THE COHOMOLOGY RING OF ORBIT SPACES OF FREE \mathbb{Z}_2 -ACTIONS ON SOME DOLD MANIFOLDS

ANA MARIA M. MORITA, DENISE DE MATTOS and PEDRO L. Q. PERGHER™

(Received 14 July 2017; accepted 26 September 2017; first published online 2 February 2018)

Abstract

We determine the possible \mathbb{Z}_2 -cohomology rings of orbit spaces of free actions of \mathbb{Z}_2 (or fixed point free involutions) on the Dold manifold P(1, n), where n is an odd natural number.

2010 Mathematics subject classification: primary 57S17; secondary 55R20, 57S25.

Keywords and phrases: Dold manifold, cohomology ring, orbit space, Leray–Serre spectral sequence, Borel fibration.

1. Introduction

If G is a topological group and X is a topological space, a natural question concerns the existence of a continuous free action of G on X. A relevant example is the result of John Milnor, which says that the symmetric group \mathbb{S}_3 on three elements cannot act freely on the n-sphere \mathbb{S}^n . If such an action exists, further natural questions concern properties of the orbit space X/G and its cohomology ring. There are recent results in [4] (X = an arbitrary product of spheres and $G = \mathbb{Z}_2$) and [8] (X = a space of type (a, b) and $G = \mathbb{Z}_2$ or \mathbb{S}^1). The cohomology rings of the real, complex and quaternionic projective spaces $\mathbb{R}P^n$, $\mathbb{C}P^n$ and $\mathbb{K}P^n$ are standard examples; as is well known, these spaces are orbit spaces of certain standard free actions of \mathbb{Z}_2 , \mathbb{S}^1 and \mathbb{S}^3 on \mathbb{S}^n , \mathbb{S}^{2n+1} and \mathbb{S}^{4n+3} , respectively.

This paper is devoted to these questions when X is a special Dold manifold and $G = \mathbb{Z}_2$. The Dold manifolds P(m,n) were introduced by Dold [5] for the purpose of finding odd-dimensional generators for the unoriented cobordism ring; they are finite-dimensional approximations to the classifying space $BO(2) = P(\infty, \infty)$ for real 2-plane bundles. Specifically, P(m,n) is the orbit space of the free involution $-1 \times$ (conjugation) acting on $\mathbb{S}^m \times \mathbb{C}P^n$; that is, P(m,n) is a closed smooth (m+2n)-dimensional manifold. In [6], Khare exhibited a fixed point free involution on P(m,n) when n is odd; specifically, the involution

$$S: \mathbb{S}^m \times \mathbb{C}P^n \longrightarrow \mathbb{S}^m \times \mathbb{C}P^n (x, [z_0, z_1, \dots, z_n]) \longmapsto (x, [-\bar{z}_1, \bar{z}_0, \dots, -\bar{z}_n, \bar{z}_{n-1}])$$

induces a free involution on P(m, n).

^{© 2018} Australian Mathematical Publishing Association Inc.

Thus, the question makes sense for n odd. The main tool in this context is the Leray–Serre spectral sequence associated to the Borel fibration coming from a G-action on X (see [1]). If the action is free, the total space of this fibration has the same homotopy type, and hence the same cohomology, as X/G. Let B_G be the Milnor classifying space for G-principal bundles. If the fundamental group of B_G (which is the base space of the Borel fibration) acts trivially on the cohomology of the fibre (which is X), then the E_2 -term of the Leray–Serre spectral sequence assumes a very suitable form, giving a promising scenario to attack this question. Following [5], the ring structure of $H^*(P(m,n); \mathbb{Z}_2)$ is given by

$$H^*(P(m,n); \mathbb{Z}_2) = \frac{\mathbb{Z}_2[c,d]}{\langle c^{m+1}, d^{n+1} \rangle},$$

where $c \in H^1(P(m,n); \mathbb{Z}_2)$ and $d \in H^2(P(m,n); \mathbb{Z}_2)$. Consequently, for any $n \ge 1$, $H^q(P(1,n); \mathbb{Z}_2) = \mathbb{Z}_2$ if $q = 0, 1, \dots, 2n + 1$, and $H^q(P(1,n); \mathbb{Z}_2) = \{0\}$ otherwise. On the other hand, the fundamental group of $B_{\mathbb{Z}_2} = RP^\infty$ is \mathbb{Z}_2 . Therefore, for any $n \ge 1$, the above condition is automatic for P(1,n). In this setting, it is known that if a closed smooth manifold does not bound, then it does not admit a free involution (see [3]). If n is even, P(m,n) may or not bound, depending on the value of m (see [6]). In particular, P(1,n) does not bound if n is even. Further, for n odd and $m \ge 2$, the above condition is not automatic. If n is even, this also happens for all values of m for which P(m,n) bounds (see again [6]), and in these cases we do not even know if free involutions exist. This explains the choice of P(1,n) with n odd; for all other P(m,n), either the question does not make sense or it may be very difficult. Our results can be summarised by the following theorem.

