂vrn−1

n−1

�(z; v0, v1 . . . )
n

∣∣∣∣
v0=v1=···=1

dz

= 1

2π in

∮
1

zn
n[r]f (z)n−r

n−1∏
k=0

p
rk
k z

krk dz

= n[r]

2π in

(n−1∏
k=0

p
rk
k

) ∮
f (z)n−r

zn−s
dz, (27)

where we have set s = ∑n−1
k=0 krk . This formula may be used in obtaining means and covariances

of the Yk under the conditional distribution P(· | Z = n). Moreover, when Condition A holds,
we can apply the analysis in Section 2.2 to the above formula, to obtain an asymptotic expansion
of M(n; r0, r1, . . . ) as n → ∞. For example, we obtain an asymptotic expression as n → ∞
for the expectation En(Yk), variance varn(Yk), and covariance covn(Yk, Yk′) (k 
= k′) of the Yk
under the conditional distribution P(· | Z = n), as follows:

En(Yk) = ρkn+ O(1), (28)

varn(Yk) = ρk

κ2
[(1 − ρk)κ2 − (k − 1)2ρk]n+ O(1), (29)

covn(Yk, Yk′) = −ρkρk′
κ2

[κ2 + (k − 1)(k′ − 1)]n+ O(1), (30)

where, as before, ρk := pka
k/f (a) and κ2 is the variance of the probability distribution

�a := {ρk}k≥0.
Let us now discuss several examples. See [1] for related topics.

4.2. Example 1: geometric offspring distribution

Suppose that � = {pk}∞k=0 is the geometric distribution with parameter p, i.e. pk =
(1 − p)pk , k = 0, 1, 2, . . . , for some 0 < p < 1. In this case, f (z) = (1 − p)/(1 − pz) and
we find that

P(Z = n) = 1

2π in

∮
1

zn

(
1 − p

1 − pz

)n
dz

= 1

n!
dn−1

dzn−1

(
1 − p

1 − pz

)n∣∣∣∣
z=0

= (1 − p)npn−1 1

n

(
2n− 2

n− 1

)
. (31)
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For a finite tree ω ∈ � with Z(ω) = n, we thus obtain

P({ω} | Z = n) = 1

P(Z = n)

∏
u∈ω

pνu(ω) =
[

1

n

(
2n− 2

n− 1

)]−1

.

The right-hand side being independent of the detailed data {νu(ω)}u∈ω on ω, this shows that,
conditioned on the event {Z = n}, all trees of size n are equiprobable, which in turn implies
that the total number of trees of size n is (1/n)

(2n−2
n−1

)
. This is well known in combinatorics.

For each integer n ≥ 1 and for each sequence (nk) of nonnegative integers satisfying (25),
we have, by (26) and (31),

P(Yk = nk, k ≥ 0 | Z = n) = (n− 1)!(∏k≥0(1 − p)pknk /nk!)
(1 − p)npn−1

[
1

n

(
2n− 2

n− 1

)]−1

= 1

n

(
n

n0n1 · · ·
)[

1

n

(
2n− 2

n− 1

)]−1

,

where (
n

n0n1 · · ·
)

:= n!
n0! n1! · · · , with

∑
j≥0

nj = n,

is the multinomial coefficient. By the equiprobability of the trees under the condition {Z = n},
this shows that the total number of trees ω such that Z(ω) = n and Yk(ω) = nk , k ≥ 0, is given
by

1

n

(
n

n0n1 · · ·
)
, (32)

where (nk) satisfies (25). This result is also well known and is attributed to Tutte [28], but it had
already been stated by Otter (page 213 of [24]), although with a somewhat incomplete proof.

Let us now take r = 1, k1 = 0, and j := nk1 = µ < n in (24). Then we have ν = 0 and

f̃ (z) = (1 − p)
∑
k≥1

(pz)k = pzf (z) = (1 − p)
pz

1 − pz
,

so that

P(Z = n, Y0 = j) = (n− 1)!
(n− j)!

1

j ! (1 − p)j
1

2π i

∮
(pz)n−j

zn
f (z)n−j dz

= (n− 1)!
(n− j)! j !p

n−j (1 − p)n
1

(j − 1)!
dj−1

dzj−1 (1 − pz)−(n−j)
∣∣∣∣
z=0

= pn−1(1 − p)n
1

n

(
n

j

)(
n− 2

j − 1

)
.

