THE COHOMOLOGY RING OF ORBIT SPACES OF FREE \mathbb{Z}_{2}-ACTIONS ON SOME DOLD MANIFOLDS

ANA MARIA M. MORITA, DENISE DE MATTOS and PEDRO L. Q. PERGHER ${ }^{\boxtimes}$

(Received 14 July 2017; accepted 26 September 2017; first published online 2 February 2018)

Abstract

We determine the possible \mathbb{Z}_{2}-cohomology rings of orbit spaces of free actions of \mathbb{Z}_{2} (or fixed point free involutions) on the Dold manifold $P(1, n)$, where n is an odd natural number.

2010 Mathematics subject classification: primary 57S17; secondary 55R20, 57S25.
Keywords and phrases: Dold manifold, cohomology ring, orbit space, Leray-Serre spectral sequence, Borel fibration.

1. Introduction

If G is a topological group and X is a topological space, a natural question concerns the existence of a continuous free action of G on X . A relevant example is the result of John Milnor, which says that the symmetric group \mathbb{S}_{3} on three elements cannot act freely on the n-sphere \mathbb{S}^{n}. If such an action exists, further natural questions concern properties of the orbit space X / G and its cohomology ring. There are recent results in [4] ($X=$ an arbitrary product of spheres and $G=\mathbb{Z}_{2}$) and [8] ($X=$ a space of type (a, b) and $G=\mathbb{Z}_{2}$ or \mathbb{S}^{1}). The cohomology rings of the real, complex and quaternionic projective spaces $\mathbb{R} P^{n}, \mathbb{C} P^{n}$ and $\mathbb{K} P^{n}$ are standard examples; as is well known, these spaces are orbit spaces of certain standard free actions of $\mathbb{Z}_{2}, \mathbb{S}^{1}$ and \mathbb{S}^{3} on $\mathbb{S}^{n}, \mathbb{S}^{2 n+1}$ and $\mathbb{S}^{4 n+3}$, respectively.

This paper is devoted to these questions when X is a special Dold manifold and $G=\mathbb{Z}_{2}$. The Dold manifolds $P(m, n)$ were introduced by Dold [5] for the purpose of finding odd-dimensional generators for the unoriented cobordism ring; they are finite-dimensional approximations to the classifying space $B O(2)=P(\infty, \infty)$ for real 2-plane bundles. Specifically, $P(m, n)$ is the orbit space of the free involution $-1 \times$ (conjugation) acting on $\mathbb{S}^{m} \times \mathbb{C} P^{n}$; that is, $P(m, n)$ is a closed smooth $(m+2 n)$ dimensional manifold. In [6], Khare exhibited a fixed point free involution on $P(m, n)$ when n is odd; specifically, the involution

$$
\begin{aligned}
S: & \mathbb{S}^{m} \times \mathbb{C} P^{n}
\end{aligned} \longrightarrow \mathbb{S}^{m} \times \mathbb{C} P^{n} .
$$

induces a free involution on $P(m, n)$.

[^0]Thus, the question makes sense for n odd. The main tool in this context is the LeraySerre spectral sequence associated to the Borel fibration coming from a G-action on X (see [1]). If the action is free, the total space of this fibration has the same homotopy type, and hence the same cohomology, as X / G. Let B_{G} be the Milnor classifying space for G-principal bundles. If the fundamental group of B_{G} (which is the base space of the Borel fibration) acts trivially on the cohomology of the fibre (which is X), then the E_{2}-term of the Leray-Serre spectral sequence assumes a very suitable form, giving a promising scenario to attack this question. Following [5], the ring structure of $H^{*}\left(P(m, n) ; \mathbb{Z}_{2}\right)$ is given by

$$
H^{*}\left(P(m, n) ; \mathbb{Z}_{2}\right)=\frac{\mathbb{Z}_{2}[c, d]}{\left\langle c^{m+1}, d^{n+1}\right\rangle}
$$

where $c \in H^{1}\left(P(m, n) ; \mathbb{Z}_{2}\right)$ and $d \in H^{2}\left(P(m, n) ; \mathbb{Z}_{2}\right)$. Consequently, for any $n \geq 1$, $H^{q}\left(P(1, n) ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$ if $q=0,1, \ldots, 2 n+1$, and $H^{q}\left(P(1, n) ; \mathbb{Z}_{2}\right)=\{0\}$ otherwise. On the other hand, the fundamental group of $B_{\mathbb{Z}_{2}}=R P^{\infty}$ is \mathbb{Z}_{2}. Therefore, for any $n \geq 1$, the above condition is automatic for $P(1, n)$. In this setting, it is known that if a closed smooth manifold does not bound, then it does not admit a free involution (see [3]). If n is even, $P(m, n)$ may or not bound, depending on the value of m (see [6]). In particular, $P(1, n)$ does not bound if n is even. Further, for n odd and $m \geq 2$, the above condition is not automatic. If n is even, this also happens for all values of m for which $P(m, n)$ bounds (see again [6]), and in these cases we do not even know if free involutions exist. This explains the choice of $P(1, n)$ with n odd; for all other $P(m, n)$, either the question does not make sense or it may be very difficult. Our results can be summarised by the following theorem.