THEOREM 1.1. Let n be an odd natural number and suppose that $G = \mathbb{Z}_2$ acts freely on the Dold manifold X = P(1, n). Then $H^*(X/G; \mathbb{Z}_2)$ is isomorphic to one of the following graded algebras:

- (i) $\mathbb{Z}_2[x,z]/\langle x^2, z^{n+1} \rangle$, where $\deg(x) = 1$ and $\deg(z) = 2$;
- (ii) $\mathbb{Z}_2[x, y, z]/\langle x^4, x^2y, y^2 + ax^2 + bxy, z^{(n+1)/2} \rangle$, where $a, b \in \mathbb{Z}_2$, $\deg(x) = \deg(y) = 1$ and $\deg(z) = 4$:
- (iii) $\mathbb{Z}_2[x, y, z, w, v]/\phi(x, y, z, w, v)$, where

$$\phi(x, y, z, w, v) = \langle x^5, y^2 + a_1 x^2 + b_1 xy, z^2 + a_2 x^3 z + b_2 xw, w^2 + a_3 x^2 v + b_3 xyv, \\ v^{(n+1)/4}, x^2 y + a_4 x^3 + b_4 z, yz + a_5 x^4 + b_5 xz, x^2 w, yw + a_6 x^3 z + b_6 xw, zw \rangle$$

and $a_j, b_j \in \mathbb{Z}_2$, $\deg(x) = \deg(y) = 1$, $\deg(z) = 3$, $\deg(w) = 5$, $\deg(v) = 8$ and $n \equiv 3 \pmod{4}$;

(iv) $\mathbb{Z}_2[x, y, z]/\langle x^3, y^2 + ax^2 + bxy, z^{(n+1)/2} \rangle$, where $a, b \in \mathbb{Z}_2$, $\deg(x) = \deg(y) = 1$ and $\deg(z) = 4$.

REMARK 1.2. An open question coming from Theorem 1.1 is to ask which of the four possibilities in the theorem are actually realised; in particular, which one of these four possibilities is the realisation of the Khare involution of [6]. We would like to thank the referee for this remark.

2. Preliminaries

First we establish some notations. Throughout, H^* will denote the Alexander-Čech cohomology with coefficients in \mathbb{Z}_2 in the sense of [9]. The symbol ' \cong ' will denote an appropriate isomorphism between algebraic objects.

Let G be a compact Lie group acting on a paracompact Hausdorff space X. Then one has the Borel fibration

$$\pi: X_G \longrightarrow B_G$$
,

with fibre X, where the total space $X_G = (E_G \times X)/G$ is the *Borel construction*. Here, $E_G \longrightarrow B_G$ is the universal G-bundle of Milnor. If G acts freely on X, the natural map $X_G \longrightarrow X/G$ is a homotopy equivalence and thus the cohomology rings $H^*(X_G)$ and $H^*(X/G)$ are isomorphic. Associated to $\pi: X_G \longrightarrow B_G$, one has a first-quadrant spectral sequence, $\{E_r, d_r\}$, converging to $H^*(X_G)$, with

$$E_2^{p,q} = H^p(B_G; \mathcal{H}^q(X)).$$

Here, $\mathcal{H}^q(X)$ denotes $H^q(X)$ twisted by the action of the fundamental group $\pi_1(B_G)$. As mentioned in the introduction, if $\pi_1(B_G)$ acts trivially on $H^*(X)$, the E_2 -term has the suitable form

$$E_2^{p,q}=H^p(B_G)\otimes H^q(X).$$

When restricted to the subalgebras $E_2^{*,0}$ and $E_2^{0,*}$, the product structure in the spectral sequence coincides with the cup product on $H^*(B_G)$ and $H^*(X)$, respectively. Also, the homomorphisms

$$H^p(B_G) \cong E_2^{p,0} \twoheadrightarrow E_3^{p,0} \twoheadrightarrow \cdots \twoheadrightarrow E_{p+1}^{p,0} \cong E_\infty^{p,0} \subset H^p(X_G)$$

and

$$H^q(X_G) \twoheadrightarrow E_{\infty}^{0,q} \cong E_{q+2}^{0,q} \hookrightarrow E_{q+1}^{0,q} \hookrightarrow \cdots \hookrightarrow E_2^{0,q} \cong H^q(X)$$

are, respectively, the homomorphisms

$$\pi^*: H^p(B_G) \longrightarrow H^p(X_G)$$

and

$$i^*: H^q(X_G) \longrightarrow H^q(X),$$

where $i: X \longrightarrow X_G$ is the inclusion map.