Again by (31) and the equiprobability of trees, we see that the number pn,j of trees of size n
with exactly j vertices having no children (namely ‘leaves’), is given by

pn,j = 1

n

(
n

j

)(
n− 2

j − 1

)
.

This formula is also known in combinatorics (see, e.g. [8]). Note that ‘trees’ in the sense we
mean are often called ‘planted plane trees’in combinatorics. Thus,pn,j is the number of planted
plane trees with j leaves.
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4.3. Example 2: binomial offspring distribution

Next, consider the case where � is the binomial distribution B(d, p), so that f (z) =
(1 − p + pz)d . Applying (2), we can easily compute that

P(Z = n) = 1

n

(
dn

n− 1

)
(1 − p)dn−n+1pn−1.

On the other hand, for a tree ω of size n,

P({ω}) =
∏
u∈ω

pνu(ω) =
∏
u∈ω

(
d

νu(ω)

)
pνu(ω)(1 − p)d−νu(ω)

= pn−1(1 − p)dn−n+1
∏
u∈ω

(
d

νu(ω)

)

and, hence,

P({ω} | Z = n) =
[

1

n

(
dn

n− 1

)]−1 ∏
u∈ω

(
d

νu(ω)

)
. (33)

These results have the following interpretation. Consider the bond percolation on the rooted
d-ary tree. Here we mean by the ‘rooted d-ary tree’ an element T ∈ � such that νu(T ) = d

for all u ∈ T , and we suppose that each bond, or edge, of the graph T is ‘open’ with a certain
probability 0 < p < 1 and ‘closed’ with probability 1 − p, independently of the other edges.
We then call a percolation cluster on T a subset γ of T consisting of those vertices u ∈ T that
are connected to the root φ through open bonds. A percolation cluster γ thus obtained is a
‘tree’ distinct from our Galton–Watson tree defined in Section 1, in the sense that each vertex
u ∈ γ can have k children, among d possible ones, in

(
d
k

)
different ways. (When d = 2, the

percolation clusters thus obtained are often called ‘uniform binary trees’ – see, e.g. [22].) Each
realization γ of the percolation cluster is an abstract tree in the sense of Definition 1 and, hence,
is isomorphic to a tree ω ∈ �. We denote this correspondence by ω = �(γ ). When ω is finite,
there are exactly

∏
u∈ω

(
d

νu(ω)

)
percolation clusters corresponding to the same ω.

Now let Cn be the totality of percolation clusters of size n. From what we have seen above,

�Cn =
∑

{ω∈� : Z(ω)=n}
��−1({ω}) =

∑
{ω∈� : Z(ω)=n}

∏
u∈ω

(
d

νu(ω)

)
.

On the other hand, we have

1 =
∑

{ω∈� : Z(ω)=n}
P({ω} | Z = n) =

[
1

n

(
dn

n− 1

)]−1 ∑
{ω∈� : Z(ω)=n}

∏
u∈ω

(
d

νu(ω)

)

and, thus,

�Cn = 1

n

(
dn

n− 1

)
.

If we let Eu(γ ) be the number of outward edges issued from the vertex u of a percolation
cluster γ ∈ Cn, then it is clear that

Xk(γ ) := �{u ∈ γ : Eu(γ ) = k} = Yk(�(γ )).
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Thus, if we are given (nk)k≥0, which is subject to the condition (25), then we have

�{γ ∈ Cn : Xk(γ ) = nk, k ≥ 0} =
∑

{ω∈� : Z(ω)=n,Yk(ω)=nk,k≥0}
��−1({ω})

= �{ω ∈ � : Z(ω) = n, Yk(ω) = nk, k ≥ 0} ×
d∏
ν=0

(
d

ν

)nν

= 1

n

(
n

n0n1 · · ·
) d∏
ν=0

(
d

ν

)nν
.

This shows that if Qn is the uniform distribution on Cn, then, from (32) and (33),

Qn(Xk = nk, k ≥ 0) = 1

n

(
n

n0n1 · · ·
) d∏
ν=0

(
d

ν

)nν[1

n

(
nd

n− 1

)]−1

= P(Yk = nk, k ≥ 0 | Z = n).

