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Abstract

We determine the possible Z;-cohomology rings of orbit spaces of free actions of Z;, (or fixed point free
involutions) on the Dold manifold P(1, n), where n is an odd natural number.
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1. Introduction

If G is a topological group and X is a topological space, a natural question concerns
the existence of a continuous free action of G on X. A relevant example is the result
of John Milnor, which says that the symmetric group S; on three elements cannot act
freely on the n-sphere S”. If such an action exists, further natural questions concern
properties of the orbit space X/G and its cohomology ring. There are recent results
in [4] (X = an arbitrary product of spheres and G = Z,) and [8] (X = a space of type
(a,b) and G = Z, or S'). The cohomology rings of the real, complex and quaternionic
projective spaces RP", CP" and KP" are standard examples; as is well known, these
spaces are orbit spaces of certain standard free actions of Z,, S' and S3 on §", §2+1
and S**3, respectively.

This paper is devoted to these questions when X is a special Dold manifold
and G =2Z;. The Dold manifolds P(m,n) were introduced by Dold [5] for the
purpose of finding odd-dimensional generators for the unoriented cobordism ring; they
are finite-dimensional approximations to the classifying space BO(2) = P(oco, 00) for
real 2-plane bundles. Specifically, P(m, n) is the orbit space of the free involution
—1 X (conjugation) acting on S X CP"; that is, P(m, n) is a closed smooth (m + 2n)-
dimensional manifold. In [6], Khare exhibited a fixed point free involution on P(im, n)
when 7 is odd; specifically, the involution

S S"x CP" — S" xCP"
(x’ [ZO’ Llyeves Z}’l]) L (x’ [_Zl’ ZO’ sy _Zn’ Zn—l])
induces a free involution on P(m, n).
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Thus, the question makes sense for n odd. The main tool in this context is the Leray—
Serre spectral sequence associated to the Borel fibration coming from a G-action on X
(see [1]). If the action is free, the total space of this fibration has the same homotopy
type, and hence the same cohomology, as X/G. Let Bs be the Milnor classifying
space for G-principal bundles. If the fundamental group of B (which is the base
space of the Borel fibration) acts trivially on the cohomology of the fibre (which is X),
then the E,-term of the Leray—Serre spectral sequence assumes a very suitable form,
giving a promising scenario to attack this question. Following [5], the ring structure
of H*(P(m,n);Z,) is given by

Zy[c,d]
<Cm+l’dn+l>’

where ¢ € H'(P(m, n); Z,) and d € H*(P(m, n); Z,). Consequently, for any n > 1,
HY(P(1,n);Zy) =72, if q=0,1,...,2n+ 1, and HY(P(1,n);Z,) = {0} otherwise. On
the other hand, the fundamental group of Bz, = RP* is Z,. Therefore, for any n > 1,
the above condition is automatic for P(1, n). In this setting, it is known that if a closed
smooth manifold does not bound, then it does not admit a free involution (see [3]). If n
is even, P(m, n) may or not bound, depending on the value of m (see [6]). In particular,
P(1,n) does not bound if » is even. Further, for n odd and m > 2, the above condition
is not automatic. If n is even, this also happens for all values of m for which P(im, n)
bounds (see again [6]), and in these cases we do not even know if free involutions exist.
This explains the choice of P(1,n) with n odd; for all other P(m, n), either the question
does not make sense or it may be very difficult. Our results can be summarised by the
following theorem.

H*(P(m,n);Z) =

TueOREM 1.1. Let n be an odd natural number and suppose that G = Z, acts freely on
the Dold manifold X = P(1,n). Then H*(X/G;Z,) is isomorphic to one of the following
graded algebras:

() Zay[x,z]/(x%, 21, where deg(x) = 1 and deg(z) = 2;

(i) Za[x,y,2]/¢x*, X2y, ¥ + ax? + bxy, 2" V%), where a, b € Z, deg(x) = deg(y) = 1
and deg(z) = 4,

(i) Za[x,y,z,w,v]/d(x,y,2,w, V), where

A, 9,2, w, V) = (X, ¥ + a1 X% + bi1xy, 22 + arx37 + boxw, w? + azx>v + b3 xyv,
VDR 32y 4 aux® + byz, yz + asxt + bsxz, X2w, yw + ag x>z + bexw, zw)

and aj,bj € Z,, deg(x) = deg(y) = 1, deg(z) = 3, deg(w) =5, deg(v) = 8 and
n =3 (mod 4);

(V) Za[x,y,2]/{x>, y* + ax* + bxy, 2" V/2), where a, b € Z,, deg(x) = deg(y) = 1 and
deg(z) = 4.