From Section 1, in the present case we are supposing that $G = \mathbb{Z}_2$ acts freely on X = P(1, n), where n is an odd natural number. In this case, the following results will be useful.

PROPOSITION 2.1 [2, page 374]. Suppose that $G = \mathbb{Z}_2$ acts on the finitistic space X. If $H^j(X) = 0$ for j > N, then $H^j(X_G) = 0$ for j > N.

Proposition 2.2 [2, page 374]. Suppose that $G = \mathbb{Z}_2$ acts on the finitistic space X. Suppose that $\sum rk H^j(X) < \infty$. Then the following statements are equivalent.

- (a) G acts trivially on $H^*(X)$ and, with the notation as above, the spectral sequence of the fibration $X \stackrel{i}{\hookrightarrow} X_G \stackrel{\pi}{\longrightarrow} B_G$ collapses in the E_2 -term.
- (b) $\sum rk H^{j}(X) = \sum rk H^{j}(X^{G})$, where X^{G} denotes the fixed point set of the action of G on X.

3. Proof of the main theorem

The proof is based on hard spectral sequence arguments; for details on spectral sequences, we cite for example [7]. The difficulty lies in the fact that P(1, n) has nonzero \mathbb{Z}_2 -cohomology in all dimensions $0 \le j \le 2n + 1$.

With the hypothesis and notations of Section 2, the first point is that Proposition 2.2 implies that the spectral sequence does not collapse in the E_2 -term and, as before mentioned,

$$E_2^{p,q} = H^p(B_G) \otimes_{\mathbb{Z}_2} H^q(X).$$

Let $r \ge 2$ be the smallest natural number such that $d_r \ne 0$. Then $E_2 = \cdots = E_r$. As in Section 1, let $c \in H^1(X)$ and $d \in H^2(X)$ be the generators. By the multiplicative properties of the spectral sequence, we have either $d_r^{0,1}(1 \otimes c) \ne 0$ or $d_r^{0,2}(1 \otimes d) \ne 0$. Thus, d_r can be nontrivial only for r = 2 or r = 3. In this way, the question is divided into the following cases:

Case 1.
$$r = 2$$
, $d_2^{0,1}(1 \otimes c) \neq 0$ and $d_2^{0,2}(1 \otimes d) = 0$;

Case 2.
$$r = 2$$
, $d_2^{0,1}(1 \otimes c) = 0$ and $d_2^{0,2}(1 \otimes d) \neq 0$;

Case 3.
$$r = 3$$
, $d_3^{0,1}(1 \otimes c) = 0$ and $d_3^{0,2}(1 \otimes d) \neq 0$.

First consider Case 1. Then $d_2^{0,2\ell}(1 \otimes d^{\ell}) = 0$ for all $\ell \in \{0, 1, ..., n\}$ and

$$d_2^{0,2\ell+1}(1\otimes(c\smile d^\ell))=d_2^{0,2\ell+1}((1\otimes c)\cdot(1\otimes d^\ell))=t^2\otimes d^\ell\neq 0.$$

Consequently, the differential

$$d_2^{p,q}: E_2^{p,q} \longrightarrow E_2^{p+2,q-1}$$

is trivial if $q \equiv 0 \pmod 2$ and an isomorphism if $q \equiv 1 \pmod 2$. Thus, $E_3^{p,q} = \{0\}$ for all p if $q \equiv 1 \pmod 2$. Also, $E_3^{p,q} = \{0\}$ for $p \ge 2$ if $q \equiv 0 \pmod 2$. In the remaining cases, $E_3^{p,q} = E_2^{p,q}$. So, we have $E_\infty \cong E_3$ and

$$H^{j}(X_{G}) \cong \operatorname{Tot}(E_{\infty})^{j} = \bigoplus_{j=p+q} E_{\infty}^{p,q} = \begin{cases} \mathbb{Z}_{2} & \text{if } 0 \leq j \leq 2n+1, \\ \{0\} & \text{otherwise.} \end{cases}$$