Next, consider the special case d = 2 and let r = 1, k1 = 0, and j := nk1 = µ < n in (24).
Then, ν = 0 and f̃ (z) = pz(pz+ 2q) with q = 1 − p, and we have

P(Z = n, Y0 = j) = (n− 1)!
(n− j)!

1

j !q
2j 1

2π i

∮
1

zn
(pz)n−j (pz+ 2q)n−j dz

= 1

n

(
n

j

)
2n+1−2j qn+1pn−1

(
n− j

j − 1

)

and, hence,

Qn(X0 = j) = P(Y0 = j | Z = n) = 1

bn
2n+1−2j 1

n

(
n

j

)(
n− j

j − 1

)
, (34)

where bn = ( 2n
n−1

)
/n is the nth Catalan number. Note that, from (25), we have

Y0 + Y1 + Y2 = n, Y1 + 2Y2 = n− 1,

so that, in particular, n− j ≥ j − 1 when Y0 = j . Moreover, these relations imply that

Qn(X2 = j) = Qn(X0 = j + 1) (35)

and

Qn(X1 = j) =
{
Qn(X0 = (n+ 1 − j)/2) if n− j is odd,

0 if n− j is even.
(36)

Explicit formulae for Qn(Xi = j), i = 0, 1, 2, were first given by Mahmoud in [22], but his
expression consisted of very complicated alternating sums. Later, Prodinger [25] computed
these sums, to obtain (34), (35), and (36). (See also [13], [20], and [26].)
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We can also apply (27) to compute the factorial moments EQn [X[r]
i ], i = 0, 1, 2, reproducing

Theorem 3 of [25]. Thus, for example,

EQn [X[r]
0 ] = E[Z = n;Y [r]

0 ]
P(Z = n)

= 1

P(Z = n)

n[r]

2π in
q2r

∮
f (z)n−r

zn
dz

= 1

P(Z = n)
n[r]qn+1pn−1

(
2n− 2r

n− 1

)

= 1

bn
n[r]

(
2n− 2r

n− 1

)
.

4.4. Example 3: power series offspring distribution

As is seen in the above examples, the conditional distribution P({ω} | Z = n) does not
depend on the parameter p. This is generally true when the offspring distribution is a power
series distribution. More precisely, let B(θ) = ∑

k≥0 bkθ
k be a power series with nonnegative

coefficients and with positive radius of convergence R. Assuming that b0 > 0 and bk > 0 for
some k ≥ 2, we let

pk(θ) = bkθ
k

B(θ)
, k = 0, 1, 2, . . . ,

for 0 < θ < R. Then the probability distribution �(θ) = {pk(θ)}∞k=0 satisfies the basic
assumptions p0(θ) > 0 and p0(θ)+ p1(θ) < 1, and we have the following proposition.

Proposition 9. Let Pθ be the probability measure for the Galton–Watson tree with offspring
distribution�(θ). Then the total progenyZ provides sufficient statistics for the statistical model
(�,F , {Pθ (· | Z < ∞)}θ∈(0,R)) in the sense that, for any n ≥ 1, the conditional distribution
Pθ (· | Z = n) does not depend on θ .

Proof. The generating function of �(θ) is given by B(θz)/B(θ). Hence, by (2),

P(Z = n) = 1

2π in

∮
1

zn

(
B(θz)

B(θ)

)n
dz = 1

2π in

θn−1

B(θ)n

∮
B(w)n

wn
dw.

On the other hand, for a tree ω with Z(ω) = n,

P({ω}) =
∏
u∈ω

pνu(ω)(θ) = θn−1

B(θ)n

∏
u∈ω

bνu(ω),

so that by dividing, the factors involving θ cancel out of P({ω} | Z = n).

5. The weak law of large numbers and the central limit theorem for the distribution of
{Yk}, conditioned on Z

In this section, we prove two conditional limit theorems for {Yk}, namely the assertions (i)
and (ii) of Theorem 3 below. Although assertion (i), the weak law of large numbers, is actually
due to Otter (Theorem 6 in [24]), we will give an alternative proof, which will be completed
almost simultaneously with the proof of the central limit theorem of assertion (ii).
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Theorem 3. Suppose that Condition A holds. Then the following limit theorems hold, where
we let n → ∞ keeping n = 1 (mod d(�)).

