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Abstract

A formula is given for assigning sums to divergent series where the ratio
of adjacent terms varies slowly along the series. This formula consist; of a
weighted average of partial sums and is shown to be a general formula which
can be easily calculated using a simple recurrence relation. It appears to be
more powerful than a repeated Aitken or Shanks e, process as long as the
transformed series remains divergent and it is also compared with the Pad6
approximants. It is demonstrated on a factorial series, on a nearly geometric
divergent series and for the extrapolation of a velocity formula for small
amplitudes of motion.

1. Introduction

In classical analysis an infinite series So aB is termed divergent if the
sequence of its partial sums {SN}, where

SN = 2 an,
n-0

is divergent. As is well-known, there is no particular reason why LimN— SN,
even when it is convergent, should be taken as the only possible definition of a
sum for San, many other limits being available and appropriate in particular
contexts. Generally speaking, however, if {SN} is convergent then all the
commonly used sums of the series will coincide with its limit. In this case the
sequence {SN} may not afford the best means of determining the sum of the
series numerically and we may prefer an alternative method of summation
which converges more rapidly.

It is also well-known that an alternating series that is conditionally, but
not absolutely convergent can be made to converge in the classical sense to
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[2] Summing divergent series 201

any real number whatever, merely by altering the order of its terms. Between
these extremes occur the summation methods that form a sequence of linear
combinations (weighted sums) of the terms without altering their order, for
instance the Euler transformation given below.

Originally these methods were developed to hasten the convergence of
estimates of the sums of slowly convergent series, but when applied to
divergent alternating series they are often found to converge, either abso-
lutely or at least asymptotically, to a determinable limit which can meaning-
fully be accepted as the sums of these series.

For example, given a weakly divergent series with partial sums

in which the ratio un+jun of successive terms is less than 3, the Euler
transformation

UN= - 2 (-5)n + 1AnMo,
n-0

where A"^ is the nth order forward difference of u0, provides a rapidly
converging sequence whose limit coincides with S. when this exists, and will
be a self-consistent definition of a sum of the series when {SN} diverges. A
more widely-applicable general method, due to Aitken [1], may be regarded
as replacing the tail of a series, fn, where

tn = un - un+l + un+2 ,

by a two-term estimate, Tn, where

Tn = u2j(un + un+l).

If the original series is truncated, then each term except the last is split into
two parts, giving

Sn = u0- i*i + u2- u}+ • • • + ( - l)NuN

and the second part of each term is combined with the first part of the next
term to form a new series of terms,

To + S s-2 = To + (Mo - To - TI) - (u, — TI - T2) + • • •

The parts of terms at the end of the truncated series, omitted by this
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202 J. E. Drummond [3]

transformation, combine naturally with the other terms already deleted by
truncation.

If the series is a convergent geometric progression (G.P.), then Tn = tn,
and hence un — Tn — Tn+l = 0 for all n. Hence the Aitken transformation
reduces the series to To in one operation. If we wish, we may also use analytic
continuation to define To as the geometric sum for a divergent G.P., provided
only that un+jun^ 1.

Now let us describe a series for which the ratio un+jun tends to a
bounded limit, R, when n —*• °°, as nearly geometric and a series for which the
ratio varies slowly along the series, such as an asymptotic series, as locally
nearly geometric. Then the terms, «*, of the transformed series, where

u*n=un -Tn-Tn+1,

will be smaller than the corresponding terms of the original series, not only
for nearly geometric but also for locally nearly geometric series. An examina-
tion of Table 1 shows that for at least one asymptotic series the Aitken sum of
the first few terms appears to converge to the same number as is obtained by
other methods.

Other comments about Aitken's method are listed below.

(1) The transformation may be repeated on the transformed series, Sjv_2,
giving a new first term and a new series, Sf,-*- The series is reduced by two
terms at each transformation. This may be repeated until the series reduces to
fewer than two terms or the process becomes unstable.

(2) We may wish to sum a series in which the ratio of successive terms
changes rapidly. This rapid variation usually occurs at the start of a series and
the ratio of successive terms settles down to a slow variation further along the
series. This may result in an unevenness or instability near the start of the
successively transformed series SZ-i, Sf,-*, • • •. This can easily be detected if
the terms of the series are tabulated. The initial instability does not affect the
sum of the series nor the values of the later terms of the transformed series.