Next, we compute the ring structure of $H^*(X_G)$. Set $x = \pi^*(t) \in H^1(X_G)$. Then $x \neq 0$, $x \in E_\infty^{1,0}$ and $x^2 = 0$. The element $1 \otimes d \in E_2^{0,2}$ is a permanent cocycle and determines a nonzero element $\mathbf{z} \in E_\infty^{0,2}$. Then $\mathbf{z}^{n+1} = 0$ and, as a graded commutative algebra,

$$\operatorname{Tot}(E_{\infty}) \cong \frac{\mathbb{Z}_2[x,\mathbf{z}]}{\langle x^2,\mathbf{z}^{n+1}\rangle},$$

where deg(x) = 1 and $deg(\mathbf{z}) = 2$. Since the composition

$$H^2(X_G) \twoheadrightarrow E_\infty^{0,2} \cong E_4^{0,2} \hookrightarrow E_3^{0,2} \hookrightarrow E_2^{0,2} \cong H^2(X)$$

is the homomorphism $i^*: H^2(X_G) \longrightarrow H^2(X)$, there is a unique nonzero element $z \in H^2(X_G)$ such that $i^*(z) = d$. Clearly, $z^{n+1} = 0$. Therefore,

$$H^*(X_G) \cong \frac{\mathbb{Z}_2[x,z]}{\langle x^2, z^{n+1} \rangle},$$

where deg(x) = 1 and deg(z) = 2. This determines alternative (i) of the theorem.

Now assume that r = 2, $d_2^{0,1}(1 \otimes c) = 0$ and $d_2^{0,2}(1 \otimes d) = t^2 \otimes c$. Then

$$d_2^{0,2\ell}(1 \otimes d^{\ell}) = \begin{cases} t^2 \otimes (c \smile d^{\ell-1}) & \text{if } \ell \equiv 1 \pmod{2}, \\ 0 & \text{if } \ell \equiv 0 \pmod{2}, \end{cases}$$

and $d_2^{0,2\ell+1}(1\otimes(c\smile d^\ell))=0$ for all $\ell\in\{0,1,\ldots,n\}$. Hence, the differential

$$d_2^{p,q}: E_2^{p,q} \longrightarrow E_2^{p+2,q-1}$$

is trivial if $q \equiv 1 \pmod 2$ or $q \equiv 0 \pmod 4$, and an isomorphism if $q \equiv 2 \pmod 4$. Thus, $E_3^{p,q} = \{0\}$ for all p if $q \equiv 2 \pmod 4$. Also, $E_3^{p,q} = \{0\}$ for $p \ge 2$ if $q \equiv 1 \pmod 4$. In the remaining cases, $E_3^{p,q} = E_2^{p,q}$.

Consequently, $d_3 = 0$ and hence $E_4 = E_3$; also, we can check that $d_4^{p,2\ell} = 0$ for all ℓ , and $d_4^{p,2\ell+1} = 0$ if $\ell \equiv 0 \pmod 2$. Suppose that $\ell \equiv 1 \pmod 2$ and let $1 \otimes (c \smile d^{\ell}) \in E_4^{0,2\ell+1}$ be the nonzero element. We have

$$\begin{split} d_4^{0,2\ell+1}(1\otimes(c\smile d^\ell)) &= d_4^{0,2\ell+1}([1\otimes(c\smile d)]\cdot(1\otimes d^{\ell-1})) \\ &= d_4^{0,3}(1\otimes(c\smile d))\cdot(1\otimes d^{\ell-1}). \end{split}$$

The element $1 \otimes (c \smile d)$ cannot be written as a product of two nonzero elements in E_4 . Because of this, the differential d_4 is determined by the possible values of $d_4^{0,3}(1 \otimes (c \smile d))$. Let us consider the following cases:

Subcase 2.1. $d_4^{0,3}(1 \otimes (c \smile d)) = t^4 \otimes 1;$

Subcase 2.2. $d_4^{0,3}(1 \otimes (c \smile d)) = 0$.

First consider Subcase 2.1. Then $d_4^{0,2\ell+1}(1\otimes (c\smile d^\ell))=t^4\otimes d^{\ell-1}$ and we conclude that

$$d_4^{p,q}: E_4^{p,q} \longrightarrow E_4^{p+4,q-3}$$

is trivial if $q \equiv 0 \pmod 2$ or $q \equiv 1 \pmod 4$, and an isomorphism if $q \equiv 3 \pmod 4$. Hence, $E_5^{p,q} = \{0\}$ for all p if $q \equiv 3 \pmod 4$. Also, $E_5^{p,q} = \{0\}$ for $p \ge 4$ if $q \equiv 0 \pmod 4$. In the remaining cases, $E_5^{p,q} = E_4^{p,q}$.