Remark 1.2. An open question coming from Theorem 1.1 is to ask which of the four
possibilities in the theorem are actually realised; in particular, which one of these four
possibilities is the realisation of the Khare involution of [6]. We would like to thank
the referee for this remark.
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2. Preliminaries

First we establish some notations. Throughout, H* will denote the Alexander—Cech
cohomology with coeflicients in Z; in the sense of [9]. The symbol ‘=’ will denote an
appropriate isomorphism between algebraic objects.

Let G be a compact Lie group acting on a paracompact Hausdorff space X. Then
one has the Borel fibration

T XG — BG,
with fibre X, where the total space X = (Eg X X)/G is the Borel construction. Here,
Ec — Bg is the universal G-bundle of Milnor. If G acts freely on X, the natural
map X¢ — X/G is a homotopy equivalence and thus the cohomology rings H*(X¢)
and H*(X/G) are isomorphic. Associated to 7 : X¢ — Bg, one has a first-quadrant
spectral sequence, {E,, d,}, converging to H*(X¢), with

Eg’q = H?(Bg; H1(X)).
Here, H9(X) denotes H?(X) twisted by the action of the fundamental group m(Bg).
As mentioned in the introduction, if 7;(Bg) acts trivially on H*(X), the E,-term has

the suitable form
Eé”q = HP(Bg) ® H1(X).

When restricted to the subalgebras E;’O and Eg’*, the product structure in the spectral
sequence coincides with the cup product on H*(Bg) and H*(X), respectively. Also, the
homomorphisms

H?(B) = E}® —» E}* » - » E)) = EX”  H(Xg)

and
H(Xg) » E&! = Epfy o EJl - By = HY(X)
are, respectively, the homomorphisms
o HP(BG) — HP(XG)
and
" H{(Xg) — HY(X),
where i : X — Xg is the inclusion map.
From Section 1, in the present case we are supposing that G = Z, acts freely on
X = P(1,n), where n is an odd natural number. In this case, the following results will
be useful.

ProrosiTion 2.1 [2, page 374]. Suppose that G = Z, acts on the finitistic space X. If
H/(X)=0for j> N, then H(Xg) = 0 for j > N.

Prorosition 2.2 [2, page 374]. Suppose that G = Z, acts on the finitistic space X.
Suppose that Y, rk H/(X) < co. Then the following statements are equivalent.
(@) G acts trivially on H*(X) and, with the notation as above, the spectral sequence

of the fibration X N Xc N B¢ collapses in the E,-term.
(b) S rkHI(X) =Y rk H(X), where X6 denotes the fixed point set of the action of
GonX.
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3. Proof of the main theorem

The proof is based on hard spectral sequence arguments; for details on spectral
sequences, we cite for example [7]. The difficulty lies in the fact that P(1,7n) has
nonzero Z,-cohomology in all dimensions 0 < j < 2n + 1.

With the hypothesis and notations of Section 2, the first point is that Proposition 2.2
implies that the spectral sequence does not collapse in the E,-term and, as before
mentioned,

EN? = HP(Bg) ®z, HI(X).
Let r > 2 be the smallest natural number such that d, #0. Then E, =--- = E,. As
in Section 1, let c € H'(X) and d € H*(X) be the generators. By the multiplicative
properties of the spectral sequence, we have either d>'(1 ® ¢) # 0 or d**(1 ® d) # 0.
Thus, d, can be nontrivial only for » = 2 or r = 3. In this way, the question is divided
into the following cases:

Case 1. r=2,d'(1®c)#0anddy*(1®d)=0;
Case 2. r=2,dy'(1®c)=0anddy*(1®d) #0;
Case3. r=3,dy'(1®c)=0and dy*(1®d) # 0.