(i) The weak law of large numbers. For any k ≥ 0,

P(Yk/n ∈ · | Z = n) −→ δρk (·),
where δb(·) is the point mass concentrated on b. Here, {ρk}k≥0 is the probability distribution
on Z+ defined by ρk = pka

k/ak .

(ii) The central limit theorem. For any finite subset A of Z+,

P({n1/2(Yk/n− ρk)}k∈A ∈ · | Z = n) −→ NA(0, VA),

where NA(0, VA) is the |A|-dimensional Gaussian distribution with mean 0, and with the
covariance matrix VA determined from the quadratic form

V ({tk}) =
∑
k∈A

t2k ρk −
(∑
k∈A

tkρk

)2

−
[∑
k≥2

k(k − 1)ρk

]−1(∑
k∈A

ktkρk −
∑
k∈A

tkρk

)2

.

Here, VA is strictly positive definite if and only if A ⊂ S and |S \ A| ≥ 2, where we let
S := {k ∈ Z+ : pk > 0}.
Remark 1. The special caseA = {0} of the central limit theorem is known to combinatorialists
– see, e.g. Theorem 12 of [8].

On the other hand, under the condition that f (z) be entire, Dembo et al. [7] proved a general
large deviation principle that reduces to the large deviation principle corresponding to the law
of large numbers in assertion (i). (To see this, set X = singleton in Theorem 2.2 of [7].)

For other types of conditional limit theorem considered on the event {Z = n}, see, e.g. [18]
and [19].

Proof. Take a real sequence {tk}k≥0, where tk 
= 0 for only finitely many ks, and let vk = eζ tk ,
ζ ∈ C, in (22). Then, we obtain

E

[
Z = n; exp

(
ζ

∑
k≥0

tkYk

)]
= 1

2π in

∮
exp(nh(z, ζ )) dz, (37)

where we let

h(z, ζ ) := log

[
�(z, ζ )

z

]
and �(z, ζ ) :=

∑
k≥0

pk eζ tk zk.

If we further define

M(z, ζ ) :=
∑
k≥1

kpk eζ tk zk −
∑
k≥0

pk eζ tk zk

= z
∂

∂z
�(z, ζ )−�(z, ζ ),

then we get
∂

∂z
h(z, ζ ) = M(z, ζ )

z�(z, ζ )
.
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In order to apply the saddle point approximation to the integral in (37), we need to know the
zero of the function ∂h/∂z or, equivalently, we need to solve the equation M(z, ζ ) = 0 with
respect to z. Since �(z, 0) = f (z), we have M(a, 0) = af ′(a) − f (a) = 0. On the other
hand, we have (∂M/∂z)(a, 0) = af ′′(a) > 0. Hence, by the implicit function theorem, there
is a unique analytic function a(ζ ), defined in a neighbourhood of the origin, such that a(0) = a

and M(a(ζ ), ζ ) = 0.
Now, if we take the contour |z| = |a(ζ )| in the integral in (22), and if we assume that

n = 1 (mod d(�)), then, as in (6), we obtain

E

[
Z = n;

∏
k≥0

exp(ζ tkYk)

]
= a(ζ )d

2πn

∫ π/d

−π/d
exp(nψ(θ, ζ )) eiθ dθ, (38)

where we have set

ψ(θ, ζ ) := h(a(ζ ) eiθ , ζ ) = log

[
�(a(ζ ) eiθ , ζ )

a(ζ ) eiθ

]
.

For this function ψ(θ, ζ ), the following assertions can be easily verified.

Assertion 1. As ζ → 0 in C,ψ(θ, ζ ) and all its derivatives with respect to θ converge uniformly
to

ψ(θ) := h(a eiθ , 0) = log

[
f (a eiθ )

a eiθ

]
and the corresponding derivatives.

Assertion 2. In particular,

ψ(0, ζ ) = log

[
�(a(ζ ), ζ )

a(ζ )

]
−→ log

[
f (a)

a

]

as ζ → 0.

Assertion 3.
∂

∂θ
ψ(θ, ζ )

∣∣∣∣
θ=0

= ia(ζ )
∂h

∂ζ
(a(ζ ), ζ ) = 0.

Assertion 4. We have

−K(ζ) := ∂2

∂θ2ψ(θ, ζ )

∣∣∣∣
θ=0

= −a(ζ )2 ∂
2h

∂z2 (a(ζ ), ζ )

and, as ζ → 0,

−K(ζ) −→ −a
2f ′′(a)
f (a)

= −K < 0.