So, we have $E_{\infty} \cong E_5$ and

$$H^{j}(X_{G}) \cong \text{Tot}(E_{\infty})^{j} = \bigoplus_{j=p+q} E_{\infty}^{p,q} = \begin{cases} \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} & \text{for } j = 1, 2, 5, 6, \dots, 2n-1, 2n, \\ \mathbb{Z}_{2} & \text{for } j = 0, 3, 4, 7, \dots, 2n-2, 2n+1, \\ \{0\} & \text{for } j > 2n+1. \end{cases}$$

Set $x = \pi^*(t) \in H^1(X_G)$. Then $x \neq 0$, $x \in E_{\infty}^{1,0}$ and $x^4 = 0$. The elements $1 \otimes c \in E_2^{0,1}$ and $1 \otimes d^2 \in E_2^{0,4}$ are permanent cocycles and determine, respectively, the nonzero elements $\mathbf{y} \in E_{\infty}^{0,1}$ and $\mathbf{z} \in E_{\infty}^{0,4}$. Therefore, $\mathbf{y}^2 = 0$, $x^2\mathbf{y} = 0$ and $\mathbf{z}^{(n+1)/2} = 0$. Thus, as a graded commutative algebra,

$$\operatorname{Tot}(E_{\infty}) \cong \frac{\mathbb{Z}_{2}[x, \mathbf{y}, \mathbf{z}]}{\langle x^{4}, \mathbf{y}^{2}, x^{2}\mathbf{y}, \mathbf{z}^{(n+1)/2} \rangle},$$

where deg(x) = deg(y) = 1 and deg(z) = 4. Since the composition

$$H^1(X_G) \twoheadrightarrow E_\infty^{0,1} \cong E_3^{0,1} \hookrightarrow E_2^{0,1} \cong H^1(X)$$

is the homomorphism $i^*: H^1(X_G) \longrightarrow H^1(X)$ and $i^* \circ \pi^* = 0$ in positive degrees, we can choose a nonzero element $y \in H^1(X_G)$, $y \neq x$, such that $i^*(y) = c$ and $x^2y = 0$. Then y represents \mathbf{y} and satisfies $xy \neq 0$ and $y^2 = ax^2 + bxy$, with $a, b \in \mathbb{Z}_2$. Similarly, let $z \in H^4(X_G)$ be the unique nonzero element such that $i^*(z) = d^2$. Then z represents \mathbf{z} and satisfies $z^{(n+1)/2} = 0$. Therefore,

$$H^*(X_G) \cong \frac{\mathbb{Z}_2[x, y, z]}{\langle x^4, x^2y, y^2 + ax^2 + bxy, z^{(n+1)/2} \rangle},$$

where deg(x) = deg(y) = 1, deg(z) = 4 and $a, b \in \mathbb{Z}_2$. This determines alternative (ii) of the theorem.

Now consider Subcase 2.2, that is, $d_4^{0,3}(1 \otimes (c \smile d)) = 0$. So, $d_4 = 0$ and $E_5 = E_4 = E_3$. If n = 1, by dimensional reasons, $d_s = 0$ for $s \ge 5$ and thus $E_\infty \cong E_5$. But

$$H^4(X_G) \cong \operatorname{Tot}(E_{\infty})^4 = E_{\infty}^{4,0} \oplus E_{\infty}^{1,3} \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$$

and this contradicts Proposition 2.1. Thus, Subcase 2.2 does not happen when n = 1. Take n > 1. The differential d_5 is determined by the possible values of $d_5^{0,4}(1 \otimes d^2)$. If $d_5^{0,4}(1 \otimes d^2) = 0$, then $d_5 = 0$ and $E_6 = E_5 = E_4 = E_3$. It follows that $d_s = 0$ for $s \ge 6$ and so $E_\infty \cong E_3$. But

$$H^{2n+2}(X_G) \cong E_{\infty}^{2n+2,0} \oplus E_{\infty}^{2n-1,3} \oplus \cdots \oplus E_{\infty}^{4,2n-2} \oplus E_{\infty}^{1,2n+1} \cong \underbrace{\mathbb{Z}_2 \oplus \cdots \oplus \mathbb{Z}_2}_{n+1 \text{ conies}}$$

and this again contradicts Proposition 2.1. Thus, $d_5^{0,4}(1 \otimes d^2) = t^5 \otimes 1$. In this case, we claim that n must be of the form $n \equiv 3 \pmod{4}$.