Theorem 1.1. Let n be an odd natural number and suppose that $G=\mathbb{Z}_{2}$ acts freely on the Dold manifold $X=P(1, n)$. Then $H^{*}\left(X / G ; \mathbb{Z}_{2}\right)$ is isomorphic to one of the following graded algebras:
(i) $\mathbb{Z}_{2}[x, z] /\left\langle x^{2}, z^{n+1}\right\rangle$, where $\operatorname{deg}(x)=1$ and $\operatorname{deg}(z)=2$;
(ii) $\mathbb{Z}_{2}[x, y, z] /\left\langle x^{4}, x^{2} y, y^{2}+a x^{2}+b x y, z^{(n+1) / 2}\right\rangle$, where $a, b \in \mathbb{Z}_{2}, \operatorname{deg}(x)=\operatorname{deg}(y)=1$ and $\operatorname{deg}(z)=4$;
(iii) $\mathbb{Z}_{2}[x, y, z, w, v] / \phi(x, y, z, w, v)$, where

$$
\begin{array}{r}
\phi(x, y, z, w, v)=\left\langle x^{5}, y^{2}+a_{1} x^{2}+b_{1} x y, z^{2}+a_{2} x^{3} z+b_{2} x w, w^{2}+a_{3} x^{2} v+b_{3} x y v,\right. \\
\left.v^{(n+1) / 4}, x^{2} y+a_{4} x^{3}+b_{4} z, y z+a_{5} x^{4}+b_{5} x z, x^{2} w, y w+a_{6} x^{3} z+b_{6} x w, z w\right\rangle
\end{array}
$$

and $a_{j}, b_{j} \in \mathbb{Z}_{2}, \operatorname{deg}(x)=\operatorname{deg}(y)=1, \operatorname{deg}(z)=3, \operatorname{deg}(w)=5, \operatorname{deg}(v)=8$ and $n \equiv 3(\bmod 4)$;
(iv) $\mathbb{Z}_{2}[x, y, z] /\left\langle x^{3}, y^{2}+a x^{2}+b x y, z^{(n+1) / 2}\right\rangle$, where $a, b \in \mathbb{Z}_{2}, \operatorname{deg}(x)=\operatorname{deg}(y)=1$ and $\operatorname{deg}(z)=4$.

Remark 1.2. An open question coming from Theorem 1.1 is to ask which of the four possibilities in the theorem are actually realised; in particular, which one of these four possibilities is the realisation of the Khare involution of [6]. We would like to thank the referee for this remark.

2. Preliminaries

First we establish some notations. Throughout, H^{*} will denote the Alexander-C̆ech cohomology with coefficients in \mathbb{Z}_{2} in the sense of [9]. The symbol ' \cong ' will denote an appropriate isomorphism between algebraic objects.

Let G be a compact Lie group acting on a paracompact Hausdorff space X. Then one has the Borel fibration

$$
\pi: X_{G} \longrightarrow B_{G}
$$

with fibre X, where the total space $X_{G}=\left(E_{G} \times X\right) / G$ is the Borel construction. Here, $E_{G} \longrightarrow B_{G}$ is the universal G-bundle of Milnor. If G acts freely on X, the natural map $X_{G} \longrightarrow X / G$ is a homotopy equivalence and thus the cohomology rings $H^{*}\left(X_{G}\right)$ and $H^{*}(X / G)$ are isomorphic. Associated to $\pi: X_{G} \longrightarrow B_{G}$, one has a first-quadrant spectral sequence, $\left\{E_{r}, d_{r}\right\}$, converging to $H^{*}\left(X_{G}\right)$, with

$$
E_{2}^{p, q}=H^{p}\left(B_{G} ; \mathcal{H}^{q}(X)\right)
$$

Here, $\mathcal{H}^{q}(X)$ denotes $H^{q}(X)$ twisted by the action of the fundamental group $\pi_{1}\left(B_{G}\right)$. As mentioned in the introduction, if $\pi_{1}\left(B_{G}\right)$ acts trivially on $H^{*}(X)$, the E_{2}-term has the suitable form

$$
E_{2}^{p, q}=H^{p}\left(B_{G}\right) \otimes H^{q}(X)
$$

When restricted to the subalgebras $E_{2}^{*, 0}$ and $E_{2}^{0, *}$, the product structure in the spectral sequence coincides with the cup product on $H^{*}\left(B_{G}\right)$ and $H^{*}(X)$, respectively. Also, the homomorphisms

$$
H^{p}\left(B_{G}\right) \cong E_{2}^{p, 0} \rightarrow E_{3}^{p, 0} \rightarrow \cdots \rightarrow E_{p+1}^{p, 0} \cong E_{\infty}^{p, 0} \subset H^{p}\left(X_{G}\right)
$$

and

$$
H^{q}\left(X_{G}\right) \rightarrow E_{\infty}^{0, q} \cong E_{q+2}^{0, q} \hookrightarrow E_{q+1}^{0, q} \hookrightarrow \cdots \hookrightarrow E_{2}^{0, q} \cong H^{q}(X)
$$

are, respectively, the homomorphisms

$$
\pi^{*}: H^{p}\left(B_{G}\right) \longrightarrow H^{p}\left(X_{G}\right)
$$

and

$$
i^{*}: H^{q}\left(X_{G}\right) \longrightarrow H^{q}(X)
$$

where $i: X \longrightarrow X_{G}$ is the inclusion map.
From Section 1, in the present case we are supposing that $G=\mathbb{Z}_{2}$ acts freely on $X=P(1, n)$, where n is an odd natural number. In this case, the following results will be useful.