(3) Aitken's transformation does not alter the order of terms so it can be
used to speed the convergence of conditionally convergent series.

(4) We may alter the sum of a divergent series by a biased splitting and
regpouping such as

S = 1-1 + 1 - 1 + 1 - •••
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[4] Summing divergent series 203

where the positive and negative terms are split in different ways. However,
both the Euler and the Aitken transformation are not sign-dependent so they
do not have any obvious bias which might affect the sum of a series.

A second general method, due to S. Lubkin [3], is to use a three-term
approximant, Ln, to the tail, tn, of a series, where

L un(l+ un+l/un)
1 + 2un+l/un + «„+,/«„_,'

This is used in the same way as Tn to transform a series and effectively speeds
the convergence of a slowly convergent series of positive terms. However, on
divergent alternating series, two applications of Lubkin's transformation,
using up six terms of a series, do not reduce the size of the remaining terms as
much as three applications of Aitken's method. Nevertheless, Ln can be
written as a weighted mean of Tn and «„_! - TB_i. Hence Aitken and Lubkin
sums of alternating series are the same.

A third general set of formulae, called en processes was derived by D.
Shanks [5], assuming that each term of a series may be represented by a sum
of n exponentials. The formulae were demonstrated on a number of
convergent and divergent series. They are not sign-dependent, so appear to
be unbiassed and e\ is Aitken's two-term formula. While en is exact for a
series whose terms are a combination of n or fewer exponentials, one of
Shank's examples shows that for other series e2 does not reduce the size of the
transformed terms as much as a double use of e,, both using up four terms.
Shanks's formulae are complicated but P. Wynn [7] gives a recurrence
relation for calculating the successive c ' s .

•The author's [2] own weighted Euler sum is another formula which is
relatively simple and uses the reciprocals of the terms for weights in the Euler
sum. It is identical with Aitken's or Lubkin's formula when two or three terms
are used. It appears to sum divergent alternating series to the same sum as
Aitken's formula, but the rate of convergence is slower. On the other hand, it
does not appear to suffer seriously from initial instability and is convenient
when a reasonably large number of terms of the series is available.

A different method again for summing series is the use of Pade
approximants [4,6] which are compared in Section 3 (vi) with the new
formula.

While there are better specialist formulae, Aitken's [1] formula seems to
be the best unbiassed general formula for summing a general divergent
alternating series when we have a limited number of terms available, and we
assume only that the later terms of the transformed series alternate.

The formula which follows is a weighted sum which appears to be more
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powerful initially in speeding the convergence or reducing the size of terms
than Aitken's repeated formula: it is a general formula; it is not sign-
dependent so appears to be unbiassed; it may be calculated either directly or
from a recurrence relation with comparable labour to that for Aitken's
formula and while it may, like other formulae, suffer from initial instability,
this can easily be observed and avoided when it occurs.

2. The formula

Let Smn denote the sequence

5mn = um -Mm + 1+ ••• + ( - l ) " - m M n (n^m).

Let Rr be the ratio of two successive terms, i.e. Rr = ur+Ju,. Then an
estimate of So,-, using the terms um to un as weights, is

Tmn = PmJQmm

where

Pn,n = Son + (Rm + Rm+1 + •••+ K - , ) S 0 . n - ,

+ (RI + RmRm+1 + ••• +R l-2)So,n-2

+ • • • + R "m-"SOm

a n d

Q m n = l + ( R m + R m + l + ••• + R n l , ) + ( R 2
m + R m R m + 1 + ••• + R l - 2 ) + ••• + R " m - "

Recurrence relations for generating Pmn and Qmn are

+ mm >J0m Kimm A

Pmn = Pm + \,n + RmPm,n-\

Qmn = Om + l.n + Rm(Jm,n-l-

3. Properties of the formula

(i) The estimators, Tmn, are weighted means of the truncated sums
SOn, So.n-i, • • •, SOm with weights

l,(Rm+Rm+l+ ••• +Rn-l),(Rm+RmRn,+i+ ••• +R2n-2),--;Rm'm-

If this is compared with the author's [2] other weighted Euler sum, whose
weights were

/n-ffA (n-m\ 2 m
1,1 i I K n - | , I ^ I K » - l i > . « n - l ,
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[6] Summing divergent series 205

we see that the weighting function for divergent series uses the ratios of terms
earlier in the series.