If, on the contrary, $n \equiv 1 \pmod{4}$, then

$$d_5^{0,2\ell}(1 \otimes d^{\ell}) = \begin{cases} t^5 \otimes d^{\ell-2} & \text{for } \ell = 2, 6, \dots, n-3, \\ 0 & \text{otherwise,} \end{cases}$$

and

$$d_5^{0,2\ell+1}(1\otimes(c\smile d^\ell)) = \begin{cases} t^5\otimes(c\smile d^{\ell-2}) & \text{for } \ell=3,7,\ldots,n-2, \\ 0 & \text{otherwise.} \end{cases}$$

Consequently, $d_5^{p,q}$ is an isomorphism if either $q=2\ell$ and $\ell\in\{2,6,\ldots,n-3\}$, or $q=2\ell+1$ and $\ell\in\{3,7,\ldots,n-2\}$; otherwise, it is trivial. Therefore, $E_6^{p,2\ell}=\{0\}$ for all p, if $\ell\equiv 2\pmod 4$. Also, $E_6^{p,2\ell}=\{0\}$ for $p\geq 5$, if $\ell\equiv 0\pmod 4$ and $\ell\neq n-1$. In the remaining cases, $E_6^{p,2\ell}=E_5^{p,2\ell}$. Similarly, we have $E_6^{p,2\ell+1}=\{0\}$ for all p, if $\ell\equiv 3\pmod 4$. Also, $E_6^{p,2\ell+1}=\{0\}$ for $p\geq 5$, if $\ell\equiv 1\pmod 4$ and $\ell\neq n$. In the remaining cases, $E_6^{p,2\ell+1}=E_5^{p,2\ell+1}$. One can check that $d_s=0$ for all $s\geq 6$ and so $E_\infty\cong E_6$. But

$$H^{2n+2}(X_G)\cong E_\infty^{1,2n+1}\oplus E_\infty^{4,2n-2}\cong \mathbb{Z}_2\oplus \mathbb{Z}_2,$$

which again contradicts Proposition 2.1.

In this way, $n \equiv 3 \pmod{4}$ and now

$$d_5^{0,2\ell}(1 \otimes d^{\ell}) = \begin{cases} t^5 \otimes d^{\ell-2} & \text{for } \ell = 2, 6, \dots, n-1, \\ 0 & \text{otherwise,} \end{cases}$$

and

$$d_5^{0,2\ell+1}(1\otimes(c\smile d^\ell)) = \begin{cases} t^5\otimes(c\smile d^{\ell-2}) & \text{for } \ell=3,7,\ldots,n, \\ 0 & \text{otherwise.} \end{cases}$$

This implies that $d_5^{p,q}$ is an isomorphism if either $q=2\ell$ and $\ell\in\{2,6,\ldots,n-1\}$, or $q=2\ell+1$ and $\ell\in\{3,7,\ldots,n\}$; otherwise, it is trivial. We have $E_6^{p,2\ell}=\{0\}$ for all p, if $\ell\equiv 2\pmod 4$. Also, if $\ell\equiv 0\pmod 4$, $E_6^{p,2\ell}=\{0\}$ for $p\geq 5$. In the remaining cases, $E_6^{p,2\ell}=E_5^{p,2\ell}$. When $q=2\ell+1$, we get $E_6^{p,2\ell+1}=\{0\}$ for all p, if $\ell\equiv 3\pmod 4$. Also, $E_6^{p,2\ell+1}=\{0\}$ for $p\geq 5$, if $\ell\equiv 1\pmod 4$. In the remaining cases, $E_6^{p,2\ell+1}=E_5^{p,2\ell+1}$. It follows that the sequence collapses in the E_6 -term and

$$H^{j}(X_{G}) \cong \bigoplus_{j=p+q} E_{\infty}^{p,q} = \begin{cases} \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}, & j \neq 0, 7, 8, 15, \dots, 2n-6, 2n+1 \text{ and } j < 2n+1, \\ \mathbb{Z}_{2}, & j = 0, 7, 8, 15, \dots, 2n-6, 2n+1, \\ \{0\}, & j > 2n+1. \end{cases}$$