Proposition 2.1 [2, page 374]. Suppose that $G=\mathbb{Z}_{2}$ acts on the finitistic space X. If $H^{j}(X)=0$ for $j>N$, then $H^{j}\left(X_{G}\right)=0$ for $j>N$.

Proposition 2.2 [2, page 374]. Suppose that $G=\mathbb{Z}_{2}$ acts on the finitistic space X. Suppose that $\sum r k H^{j}(X)<\infty$. Then the following statements are equivalent.
(a) G acts trivially on $H^{*}(X)$ and, with the notation as above, the spectral sequence of the fibration $X \stackrel{i}{\hookrightarrow} X_{G} \xrightarrow{\pi} B_{G}$ collapses in the E_{2}-term.
(b) $\quad \sum r k H^{j}(X)=\sum r k H^{j}\left(X^{G}\right)$, where X^{G} denotes the fixed point set of the action of G on X.

3. Proof of the main theorem

The proof is based on hard spectral sequence arguments; for details on spectral sequences, we cite for example [7]. The difficulty lies in the fact that $P(1, n)$ has nonzero \mathbb{Z}_{2}-cohomology in all dimensions $0 \leq j \leq 2 n+1$.

With the hypothesis and notations of Section 2, the first point is that Proposition 2.2 implies that the spectral sequence does not collapse in the E_{2}-term and, as before mentioned,

$$
E_{2}^{p, q}=H^{p}\left(B_{G}\right) \otimes_{\mathbb{Z}_{2}} H^{q}(X) .
$$

Let $r \geq 2$ be the smallest natural number such that $d_{r} \neq 0$. Then $E_{2}=\cdots=E_{r}$. As in Section 1, let $c \in H^{1}(X)$ and $d \in H^{2}(X)$ be the generators. By the multiplicative properties of the spectral sequence, we have either $d_{r}^{0,1}(1 \otimes c) \neq 0$ or $d_{r}^{0,2}(1 \otimes d) \neq 0$. Thus, d_{r} can be nontrivial only for $r=2$ or $r=3$. In this way, the question is divided into the following cases:
Case 1. $\quad r=2, d_{2}^{0,1}(1 \otimes c) \neq 0$ and $d_{2}^{0,2}(1 \otimes d)=0$;
Case 2. $\quad r=2, d_{2}^{0,1}(1 \otimes c)=0$ and $d_{2}^{0,2}(1 \otimes d) \neq 0$;
Case 3. $r=3, d_{3}^{0,1}(1 \otimes c)=0$ and $d_{3}^{0,2}(1 \otimes d) \neq 0$.
First consider Case 1. Then $d_{2}^{0,2 \ell}\left(1 \otimes d^{\ell}\right)=0$ for all $\ell \in\{0,1, \ldots, n\}$ and

$$
d_{2}^{0,2 \ell+1}\left(1 \otimes\left(c \smile d^{\ell}\right)\right)=d_{2}^{0,2 \ell+1}\left((1 \otimes c) \cdot\left(1 \otimes d^{\ell}\right)\right)=t^{2} \otimes d^{\ell} \neq 0
$$

Consequently, the differential

$$
d_{2}^{p, q}: E_{2}^{p, q} \longrightarrow E_{2}^{p+2, q-1}
$$

is trivial if $q \equiv 0(\bmod 2)$ and an isomorphism if $q \equiv 1(\bmod 2)$. Thus, $E_{3}^{p, q}=\{0\}$ for all p if $q \equiv 1(\bmod 2)$. Also, $E_{3}^{p, q}=\{0\}$ for $p \geq 2$ if $q \equiv 0(\bmod 2)$. In the remaining cases, $E_{3}^{p, q}=E_{2}^{p, q}$. So, we have $E_{\infty} \cong E_{3}$ and

$$
H^{j}\left(X_{G}\right) \cong \operatorname{Tot}\left(E_{\infty}\right)^{j}=\bigoplus_{j=p+q} E_{\infty}^{p, q}= \begin{cases}\mathbb{Z}_{2} & \text { if } 0 \leq j \leq 2 n+1 \\ \{0\} & \text { otherwise }\end{cases}
$$