First consider Case 1. Then dy*‘(1®d‘) = 0 forall £ € {0, 1,...,n} and

(1@ (c—d)=d"(1®c)-(1ed))=red #0.
Consequently, the differential
dr? . EPY — R

is trivial if ¢ = 0 (mod 2) and an isomorphism if g = 1 (mod 2). Thus, E5* = {0} for

all p if g =1 (mod 2). Also, E? = {0} for p > 2 if g = 0 (mod 2). In the remaining
cases, EY? = E}Y. So, we have E., = E3 and

HI(Xg) = Tot(E.) = P EL" =

{22 if 0<j<2n+1,
J=p+q

{0} otherwise.

Next, we compute the ring structure of H*(Xs). Set x = n*(f) € H'(Xg). Then x # 0,
xeEL and x* = 0. The element 1 ®d € Eg’z is a permanent cocycle and determines

a nonzero element z € E&Z. Then z**' =0 and, as a graded commutative algebra,
Zs|x,z]
Tot(E,) = W,

where deg(x) = 1 and deg(z) = 2. Since the composition
H*(Xg) » EX? = E)? — EY* — EY? = HA(X)
is the homomorphism i* : H*(Xs) — H?*(X), there is a unique nonzero element
7 € H*(X) such that i*(z) = d. Clearly, z"*' = 0. Therefore,
Zs[x,z]
< xz, Zn+1 > ’

where deg(x) = 1 and deg(z) = 2. This determines alternative (i) of the theorem.

H*(Xc;) =
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Now assume that r = 2, dg’l(l ®c)=0and d(2),2(1 ®d) =1 ®c. Then

£®(c—d") ift=1(mod?2),

0.2¢ 0y _
d, (1®d)—{ 0 if £= 0 (mod 2),

and d3*"'(1® (c — d%)) = 0 forall € € {0, 1,...,n}. Hence, the differential
g . s +2,9-1
R el

is trivial if g = 1 (mod 2) or ¢ = 0 (mod 4), and an isomorphism if ¢ = 2 (mod 4). Thus,
ED? = {0} for all p if g = 2 (mod 4). Also, E5? = {0} for p > 2if g = 1 (mod 4). In the
remaining cases, E5? = EJ.

Consequently, d; = 0 and hence E4 = E3; also, we can check that df:’% = (0 for all
¢, and d?**' = 0if £ = 0 (mod 2). Suppose that £ = 1 (mod 2) and let 1 ® (¢ — d’) €
Eg’yﬂ be the nonzero element. We have

dy* (1@ (c—d)=d([1®c—d)]-(1ed™)
=d’(1®(c—d)-(1ed™).

The element 1 ® (¢ — d) cannot be written as a product of two nonzero elements
in E4. Because of this, the differential ds is determined by the possible values of
d2’3(1 ® (¢ — d)). Let us consider the following cases:

Subcase 2.1. dy*(1®(c—d)=r*®I;

Subcase 2.2. dy(1® (¢ — d)) =0.
First consider Subcase 2.1. Then d)>*"' (1 ® (¢ — d*)) = t* ® d’~! and we conclude
that
g . \ +4,q—-3
dy? EYT— EFT

is trivial if ¢ =0 (mod 2) or ¢ = 1 (mod 4), and an isomorphism if ¢ =3 (mod 4).
Hence, E£? = {0} for all p if g = 3 (mod 4). Also, E{? = {0} for p > 4if g = 0 (mod 4).
In the remaining cases, EL = E}7.

So, we have E,, = E5 and

' _ Z,®7Z, forj=1,2,56,...,2n—1,2n,
Hi(Xg) = Tot(Ew)’ = @ EP =) Z, forj=0,3,4,7,....2n-22n+1,
Jj=p+q {0} for j>2n + 1.