Assertion 5. By Assertion 1, we can write

ψ(θ, ζ ) = ψ(0, ζ )− 1
2K(ζ)θ

2 + θ3β(θ, ζ ),

where β(θ, ζ ) is analytic and uniformly bounded in (θ, ζ ).

Assertion 6. By Assertions 3, 4, and 5, we can choose positive constants γ , δ, and η such that

Reψ(θ, ζ ) ≤ Reψ(0, ζ )− ηθ2

holds for |θ | ≤ δ and |ζ | ≤ γ .
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Assertion 7. From Assertions 1, 2, and 6, we infer that, if |ζ | is sufficiently small, then

|�(a(ζ ) eiθ , ζ )/a(ζ )| = exp(Reψ(θ, ζ ))

takes its maximum value at θ = 0 and that, if 0 < |θ | ≤ π/d ,∣∣∣∣�(a(ζ ) eiθ , ζ )

a(ζ )

∣∣∣∣ <
∣∣∣∣�(a(ζ ), ζ )a(ζ )

∣∣∣∣.
Assertion 8. Let �δ be defined by (7). From Assertions 1 and 6, if we take an ε such that
0 < ε < 1

3 {(f (a)/a)−�δ} then, for ζ sufficiently near to 0, we have

�ζ,δ := sup
δ≤|θ |≤π/d

∣∣∣∣�(a(ζ ) eiθ , ζ )

a(ζ )

∣∣∣∣ < �δ + ε

3
<
f (a)

a
− ε

3
<

∣∣∣∣�(a(ζ ), ζ )a(ζ )

∣∣∣∣.
Now we can perform an analysis similar to that in Section 2.2. First, we rewrite (38) as

E

[
Z = n; exp

(∑
k≥0

ζ tkYk

)]

= a(ζ )d

2πn

(
�(a(ζ ), ζ )

a(ζ )

)n ∫ δ

−δ
exp(− 1

2nK(ζ )θ
2 + nθ3β(θ, ζ )+ iθ) dθ + O

(
1

n
�nζ,δ

)
.

(39)

If we introduce

Pζ (ω, θ) := exp(iθ + ωβ(θ, ζ )) =
∑
�,m≥0

c�m(ζ )ω
�θm

and
Qζ (ω, θ) := c00(ζ )+ c10(ζ )ω + c01(ζ )θ,

we then have
|Pζ (ω, θ)−Qζ (ω, θ)| = O(|ω|2)+ O(|θ |2),

where the estimate O(·) is valid uniformly in ζ sufficiently near 0. Now replace δ, in the limit
of integration in (39), by τn := n−1/3, and then replace exp(iθ + nθ3β(θ, ζ )) by Qζ (nθ

3, θ).
The errors introduced in doing so are estimated as in Section 2.2, and we obtain

E

[
Z = n; exp

(∑
k≥0

ζ tkYk

)]

= a(ζ )d

2πn

(
�(a(ζ ), ζ )

a(ζ )

)n[ ∑
�+m≤1

c�m(ζ )n
�

∫ τn

−τn
exp(− 1

2nK(ζ )θ
2)θ3�+m dθ + O(n−3/2)

]
.

Finally, we extend the integration to (−∞,∞), with a small error that is absorbed in the term
O(n−3/2). We thus arrive at

E

[
Z = n; exp

(∑
k≥0

ζ tkYk

)]
= a(ζ )d

n

(
�(a(ζ ), ζ )

a(ζ )

)n√ 1

2πnK(ζ )
(1 + O(n−3/2)).
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Note that the integrals for �+m = 1 vanish because of symmetry, and that the error estimate
O(n−3/2) is uniform in ζ .

Combining this result with that of Theorem 1 or, rather, of Otter’s theorem, we get

E

[
exp

(∑
k≥0

ζ tkYk

) ∣∣∣∣Z = n

]
= a(ζ )(�(a(ζ ), ζ )/a(ζ ))n[K(ζ)]−1/2(1 + O(n−3/2))

a(f (a)/a)n[f (a)/a2f ′′(a)]1/2(1 + O(n−3/2))
.