Next, we compute the ring structure of $H^{*}\left(X_{G}\right)$. Set $x=\pi^{*}(t) \in H^{1}\left(X_{G}\right)$. Then $x \neq 0$, $x \in E_{\infty}^{1,0}$ and $x^{2}=0$. The element $1 \otimes d \in E_{2}^{0,2}$ is a permanent cocycle and determines a nonzero element $\mathbf{z} \in E_{\infty}^{0,2}$. Then $\mathbf{z}^{n+1}=0$ and, as a graded commutative algebra,

$$
\operatorname{Tot}\left(E_{\infty}\right) \cong \frac{\mathbb{Z}_{2}[x, \mathbf{z}]}{\left\langle x^{2}, \mathbf{z}^{n+1}\right\rangle},
$$

where $\operatorname{deg}(x)=1$ and $\operatorname{deg}(\mathbf{z})=2$. Since the composition

$$
H^{2}\left(X_{G}\right) \rightarrow E_{\infty}^{0,2} \cong E_{4}^{0,2} \hookrightarrow E_{3}^{0,2} \hookrightarrow E_{2}^{0,2} \cong H^{2}(X)
$$

is the homomorphism $i^{*}: H^{2}\left(X_{G}\right) \longrightarrow H^{2}(X)$, there is a unique nonzero element $z \in H^{2}\left(X_{G}\right)$ such that $i^{*}(z)=d$. Clearly, $z^{n+1}=0$. Therefore,

$$
H^{*}\left(X_{G}\right) \cong \frac{\mathbb{Z}_{2}[x, z]}{\left\langle x^{2}, z^{n+1}\right\rangle},
$$

where $\operatorname{deg}(x)=1$ and $\operatorname{deg}(z)=2$. This determines alternative (i) of the theorem.

Now assume that $r=2, d_{2}^{0,1}(1 \otimes c)=0$ and $d_{2}^{0,2}(1 \otimes d)=t^{2} \otimes c$. Then

$$
d_{2}^{0,2 \ell}\left(1 \otimes d^{\ell}\right)=\left\{\begin{array}{cl}
t^{2} \otimes\left(c \smile d^{\ell-1}\right) & \text { if } \ell \equiv 1(\bmod 2) \\
0 & \text { if } \ell \equiv 0(\bmod 2)
\end{array}\right.
$$

and $d_{2}^{0,2 \ell+1}\left(1 \otimes\left(c \smile d^{\ell}\right)\right)=0$ for all $\ell \in\{0,1, \ldots, n\}$. Hence, the differential

$$
d_{2}^{p, q}: E_{2}^{p, q} \longrightarrow E_{2}^{p+2, q-1}
$$

is trivial if $q \equiv 1(\bmod 2)$ or $q \equiv 0(\bmod 4)$, and an isomorphism if $q \equiv 2(\bmod 4)$. Thus, $E_{3}^{p, q}=\{0\}$ for all p if $q \equiv 2(\bmod 4)$. Also, $E_{3}^{p, q}=\{0\}$ for $p \geq 2$ if $q \equiv 1(\bmod 4)$. In the remaining cases, $E_{3}^{p, q}=E_{2}^{p, q}$.

Consequently, $d_{3}=0$ and hence $E_{4}=E_{3}$; also, we can check that $d_{4}^{p, 2 \ell}=0$ for all ℓ, and $d_{4}^{p, 2 \ell+1}=0$ if $\ell \equiv 0(\bmod 2)$. Suppose that $\ell \equiv 1(\bmod 2)$ and let $1 \otimes\left(c \smile d^{\ell}\right) \in$ $E_{4}^{0,2 \ell+1}$ be the nonzero element. We have

$$
\begin{aligned}
d_{4}^{0,2 \ell+1}\left(1 \otimes\left(c \smile d^{\ell}\right)\right) & =d_{4}^{0,2 \ell+1}\left([1 \otimes(c \smile d)] \cdot\left(1 \otimes d^{\ell-1}\right)\right) \\
& =d_{4}^{0,3}(1 \otimes(c \smile d)) \cdot\left(1 \otimes d^{\ell-1}\right) .
\end{aligned}
$$

The element $1 \otimes(c \smile d)$ cannot be written as a product of two nonzero elements in E_{4}. Because of this, the differential d_{4} is determined by the possible values of $d_{4}^{0,3}(1 \otimes(c \smile d))$. Let us consider the following cases:
Subcase 2.1. $d_{4}^{0,3}(1 \otimes(c \smile d))=t^{4} \otimes 1$;
Subcase 2.2. $d_{4}^{0,3}(1 \otimes(c \smile d))=0$.
First consider Subcase 2.1. Then $d_{4}^{0,2 \ell+1}\left(1 \otimes\left(c \smile d^{\ell}\right)\right)=t^{4} \otimes d^{\ell-1}$ and we conclude that

$$
d_{4}^{p, q}: E_{4}^{p, q} \longrightarrow E_{4}^{p+4, q-3}
$$

is trivial if $q \equiv 0(\bmod 2)$ or $q \equiv 1(\bmod 4)$, and an isomorphism if $q \equiv 3(\bmod 4)$. Hence, $E_{5}^{p, q}=\{0\}$ for all p if $q \equiv 3(\bmod 4)$. Also, $E_{5}^{p, q}=\{0\}$ for $p \geq 4$ if $q \equiv 0(\bmod 4)$. In the remaining cases, $E_{5}^{p, q}=E_{4}^{p, q}$.