(ii) The first estimator of So- is the trivial SOm and the second estimator is
the Aitken formula or Shanks's ex. Thus Tmn = SOm and with a little
rearranging the second estimator gives

rp _ SOm + ( — I)"* Um + \ + RmSgm f, , i i\m + l UmUm + i

which we recognise as Aitken's transformation.

(iii) If the ratios R, are constant and equal to R, say, then Pmn and Qm

are binomials in (1 + 1?) and

T -

PROOF. If Rr = R for all values of r, then Qmn = (1 + R)"~m. Similarly,

Pmn = So,m-1 Qmn

Therefore
a t n \n-m-l

(1 + R) m

(iv) TOn is a general formula in the sense that if the Rr are small and
slowly varying and if 7*On is expanded as a power series in the Rr starting
from Mo, then the (n + 1) largest terms will coincide exactly with the first
(n + 1) terms of So- and the larger of the later terms form an approximate
G.P. Similarly, this holds if the Rr are large and slowly varying and
( - l)"(Sn - TOn) is expanded as an inverse power series starting backwards
from «n.

PROOF. If the R, are small then So- may be written as

• i /"I D J_ D D D D 1? -L. ^
UOV.A — i \ o ~ r ixO'M A o A 1̂ X2 ' )

and
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If, on the other hand, the Rr are large then

and

Hence the two largest terms of our two-term approximant and the original
series agree exactly whether the series is convergent or divergent. Also the
other large terms will approximately agree if Rr varies slowly along the series.

If Ton, as defined in the formula, is expanded as a power series, using Ro

to Rn-i, where Ro to Rn-l are small and slowly varying, and if the first (n + 1)
terms of TOn are the same as in the original series and the remainder can be
summed, then

TOn=y^= «0(l - Ro + • • • ( - l)".Ro •• • !? . - , + ( - l)"+lR "+7(1 + R)),
Uo

using an order of magnitude expression for the remainder in which R is
comparable with the R,. Also

r!,n + , = '•"*' = Mo(l - Ro + • • • + ( - l)" + 'i?O • • • Rn + ( - 1)"+2R "+7(1 + R ))•

If R * is any positive number, a weighted mean is given by

P + R *P F n+i

:1-
Tf n+2 D * D n + l

_£< r> ^ K
 n + p . . . R p * r >

Hence if R * is comparable with the members of the slowly varying set, Ro to
Rn, and if Oi,n+i = QOn, then the first (n + 2) terms of the expansion agree
exactly with the first (n + 2) terms of the original series and the larger of the
later terms form an approximate G.P. Similarly, this holds for the expansion
in reciprocal powers. Finally, T01 is a general formula. Hence, using the
recurrence formulae, To2 and T03 and so on are all general formulae, in the
sense that the (n + 1) largest terms of TOn and the original series coincide
exactly and the other larger terms form comparable G.Ps.

(v) The best choice of R* for Tmn for a divergent, almost geometric,
alternating series is Rm.
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Justification: The error in a formula which fits (n - m) terms of a series
exactly is a fraction of the smallest term used, which is the first term for a
divergent series, and the fraction will not change rapidly along the series if Rm

varies slowly with m. Hence the ratio of errors in Tm,n_i and Tm+l,n is
approximately — Rm, so we can substantially reduce the error by combining
them in the ratio R * : 1, where R * is close to Rm.

We also wish not to waste terms of the series, so in constructing Tmn from
Tm,n-i and Tm+1,n we will only construct R* from um to «„ or Rm to Rn-t. In
addition we wish to avoid the growth of rounding off errors in calculations, so
we want a positive denominator. This means that we cannot use forms like
(2Rm - Rm+i), which approximates Rm-i but introduces negative terms into
the denominator, so our only choice for a divergent series is the single term
R* = Rm. This choice of weight also requires that Qm,n-i =F Qm+i,n- It can be
seen in Tables 2 and 3 that this soon ceases to be true at the start of the series,
but the repeated transformations keep feeding in information from later
terms of the series, where the transformation is better, thus damping down
initial instability.