If we take a sequence ζn → 0 thenK(ζn) → a2f ′′(a)/f (a) and a(ζn) → a. Hence, we finally
obtain

E

[
exp

(∑
k≥0

ζntkYk

) ∣∣∣∣Z = n

]
∼

{
a

f (a)

�(a(ζn), ζn)

a(ζn)

}n
, (40)

where n → ∞ keeping n = 1 (mod d(�)).
Now let us take ζn = −1/n, and suppose that tk ≥ 0. Noting that f ′(a) = f (a)/a, it is

easy to compute that

log�(a(−1/n),−1/n) = log f (a)− 1

n

{
1

f (a)

∑
k≥0

pktka
k + a′(0)

a

}
+ O(n−2)

and

log a(−1/n) = log a − 1

n

a′(0)
a

+ O(n−2).

Thus, we conclude from (40) that

E

[
exp

(
−

∑
k≥0

tk
Yk

n

) ∣∣∣∣Z = n

]
−→ exp

{
−

∑
k≥0

pka
k

f (a)
tk

}
,

completing the proof of part (i) of Theorem 3.
Let us remark that {ρk}k≥0 := {pkak/f (a)}k≥0 is a probability distribution on Z+ with

mean 1: ∑
k≥1

kρk = 1

f (a)

∑
k≥1

kpka
k = af ′(a)

f (a)
= 1.

In order to prove part (ii), we expand log[�(a(ζ ), ζ )] and log a(ζ ) to second order for small
ζ , to obtain

log

[
a

f (a)

�(a(ζ ), ζ )

a(ζ )

]
= 1

f (a)

(
∂�

∂ζ
(a, 0)

)
ζ

+
[

1

2f (a)

(
f ′′(a)a′(0)2 + ∂2�

∂ζ 2 (a, 0)+ 2
∂2�

∂ζ∂z
(a, 0)a′(0)

)

− 1

2f (a)2

(
f ′(a)a′(0)+ ∂�

∂ζ
(a, 0)

)2

+ 1

2

a′(0)2

a2

]
ζ 2 + O(ζ 3).

On the other hand, differentiating M(a(ζ ), ζ ) = 0, we get

a′(0) = − 1

af ′′(a)

{
a
∂2�

∂ζ∂z
(a, 0)− ∂�

∂ζ
(a, 0)

}
,
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which, when inserted in the above formula, gives

log

[
a

f (a)

�(a(ζ ), ζ )

a(ζ )

]
= 1

f (a)

(
∂�

∂ζ
(a, 0)

)
ζ

+
[
−f

′′(a)
2f (a)

a′(0)2 + 1

2f (a)

∂2�

∂ζ 2 (a, 0)

− 1

2f (a)2

(
∂�

∂ζ
(a, 0)

)2]
ζ 2 + O(ζ 3).

Letting tk ∈ R and ζ = i/n1/2 in (40), we finally obtain

lim
n→∞ E

[
exp

(
i
∑
k≥0

tkn
1/2

(
Yk

n
− pka

k

f (a)

)) ∣∣∣∣Z = n

]

= lim
n→∞ exp

(
−in1/2

∑
k≥0

tk
pka

k

f (a)

){
a

f (a)

�(a(i/n1/2), i/n1/2)

a(i/n1/2)

}n

= lim
n→∞ exp

(
−n 1

f (a)

(
∂�

∂ζ
(a, 0)

)
i

n1/2

){
a

f (a)

�(a(i/n1/2), i/n1/2)

a(i/n1/2)

}n

= exp

(
f ′′(a)
2f (a)

a′(0)2 − 1

2f (a)

∂2�

∂ζ 2 (a, 0)+ 1

2f (a)2

(
∂�

∂ζ
(a, 0)

)2)
= exp[− 1

2V ({tk})],
where we have set

V ({tk}) = 1

f (a)

∑
k≥0

pkt
2
k a
k − 1

f (a)2

(∑
k≥0

pktka
k

)2

− 1

a2f (a)f ′′(a)

(∑
k≥1

kpktka
k −

∑
k≥0

pktka
k

)2

.

In terms of ρk , introduced above, this can be expressed as

V ({tk}) =
∑
k≥0

t2k ρk −
(∑
k≥0

tkρk

)2

−
[∑
k≥2

k(k − 1)ρk

]−1(∑
k≥1

ktkρk −
∑
k≥0

tkρk

)2

.