So, we have $E_{\infty} \cong E_{5}$ and

$$
H^{j}\left(X_{G}\right) \cong \operatorname{Tot}\left(E_{\infty}\right)^{j}=\bigoplus_{j=p+q} E_{\infty}^{p, q}=\left\{\begin{array}{cl}
\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} & \text { for } j=1,2,5,6, \ldots, 2 n-1,2 n \\
\mathbb{Z}_{2} & \text { for } j=0,3,4,7, \ldots, 2 n-2,2 n+1, \\
\{0\} & \text { for } j>2 n+1
\end{array}\right.
$$

Set $x=\pi^{*}(t) \in H^{1}\left(X_{G}\right)$. Then $x \neq 0, x \in E_{\infty}^{1,0}$ and $x^{4}=0$. The elements $1 \otimes c \in E_{2}^{0,1}$ and $1 \otimes d^{2} \in E_{2}^{0,4}$ are permanent cocycles and determine, respectively, the nonzero elements $\mathbf{y} \in E_{\infty}^{0,1}$ and $\mathbf{z} \in E_{\infty}^{0,4}$. Therefore, $\mathbf{y}^{2}=0, x^{2} \mathbf{y}=0$ and $\mathbf{z}^{(n+1) / 2}=0$. Thus, as a graded commutative algebra,

$$
\operatorname{Tot}\left(E_{\infty}\right) \cong \frac{\mathbb{Z}_{2}[x, \mathbf{y}, \mathbf{z}]}{\left\langle x^{4}, \mathbf{y}^{2}, x^{2} \mathbf{y}, \mathbf{z}^{(n+1) / 2}\right\rangle}
$$

where $\operatorname{deg}(x)=\operatorname{deg}(\mathbf{y})=1$ and $\operatorname{deg}(\mathbf{z})=4$. Since the composition

$$
H^{1}\left(X_{G}\right) \rightarrow E_{\infty}^{0,1} \cong E_{3}^{0,1} \hookrightarrow E_{2}^{0,1} \cong H^{1}(X)
$$

is the homomorphism $i^{*}: H^{1}\left(X_{G}\right) \longrightarrow H^{1}(X)$ and $i^{*} \circ \pi^{*}=0$ in positive degrees, we can choose a nonzero element $y \in H^{1}\left(X_{G}\right), y \neq x$, such that $i^{*}(y)=c$ and $x^{2} y=0$. Then y represents \mathbf{y} and satisfies $x y \neq 0$ and $y^{2}=a x^{2}+b x y$, with $a, b \in \mathbb{Z}_{2}$. Similarly, let $z \in H^{4}\left(X_{G}\right)$ be the unique nonzero element such that $i^{*}(z)=d^{2}$. Then z represents \mathbf{z} and satisfies $z^{(n+1) / 2}=0$. Therefore,

$$
H^{*}\left(X_{G}\right) \cong \frac{\mathbb{Z}_{2}[x, y, z]}{\left\langle x^{4}, x^{2} y, y^{2}+a x^{2}+b x y, z^{(n+1) / 2}\right\rangle}
$$

where $\operatorname{deg}(x)=\operatorname{deg}(y)=1, \operatorname{deg}(z)=4$ and $a, b \in \mathbb{Z}_{2}$. This determines alternative (ii) of the theorem.

Now consider Subcase 2.2, that is, $d_{4}^{0,3}(1 \otimes(c \smile d))=0$. So, $d_{4}=0$ and $E_{5}=E_{4}=$ E_{3}. If $n=1$, by dimensional reasons, $d_{s}=0$ for $s \geq 5$ and thus $E_{\infty} \cong E_{5}$. But

$$
H^{4}\left(X_{G}\right) \cong \operatorname{Tot}\left(E_{\infty}\right)^{4}=E_{\infty}^{4,0} \oplus E_{\infty}^{1,3} \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
$$

and this contradicts Proposition 2.1. Thus, Subcase 2.2 does not happen when $n=1$. Take $n>1$. The differential d_{5} is determined by the possible values of $d_{5}^{0,4}\left(1 \otimes d^{2}\right)$. If $d_{5}^{0,4}\left(1 \otimes d^{2}\right)=0$, then $d_{5}=0$ and $E_{6}=E_{5}=E_{4}=E_{3}$. It follows that $d_{s}=0$ for $s \geq 6$ and so $E_{\infty} \cong E_{3}$. But

$$
H^{2 n+2}\left(X_{G}\right) \cong E_{\infty}^{2 n+2,0} \oplus E_{\infty}^{2 n-1,3} \oplus \cdots \oplus E_{\infty}^{4,2 n-2} \oplus E_{\infty}^{1,2 n+1} \cong \underbrace{\mathbb{Z}_{2} \oplus \cdots \oplus \mathbb{Z}_{2}}_{n+1 \text { copies }}
$$

and this again contradicts Proposition 2.1. Thus, $d_{5}^{0,4}\left(1 \otimes d^{2}\right)=t^{5} \otimes 1$. In this case, we claim that n must be of the form $n \equiv 3(\bmod 4)$.