Set $x = \pi^*(t) \in H^1(X_G)$. Then $x \neq 0$, $x \in E_\infty^{1,0}$ and $x^5 = 0$. The elements $1 \otimes c \in E_2^{0,1}$, $1 \otimes (c \smile d) \in E_2^{0,3}$, $1 \otimes (c \smile d^2) \in E_2^{0,5}$ and $1 \otimes d^4 \in E_2^{0,8}$ are permanent cocycles and determine nonzero elements $\mathbf{y} \in E_\infty^{0,1}$, $\mathbf{z} \in E_\infty^{0,3}$, $\mathbf{w} \in E_\infty^{0,5}$ and $\mathbf{v} \in E_\infty^{0,8}$, respectively. We conclude that, as a graded commutative algebra,

$$\operatorname{Tot}(E_{\infty}) \cong \frac{\mathbb{Z}_{2}[x, \mathbf{y}, \mathbf{z}, \mathbf{w}, \mathbf{v}]}{\langle x^{5}, \mathbf{y}^{2}, \mathbf{z}^{2}, \mathbf{w}^{2}, \mathbf{v}^{(n+1)/4}, x^{2}\mathbf{y}, \mathbf{yz}, x^{2}\mathbf{w}, \mathbf{yw}, \mathbf{zw} \rangle},$$

where deg(x) = deg(y) = 1, deg(z) = 3, deg(w) = 5 and deg(v) = 8. Since the composition

$$H^m(X_G) \twoheadrightarrow E^{0,m}_\infty \cong E^{0,m}_{m+2} \hookrightarrow E^{0,m}_{m+1} \hookrightarrow \cdots \hookrightarrow E^{0,m}_2 \cong H^m(X)$$

is the homomorphism $i^*: H^m(X_G) \longrightarrow H^m(X)$ and $i^* \circ \pi^* = 0$ in positive degrees, we can choose nonzero elements $y \in H^1(X_G)$, $z \in H^3(X_G)$, $w \in H^5(X_G)$ and $v \in H^8(X_G)$ such that

$$i^*(y) = c$$
, $i^*(z) = c - d$, $i^*(w) = c - d^2$, $i^*(v) = d^4$, $x^2w = 0$ and $v^{(n+1)/4} = 0$.

The following relations hold in $H^*(X_G)$:

$$z^2 = a_2 x^3 z + b_2 x w,$$
 $a_2, b_2 \in \mathbb{Z}_2,$
 $w^2 = a_3 x^2 v + b_3 x y v,$ $a_3, b_3 \in \mathbb{Z}_2,$
 $x^2 y = a_4 x^3 + b_4 z,$ $a_4, b_4 \in \mathbb{Z}_2,$
 $yz = a_5 x^4 + b_5 x z,$ $a_5, b_5 \in \mathbb{Z}_2,$
 $yw = a_6 x^3 z + b_6 x w,$ $a_6, b_6 \in \mathbb{Z}_2.$

Also, in $\text{Tot}(E_{\infty})$, we have zw = 0 because $i^*(zw) = i^*(z) \smile i^*(w) = c^2 \smile d^3 = 0$ and $i^*: H^8(X_G) \longrightarrow H^8(X)$ is an isomorphism. Therefore,

$$H^*(X_G) \cong \frac{\mathbb{Z}_2[x, y, z, w, v]}{\phi(x, y, z, w, v)},$$

where

$$\phi(x, y, z, w, v) = \langle x^5, y^2 + a_1 x^2 + b_1 xy, z^2 + a_2 x^3 z + b_2 xw, w^2 + a_3 x^2 v + b_3 xyv, v^{(n+1)/4}, x^2 y + a_4 x^3 + b_4 z, yz + a_5 x^4 + b_5 xz, x^2 w, yw + a_6 x^3 z + b_6 xw, zw \rangle,$$

with deg(x) = deg(y) = 1, deg(z) = 3, deg(w) = 5 and deg(v) = 8. This gives alternative (iii) in the theorem.

Finally, consider Case 3, that is, r = 3, $d_3^{0,1}(1 \otimes c) = 0$ and $d_3^{0,2}(1 \otimes d) = t^3 \otimes 1$. Then, for all $\ell \in \{0, 1, \dots, n\}$,

$$d_3^{0,2\ell}(1\otimes d^\ell) = \begin{cases} t^3\otimes d^{\ell-1} & \text{if } \ell\equiv 1 \pmod{2}, \\ 0 & \text{if } \ell\equiv 0 \pmod{2}, \end{cases}$$

and

$$d_3^{0,2\ell+1}(1 \otimes (c \smile d^\ell)) = d_3^{0,2\ell+1}((1 \otimes c) \cdot (1 \otimes d^\ell)) = \begin{cases} t^3 \otimes (c \smile d^{\ell-1}) & \text{if } \ell \equiv 1 \pmod{2}, \\ 0 & \text{if } \ell \equiv 0 \pmod{2}. \end{cases}$$