Now let X be a Z+-valued random variable with distribution {ρk} and let the function
T : Z+ → R be defined by T (k) = tk . Then E[X] = 1 and∑

k≥2

k(k − 1)ρk = E[X(X − 1)] = E[(X − 1)2] > 0

because the distribution {pk} is not degenerate to a point, by our basic assumptions. Therefore,(∑
k≥2

k(k − 1)ρk

)
V ({tk})

= E[(X − 1)2]{E[T (X)2] − E[T (X)]2} − {E[XT (X)] − E[T (X)]}2

= E[(X − 1)2] E[{T (X)− E[T (X)]}2] − E[(X − 1){T (X)− E[T (X)]}]2,
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which is actually nonnegative, by the Schwarz inequality applied to the random variablesX−1
and T (X)− E[T (X)].

Now, suppose that A ⊂ S, A 
= ∅, and |S \ A| ≥ 2. Suppose further that, for some λ ∈ R,
the relation

T (X)− E[T (X)] = λ(X − 1)

almost surely holds, where we assume that T (k) = tk = 0 for k /∈ A. Then if � ∈ S \ A,
we have − E[T (X)] = λ(X − 1), but in the case |S \ A| ≥ 2, this is possible only if λ = 0.
Thus, the inequality must be strict in the above-mentioned Schwarz inequality, unless tk = 0
for all k ∈ A. Thus, the limiting Gaussian distribution of {n1/2(n−1Yk − ρk)}k∈A conditioned
on {Z = n} is nondegenerate.

Conversely, suppose that A \ S 
= ∅. Since Yk = 0 almost surely for k /∈ S, the distribution
of {Yk}k∈A is already degenerate. If, on the other hand, A = S \ {�} for some � ∈ S then, since
the relations

∑
k∈S Yk = Z and

∑
k∈S kYk = Z − 1 yield∑

k∈S\{�}
(�− k)Yk = (�− 1)Z + 1,

the conditional distribution P({n1/2(n−1Yk − ρk)}k∈A ∈ · | Z = n) is concentrated on a
hyperplane of dimension less than or equal to |A|−2. Hence, its limiting Gaussian distribution
is degenerate. This is also the case when A = S. The proof of Theorem 3 is now complete.

As an application of Theorem 3, we consider the following question, treated by Mah-
moud [22]. Let Cn be the totality of uniform binary trees of size n. (See Section 4.2 for
the definition.) Furthermore, let Xi(γ ), i = 0, 1, 2, be the number of vertices of the tree
γ ∈ Cn having i children. As we saw in Section 4.2, we have

Qn({γ ∈ Cn : Xi(γ ) = ni, i = 0, 1, 2}) = P(Yi = ni, i = 0, 1, 2 | Z = n), (41)

where Qn is the uniform distribution on Cn and P is the distribution of the Galton–Watson
tree whose offspring distribution is the binomial distribution Bin(2, p) with 0 < p < 1.
The right-hand side being independent of p, we can take p = 1

2 , in which case we have
a = f (a) = 1 and ρi = pia

i/f (a) = 1
4 for i = 0, 2, while ρ1 = p1a

1/f (a) = 1
2 . Moreover,

f ′(a) = f ′′(a) = 1
2 . We can now apply part (ii) of Theorem 3 to this P and, in view of (41),

we obtain

Qn

((
X0 − n/4

n1/2 ,
X1 − n/2

n1/2 ,
X2 − n/4

n1/2

)
∈ ·

)
−→ N(0, 1

16C), n → ∞,

where

C =
⎛
⎝ 1 −2 1

−2 4 −2
1 −2 1

⎞
⎠ ,

which is precisely Theorem 2 of [22] because, as a special case of (28), we have

EQn [Xk] = ρkn+ O(1)

as n → ∞ with (ρ0, ρ1, ρ2) = ( 1
4 ,

1
2 ,

1
4 ). Note that d(�) = 1 and S = A = {0, 1, 2}

in our case, so that the matrix C is naturally degenerate by virtue of the second part of
Theorem 3(ii). We also remark that we can apply (29) and (30) to show that the covariance
matrix of (X0, X1, X2) under the distribution Qn is asymptotically equal to nC/16, as in
Equation (2.5) of [22].
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