If, on the contrary, $n \equiv 1(\bmod 4)$, then

$$
d_{5}^{0,2 \ell}\left(1 \otimes d^{\ell}\right)=\left\{\begin{array}{cl}
t^{5} \otimes d^{\ell-2} & \text { for } \ell=2,6, \ldots, n-3 \\
0 & \text { otherwise }
\end{array}\right.
$$

and

$$
d_{5}^{0,2 \ell+1}\left(1 \otimes\left(c \smile d^{\ell}\right)\right)=\left\{\begin{array}{cl}
t^{5} \otimes\left(c \smile d^{\ell-2}\right) & \text { for } \ell=3,7, \ldots, n-2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Consequently, $d_{5}^{p, q}$ is an isomorphism if either $q=2 \ell$ and $\ell \in\{2,6, \ldots, n-3\}$, or $q=2 \ell+1$ and $\ell \in\{3,7, \ldots, n-2\}$; otherwise, it is trivial. Therefore, $E_{6}^{p, 2 \ell}=\{0\}$ for all p, if $\ell \equiv 2(\bmod 4)$. Also, $E_{6}^{p, 2 \ell}=\{0\}$ for $p \geq 5$, if $\ell \equiv 0(\bmod 4)$ and $\ell \neq n-1$. In the remaining cases, $E_{6}^{p, 2 \ell}=E_{5}^{p, 2 \ell}$. Similarly, we have $E_{6}^{p, 2 \ell+1}=\{0\}$ for all p, if $\ell \equiv 3$ $(\bmod 4)$. Also, $E_{6}^{p, 2 \ell+1}=\{0\}$ for $p \geq 5$, if $\ell \equiv 1(\bmod 4)$ and $\ell \neq n$. In the remaining cases, $E_{6}^{p, 2 \ell+1}=E_{5}^{p, 2 \ell+1}$. One can check that $d_{s}=0$ for all $s \geq 6$ and so $E_{\infty} \cong E_{6}$. But

$$
H^{2 n+2}\left(X_{G}\right) \cong E_{\infty}^{1,2 n+1} \oplus E_{\infty}^{4,2 n-2} \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
$$

which again contradicts Proposition 2.1.

In this way, $n \equiv 3(\bmod 4)$ and now

$$
d_{5}^{0,2 \ell}\left(1 \otimes d^{\ell}\right)=\left\{\begin{array}{cl}
t^{5} \otimes d^{\ell-2} & \text { for } \ell=2,6, \ldots, n-1, \\
0 & \text { otherwise },
\end{array}\right.
$$

and

$$
d_{5}^{0,2 \ell+1}\left(1 \otimes\left(c \smile d^{\ell}\right)\right)=\left\{\begin{array}{cl}
t^{5} \otimes\left(c \smile d^{\ell-2}\right) & \text { for } \ell=3,7, \ldots, n \\
0 & \text { otherwise }
\end{array}\right.
$$

This implies that $d_{5}^{p, q}$ is an isomorphism if either $q=2 \ell$ and $\ell \in\{2,6, \ldots, n-1\}$, or $q=2 \ell+1$ and $\ell \in\{3,7, \ldots, n\}$; otherwise, it is trivial. We have $E_{6}^{p, 2 \ell}=\{0\}$ for all p, if $\ell \equiv 2(\bmod 4)$. Also, if $\ell \equiv 0(\bmod 4), E_{6}^{p, 2 \ell}=\{0\}$ for $p \geq 5$. In the remaining cases, $E_{6}^{p, 2 \ell}=E_{5}^{p, 2 \ell}$. When $q=2 \ell+1$, we get $E_{6}^{p, 2 \ell+1}=\{0\}$ for all p, if $\ell \equiv 3(\bmod 4)$. Also, $E_{6}^{p, 2 \ell+1}=\{0\}$ for $p \geq 5$, if $\ell \equiv 1(\bmod 4)$. In the remaining cases, $E_{6}^{p, 2 \ell+1}=E_{5}^{p, 2 \ell+1}$.

It follows that the sequence collapses in the E_{6}-term and

$$
H^{j}\left(X_{G}\right) \cong \bigoplus_{j=p+q} E_{\infty}^{p, q}=\left\{\begin{array}{cl}
\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}, & j \neq 0,7,8,15, \ldots, 2 n-6,2 n+1 \text { and } j<2 n+1, \\
\mathbb{Z}_{2}, & j=0,7,8,15, \ldots, 2 n-6,2 n+1, \\
\{0\}, & j>2 n+1 .
\end{array}\right.
$$