Set x = 7%(f) € H'(Xg). Then x # 0, x € EL and x* = 0. The elements 1 ® ¢ € Eg’l
and 1®d* € Eg’4 are permanent cocycles and determine, respectively, the nonzero

elements y € E%! and z € E%*. Therefore, y2 = 0, x2y = 0 and z"*D/2 = 0. Thus, as a
graded commutative algebra,

Zr[x,y, ]

Tot(Ey) = Py 2y, 20y
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where deg(x) = deg(y) = 1 and deg(z) = 4. Since the composition
H'(Xg) » E%' = EY' — E)' = H'(X)

is the homomorphism i* : H'(X5) — H'(X) and i* o n* = 0 in positive degrees, we
can choose a nonzero element y € H'(X;), y # x, such that i*(y) = ¢ and x*y = 0. Then
y represents y and satisfies xy # 0 and y*> = ax® + bxy, with a, b € Z,. Similarly, let
z € H*(X;) be the unique nonzero element such that i*(z) = d*>. Then z represents z
and satisfies z"*1/2 = 0. Therefore,

Zr[x,y,z]

H (Xg) = ,
o) (x4, %2y, 3% + ax? + bxy, 7+ 1/2)

where deg(x) = deg(y) = 1, deg(z) = 4 and a, b € Z,. This determines alternative (ii) of
the theorem.

Now consider Subcase 2.2, that is, d;”(1 ® (¢ — d)) = 0. So, ds = 0 and Es = Ey =
Es. If n = 1, by dimensional reasons, d; = 0 for s > 5 and thus E,, = E5. But

H*Xg) 2 To(Eo)* = EX 0 EP =27, 0 7,
and this contradicts Proposition 2.1. Thus, Subcase 2.2 does not happen when n = 1.
Take n > 1. The differential ds is determined by the possible values of dg"‘(l ®d*). If
d2*(1®d*) =0, then ds = 0 and Eg = Es = E4 = E3. It follows that d, = 0 for s > 6
and so £, = E3. But
H2n+2(XG) ~ E2n+2,0 @ E2n—1,3 @ . @ E4,2n—2 @ E1,2n+1 ~ Zz @ .. @ Z2
(o] (o] (o] (o] -
n+1 copies
and this again contradicts Proposition 2.1. Thus, d2’4(1 ®d*) = £ ® 1. In this case, we

claim that n» must be of the form n = 3 (mod 4).
If, on the contrary, n = 1(mod 4), then

d0’2€(1®d5)—{t5®d€_2 for£=2,6,...,n-3,
: =

0 otherwise,
and 2041 P®(c—d? fort=3,7,...,n-2
dgy fee—d)= { 0 otherwis,e. s ,
Consequently, dé”q is an isomorphism if either ¢ = 2¢ and € € {2,6,...,n — 3}, or

g=2¢+1and £€{3,7,...,n—2}; otherwise, it is trivial. Therefore, Eg’% = {0} for
all p, if € = 2 (mod 4). Also, E** = {0} for p>5,if £=0 (mod 4) and £ #n — 1. In
the remaining cases, Eé”% =EY 2 Similarly, we have Eé”%“ = {0} forall p,if =3
(mod 4). Also, Eg’M” ={0} for p > 5, if {=1 (mod 4) and ¢ # n. In the remaining

P20+ _ gP2 Ope can check that dy = O for all s > 6 and so E., = Es. But

cases, I P s

H2n+2(XG) ~ Eio,Zn+1 @ Ei;Zn—z ~ Z2 @ ZZ,

which again contradicts Proposition 2.1.
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In this way, n = 3 (mod 4) and now

Pedi~? fort=2,6,...,n—1,

020 o
ds=(led) = { 0 otherwise,

and
PR(c—d? fort=3,7,...,n,

0.20+1 Oy _
ds= (1@ (c —d)) = { 0 otherwise.

This implies that @2 is an isomorphism if either g = 2¢ and £ € {2,6,...,n— 1}, or
q=2¢+1land (€ {3,7,...,n}; otherwise, it is trivial. We have EZ** = {0} for all p, if
¢ =2 (mod 4). Also, if £ =0 (mod 4), Eg’% = {0} for p > 5. In the remaining cases,
Eg’y = Eé”%. When g = 2¢ + 1, we get Eg‘u)+l = {0} for all p, if £ =3 (mod 4). Also,
Eg’%H = {0} for p > 5, if £ = 1 (mod 4). In the remaining cases, Eg’%” = Eg‘z'm.

It follows that the sequence collapses in the E¢-term and

. Zy®Zy, j#0,7,8,15,...,2n-6,2n+1and j<2n+ 1,
HI(Xg) = @Eff: Z,,  j=0,7,8,15,...,2n-6,2n+ 1,
Jj=p+q {0}, j>2n+1.