This implies that the differential

$$d_3^{p,q}: E_3^{p,q} \longrightarrow E_3^{p+3,q-2}$$

is trivial if $q \equiv 0 \pmod 4$ or $q \equiv 1 \pmod 4$, and an isomorphism if $q \equiv 2 \pmod 4$ or $q \equiv 3 \pmod 4$. Thus, $E_4^{p,q} = \{0\}$ for all p, if $q \equiv 2 \pmod 4$ or $q \equiv 3 \pmod 4$. Also, $E_4^{p,q} = \{0\}$ for $p \geq 3$, if $q \equiv 0 \pmod 4$ or $q \equiv 1 \pmod 4$. In the remaining cases, $E_4^{p,q} = E_3^{p,q}$. So, we have $E_\infty \cong E_4$ and

$$H^{j}(X_{G}) \cong \bigoplus_{j=p+q} E_{\infty}^{p,q} = \begin{cases} \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} & \text{for } j = 1, 2, 5, 6, \dots, 2n-1, 2n, \\ \mathbb{Z}_{2} & \text{for } j = 0, 3, 4, 7, \dots, 2n-2, 2n+1, \\ \{0\} & \text{for } j > 2n+1. \end{cases}$$

As before, set $x = \pi^*(t) \in H^1(X_G)$. Then $x \neq 0$, $x \in E_{\infty}^{1,0}$ and $x^3 = 0$. The elements $1 \otimes c \in E_2^{0,1}$ and $1 \otimes d^2 \in E_2^{0,4}$ are permanent cocycles and determine nonzero elements $\mathbf{y} \in E_{\infty}^{0,1}$ and $\mathbf{z} \in E_{\infty}^{0,4}$, respectively. Clearly, $\mathbf{y}^2 = 0$ and $\mathbf{z}^{(n+1)/2} = 0$. We conclude that, as a graded commutative algebra,

$$\operatorname{Tot}(E_{\infty}) \cong \frac{\mathbb{Z}_{2}[x, \mathbf{y}, \mathbf{z}]}{\langle x^{3}, \mathbf{v}^{2}, \mathbf{z}^{(n+1)/2} \rangle},$$

where $\deg(x) = \deg(\mathbf{y}) = 1$ and $\deg(\mathbf{z}) = 4$. Choosing nonzero elements $y \in H^1(X_G)$ and $z \in H^4(X_G)$ such that $i^*(y) = c$ and $i^*(z) = d^2$ gives

$$H^*(X_G) \cong \frac{\mathbb{Z}_2[x,y,z]}{\langle x^3, y^2 + ax^2 + bxy, z^{(n+1)/2} \rangle},$$

where deg(x) = deg(y) = 1, deg(z) = 4 and $a, b \in \mathbb{Z}_2$. This gives alternative (iv) and completes the proof of the theorem.

References

- [1] A. Borel, Seminar on Transformation Groups (Princeton University Press, Princeton, NJ, 1960).
- [2] G. E. Bredon, Introduction to Compact Transformation Groups (Academic Press, New York, 1972).
- [3] P. E. Conner and E. E. Floyd, *Differentiable Periodic Maps*, Ergebnisse Series, 33 (Springer, Berlin–Heidelberg, 1964).
- [4] D. M. Davis, 'Projective product spaces', J. Topol. 3 (2010), 265–279.
- [5] A. Dold, 'Erzeugende der Thomschen Algebra N', *Math. Z.* **65** (1956), 25–35.
- [6] S. S. Khare, 'On Dold manifolds', *Topology Appl.* **33** (1989), 297–307.
- [7] J. McCleary, A User's Guide to Spectral Sequences, 2nd edn (Cambridge University Press, New York, 2001).
- [8] P. L. Q. Pergher, H. K. Singh and T. B. Singh, 'On Z2 and S1 free actions on spaces of cohomology type (*a*, *b*)', *Houston J. Math.* **36**(1) (2010), 137–146.
- [9] E. H. Spanier, Algebraic Topology (McGraw-Hill, New York, 1966).

ANA MARIA M. MORITA, Departamento de Matemática,

Instituto de Ciências Matemáticas e de Computação,

Universidade de São Paulo, CP 668, 13560-970,

São Carlos - SP, Brazil

e-mail: anamariamathiasmorita@gmail.com

DENISE DE MATTOS, Departamento de Matemática,

Instituto de Ciências Matemáticas e de Computação,

Universidade de São Paulo, CP 668, 13560-970,

São Carlos - SP, Brazil

e-mail: deniseml@icmc.usp.br

PEDRO L. Q. PERGHER, Departamento de Matemática,

Centro de Ciências Exatas e Tecnologia,

Universidade Federal de São Carlos, CP 676, CEP 13565-905,

São Carlos - SP. Brazil

e-mail: pergher@dm.ufscar.br