Set $x=\pi^{*}(t) \in H^{1}\left(X_{G}\right)$. Then $x \neq 0, x \in E_{\infty}^{1,0}$ and $x^{5}=0$. The elements $1 \otimes c \in E_{2}^{0,1}$, $1 \otimes(c \smile d) \in E_{2}^{0,3}, 1 \otimes\left(c \smile d^{2}\right) \in E_{2}^{0,5}$ and $1 \otimes d^{4} \in E_{2}^{0,8}$ are permanent cocycles and determine nonzero elements $\mathbf{y} \in E_{\infty}^{0,1}, \mathbf{z} \in E_{\infty}^{0,3}, \mathbf{w} \in E_{\infty}^{0,5}$ and $\mathbf{v} \in E_{\infty}^{0,8}$, respectively. We conclude that, as a graded commutative algebra,

$$
\operatorname{Tot}\left(E_{\infty}\right) \cong \frac{\mathbb{Z}_{2}[x, \mathbf{y}, \mathbf{z}, \mathbf{w}, \mathbf{v}]}{\left\langle x^{5}, \mathbf{y}^{2}, \mathbf{z}^{2}, \mathbf{w}^{2}, \mathbf{v}^{(n+1) / 4}, x^{2} \mathbf{y}, \mathbf{y z}, x^{2} \mathbf{w}, \mathbf{y w}, \mathbf{z w}\right\rangle}
$$

where $\operatorname{deg}(x)=\operatorname{deg}(\mathbf{y})=1, \operatorname{deg}(\mathbf{z})=3, \operatorname{deg}(\mathbf{w})=5$ and $\operatorname{deg}(\mathbf{v})=8$. Since the composition

$$
H^{m}\left(X_{G}\right) \rightarrow E_{\infty}^{0, m} \cong E_{m+2}^{0, m} \hookrightarrow E_{m+1}^{0, m} \hookrightarrow \cdots \hookrightarrow E_{2}^{0, m} \cong H^{m}(X)
$$

is the homomorphism $i^{*}: H^{m}\left(X_{G}\right) \longrightarrow H^{m}(X)$ and $i^{*} \circ \pi^{*}=0$ in positive degrees, we can choose nonzero elements $y \in H^{1}\left(X_{G}\right), z \in H^{3}\left(X_{G}\right), w \in H^{5}\left(X_{G}\right)$ and $v \in H^{8}\left(X_{G}\right)$ such that
$i^{*}(y)=c, \quad i^{*}(z)=c \smile d, \quad i^{*}(w)=c \smile d^{2}, \quad i^{*}(v)=d^{4}, \quad x^{2} w=0 \quad$ and $\quad v^{(n+1) / 4}=0$.
The following relations hold in $H^{*}\left(X_{G}\right)$:

$$
\begin{aligned}
z^{2} & =a_{2} x^{3} z+b_{2} x w, & & a_{2}, b_{2} \in \mathbb{Z}_{2}, \\
w^{2} & =a_{3} x^{2} v+b_{3} x y v, & & a_{3}, b_{3} \in \mathbb{Z}_{2}, \\
x^{2} y & =a_{4} x^{3}+b_{4} z, & & a_{4}, b_{4} \in \mathbb{Z}_{2}, \\
y z & =a_{5} x^{4}+b_{5} x z, & & a_{5}, b_{5} \in \mathbb{Z}_{2}, \\
y w & =a_{6} x^{3} z+b_{6} x w, & & a_{6}, b_{6} \in \mathbb{Z}_{2} .
\end{aligned}
$$

Also, in $\operatorname{Tot}\left(E_{\infty}\right)$, we have $z w=0$ because $i^{*}(z w)=i^{*}(z) \smile i^{*}(w)=c^{2} \smile d^{3}=0$ and $i^{*}: H^{8}\left(X_{G}\right) \longrightarrow H^{8}(X)$ is an isomorphism. Therefore,

$$
H^{*}\left(X_{G}\right) \cong \frac{\mathbb{Z}_{2}[x, y, z, w, v]}{\phi(x, y, z, w, v)}
$$

where

$$
\begin{array}{r}
\phi(x, y, z, w, v)=\left\langle x^{5}, y^{2}+a_{1} x^{2}+b_{1} x y, z^{2}+a_{2} x^{3} z+b_{2} x w, w^{2}+a_{3} x^{2} v+b_{3} x y v, v^{(n+1) / 4},\right. \\
\left.x^{2} y+a_{4} x^{3}+b_{4} z, y z+a_{5} x^{4}+b_{5} x z, x^{2} w, y w+a_{6} x^{3} z+b_{6} x w, z w\right\rangle,
\end{array}
$$

with $\operatorname{deg}(x)=\operatorname{deg}(y)=1, \operatorname{deg}(z)=3, \operatorname{deg}(w)=5$ and $\operatorname{deg}(v)=8$. This gives alternative (iii) in the theorem.

Finally, consider Case 3, that is, $r=3, d_{3}^{0,1}(1 \otimes c)=0$ and $d_{3}^{0,2}(1 \otimes d)=t^{3} \otimes 1$. Then, for all $\ell \in\{0,1, \ldots, n\}$,

$$
d_{3}^{0,2 \ell}\left(1 \otimes d^{\ell}\right)=\left\{\begin{array}{cl}
t^{3} \otimes d^{\ell-1} & \text { if } \ell \equiv 1(\bmod 2) \\
0 & \text { if } \ell \equiv 0(\bmod 2)
\end{array}\right.
$$

and
$d_{3}^{0,2 \ell+1}\left(1 \otimes\left(c \smile d^{\ell}\right)\right)=d_{3}^{0,2 \ell+1}\left((1 \otimes c) \cdot\left(1 \otimes d^{\ell}\right)\right)=\left\{\begin{array}{cl}t^{3} \otimes\left(c \smile d^{\ell-1}\right) & \text { if } \ell \equiv 1(\bmod 2), \\ 0 & \text { if } \ell \equiv 0(\bmod 2) .\end{array}\right.$
This implies that the differential