Set x = 7*(f) € H'(Xg). Then x # 0, x € EL? and x> = 0. The elements 1 ® ¢ € Eg’l,
1®(c—d)e E(z)’3, 1®(c—d>)e ES’S and 1 ®d* € ES’S are permanent cocycles and
determine nonzero elements y € Eg;l ,ZE ng, wE E&S andv € ES;S, respectively. We
conclude that, as a graded commutative algebra,

Zy[x,y,z, W, V]

Tot(E) = ,
(Ex) (x3,y2, 22, w2, v+ D/4 2y vz, x2w, yw, Zw)

where deg(x) = deg(y) = 1, deg(z) = 3, deg(w) =5 and deg(v) =8. Since the
composition

H"(Xg) » EX" = EX” s EX" ... — EJ" = H"(X)

is the homomorphism i* : H"(Xg) — H™(X) and i* o * = 0 in positive degrees, we
can choose nonzero elements y € H'(Xg), z € H(Xg), w € H(Xg) and v € H3(Xg)
such that

"Y=c, "@=c—d, "W=c—d’, i"0)=d*, x*w=0 and V"4 =0,
The following relations hold in H*(Xg):

22 = a2x3z + brxw, a,by € 7,
w? = a3x?v + bixyv, as, b3 € Zy,
X2y = ayx + byz, as, by € 75,

yz= a5x4 + bs)CZ, as, b5 € Zz,

YW = agx’z + bexw, ag,be € Zs.
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Also, in Tot(E,,), we have zw = 0 because i*(zw) = i*(z) — i*(w) = ¢ — d°> =0 and
i* : H3(Xg) — H®(X) is an isomorphism. Therefore,
. Zo[x,y,2z,w, V]
H'(Xg) & =22 22
¢(x,y,2,w,v)

where

o(x,y,2,w,v) = (xs,y2 + a1 X%+ b xy, 2+ a3z + byxw, w? + azx®v + bixyv, p(+D/4
X2y + agx® + baz, yz + asx* + bsxz, X2w, yw + agx>z + bexw, zw),

with deg(x) = deg(y) = 1, deg(z) = 3, deg(w) = 5 and deg(v) = 8. This gives alternative
(iii) in the theorem.
Finally, consider Case 3, thatis, r = 3, dY'(1®¢) = 0and d°(1®d) = £ ® 1. Then,
forall £€{0,1,...,n},
3o gb-1 £ p
0,20 N ®d if =1 (mod 2),
4 (1®d)‘{ 0 if€=0(mod?2),
and
PR —d") iff=1(mod?2),

ATe e - ) =4 (1e0) - (1od)) = { 0 if £= 0 (mod 2).

This implies that the differential
Pq . P4 p+3,4-2
dy" By — E

is trivial if ¢ =0 (mod 4) or ¢ = 1 (mod 4), and an isomorphism if ¢ = 2 (mod 4)
or ¢ =3 (mod 4). Thus, Ef? = {0} for all p, if g =2 (mod 4) or g =3 (mod 4).
Also, EV" = {0} for p > 3, if g = 0 (mod 4) or ¢ = 1 (mod 4). In the remaining cases,
E}? = EY. So, we have Eo, = E4 and

Z,®Z, forj=12,56,....2n-12n,
Hi(Xe) = (P EX* =

J=p+q

Zy for j=0,3,4,7,...,2n-2,2n+ 1,
{0} for j>2n+ 1.

As before, set x = 7*(f) € H'(Xg). Then x #0, x € EL and x* =0. The elements
I1®ce Eg’l and 1 ®d” € Eg’4 are permanent cocycles and determine nonzero elements
ye€ E% and z € EX, respectively. Clearly, y*> = 0 and z"*"/2 = 0. We conclude that,
as a graded commutative algebra,

Zo[x,y, 2]

Tot(Ew) = (3, y2, 2+ D2y’

where deg(x) = deg(y) = 1 and deg(z) = 4. Choosing nonzero elements y € H'(X¢)
and z € H*(X) such that i*(y) = ¢ and i*(z) = d? gives

Zy[x,y,z]

H (Xg) = (x3,y2 + ax? + bxy, ztD/2)y’

where deg(x) = deg(y) = 1, deg(z) =4 and a,b € Z,. This gives alternative (iv) and
completes the proof of the theorem.
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