$$
d_{3}^{p, q}: E_{3}^{p, q} \longrightarrow E_{3}^{p+3, q-2}
$$

is trivial if $q \equiv 0(\bmod 4)$ or $q \equiv 1(\bmod 4)$, and an isomorphism if $q \equiv 2(\bmod 4)$ or $q \equiv 3(\bmod 4)$. Thus, $E_{4}^{p, q}=\{0\}$ for all p, if $q \equiv 2(\bmod 4)$ or $q \equiv 3(\bmod 4)$. Also, $E_{4}^{p, q}=\{0\}$ for $p \geq 3$, if $q \equiv 0(\bmod 4)$ or $q \equiv 1(\bmod 4)$. In the remaining cases, $E_{4}^{p, q}=E_{3}^{p, q}$. So, we have $E_{\infty} \cong E_{4}$ and

$$
H^{j}\left(X_{G}\right) \cong \bigoplus_{j=p+q} E_{\infty}^{p, q}=\left\{\begin{array}{cl}
\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} & \text { for } j=1,2,5,6, \ldots, 2 n-1,2 n, \\
\mathbb{Z}_{2} & \text { for } j=0,3,4,7, \ldots, 2 n-2,2 n+1, \\
\{0\} & \text { for } j>2 n+1 .
\end{array}\right.
$$

As before, set $x=\pi^{*}(t) \in H^{1}\left(X_{G}\right)$. Then $x \neq 0, x \in E_{\infty}^{1,0}$ and $x^{3}=0$. The elements $1 \otimes c \in E_{2}^{0,1}$ and $1 \otimes d^{2} \in E_{2}^{0,4}$ are permanent cocycles and determine nonzero elements $\mathbf{y} \in E_{\infty}^{0,1}$ and $\mathbf{z} \in E_{\infty}^{0,4}$, respectively. Clearly, $\mathbf{y}^{2}=0$ and $\mathbf{z}^{(n+1) / 2}=0$. We conclude that, as a graded commutative algebra,

$$
\operatorname{Tot}\left(E_{\infty}\right) \cong \frac{\mathbb{Z}_{2}[x, \mathbf{y}, \mathbf{z}]}{\left\langle x^{3}, \mathbf{y}^{2}, \mathbf{z}^{(n+1) / 2}\right\rangle}
$$

where $\operatorname{deg}(x)=\operatorname{deg}(\mathbf{y})=1$ and $\operatorname{deg}(\mathbf{z})=4$. Choosing nonzero elements $y \in H^{1}\left(X_{G}\right)$ and $z \in H^{4}\left(X_{G}\right)$ such that $i^{*}(y)=c$ and $i^{*}(z)=d^{2}$ gives

$$
H^{*}\left(X_{G}\right) \cong \frac{\mathbb{Z}_{2}[x, y, z]}{\left\langle x^{3}, y^{2}+a x^{2}+b x y, z^{(n+1) / 2}\right\rangle},
$$

where $\operatorname{deg}(x)=\operatorname{deg}(y)=1, \operatorname{deg}(z)=4$ and $a, b \in \mathbb{Z}_{2}$. This gives alternative (iv) and completes the proof of the theorem.

References

[1] A. Borel, Seminar on Transformation Groups (Princeton University Press, Princeton, NJ, 1960).
[2] G. E. Bredon, Introduction to Compact Transformation Groups (Academic Press, New York, 1972).
[3] P. E. Conner and E. E. Floyd, Differentiable Periodic Maps, Ergebnisse Series, 33 (Springer, BerlinHeidelberg, 1964).
[4] D. M. Davis, 'Projective product spaces', J. Topol. 3 (2010), 265-279.
[5] A. Dold, 'Erzeugende der Thomschen Algebra \mathfrak{N} ', Math. Z. 65 (1956), 25-35.
[6] S. S. Khare, 'On Dold manifolds', Topology Appl. 33 (1989), 297-307.
[7] J. McCleary, A User's Guide to Spectral Sequences, 2nd edn (Cambridge University Press, New York, 2001).
[8] P. L. Q. Pergher, H. K. Singh and T. B. Singh, 'On Z2 and S1 free actions on spaces of cohomology type (a, b)', Houston J. Math. 36(1) (2010), 137-146.
[9] E. H. Spanier, Algebraic Topology (McGraw-Hill, New York, 1966).

ANA MARIA M. MORITA, Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, CP 668, 13560-970, São Carlos - SP, Brazil
e-mail: anamariamathiasmorita@gmail.com
DENISE DE MATTOS, Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, CP 668, 13560-970, São Carlos - SP, Brazil e-mail: deniseml@icmc.usp.br

PEDRO L. Q. PERGHER, Departamento de Matemática, Centro de Ciências Exatas e Tecnologia, Universidade Federal de São Carlos, CP 676, CEP 13565-905, São Carlos - SP, Brazil
e-mail: pergher@dm.ufscar.br

[^0]: (c) 2018 Australian Mathematical Publishing Association Inc.