On the other hand, if we had a convergent series, we should use the ratio
of last terms, i.e. Rn-i, in combining Tm,n-i and Tm+,,n to form Tmn. Hence if,
after several transformations of a weakly divergent series, our residuals
formed a convergent series, then this process would become less powerful.
The second numerical example exhibits a rapid initial convergence of this
type, which peters out.

(vi) The formula in Section 2 is similar to the Pade approximants [4, 6]. It
contains more terms and contains no negative terms in the denominator.

The Pade approximants for a series F(z) = £7-o a,z' are the ratios of two
polynomials. The [L, M] Pade approximant to F(z) is the quotient of two
polynomials PL(z) and QM(z), of degree L and M respectively, i.e.

chosen so that the power series expansion of [L, Af ] for small z agrees exactly
with the terms of F{z) up to zL+M.

Now, if S0=o is a power series in z, with u, = a,z', then R, = ar+\ z/a,, so
Pmn is a polynomial of degree n or (n - 1) and Qmn is a polynomial of degree
(n - m) and we have deduced in Section 2(iv) that Tmn agrees exactly with the
terms of So» up to z".

Hence the first row of the Pade table [n, 0] and the Tnn are the same
truncated sums of the series up to z". The second row of the Pade table
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[n - 1, n] are the first Aitken or Shanks d transformation of the series, using
the last two terms for the transformation. Thereafter the number of terms in
Tmn grows at twice the rate of the number of terms in [L, M] when we match
more terms of the original series.

Thus if we use 4 terms of the series

then
n ? 1 = ( o , ) ( 0 0 t - R , R 2 )
1 ' J °(Ro- Ri)+ R^Ro- Ri) + RoR^Ri- R2)'

and
l+(R1+R2)+(R0Rl + R2-R0R2)

03 1 + (Ro + R1 + R2) + (R 0 + R0R1 + R2) + R 0'

The similarities between the formulae are that they are both quotients of
two polynomials and fit four terms of the original series exactly and appear to
converge with comparable rapidity. The differences are that the Pade
approximants may be found from a relationship between five approximants,
whereas the Pmn and Qmn are obtained from simpler recurrence relations.
Also, the denominators of the Pade approximants contain negative terms, so
they must be calculated more accurately to avoid rounding-off errors.

4. Numerical examples

(i) The sum of alternating factorials

If we have an asymptotic series whose terms decrease at first, then as long
as the terms are becoming smaller using a summation formula is no better
than evaluating one more term of the series, since the truncation error is
comparable with the first term omitted. Hence it only becomes profitable to
use a summation formula on the terms which are not rapidly converging.

As an example we take

1=1 e1~xdx/x= 0.596347361 • • •

= QI_ i! + 2! - 3 ! + 4! -

In Table 1 we use Aitken's method repeatedly, first calculating Tn =
u\l{un + «„+,) and the transformed series u'n= un - Tn - Tn+1 then repeating
this process.

The numbers left over at the start of each transformation are marked
with a star and later added.

https://doi.org/10.1017/S0334270000001089 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000001089


[10] Summing divergent series 209

TABLE 1

Repeated Aitken sum of factorials

0

1

2

3

4

5

6

7

1

-1

2

-6

24

-120

720

-5040

i*
2
1

"3
2
4
6
5
24
6
120
7

720
8

1
2.3
2

3.4
6
4.5
-24
5.6
120
6.7
-720
7.8

4*
2.3.8
-2.5
3.4.15
6.6

4.5.22
-24.7
5.6.32
120.8
6.7.44

2.16
3.4.8.14
-6.26

4.5.14.22
24.38

5.6.22.32
- 120.52
6.7.32.44

.0115377*

- .0093617

.0125397-

.0029101 .0013372*

TABLE 2

for the sum of factorials

0 1 1

1 - 1 2

2 2 3

3 - 6 4

4 24 5 T

5 -120 6

6 720 7 ^

7 -5040

1
1
0
1
2
1
-4
1
20
1

-100
1
620
1

-4420

1
2
2
3
2
4
4
5
0
6
20
7
-80
8

3
5
6
10
10
17
16
26
20
37
40
50

9
15
22
37
46
77
84
141
140
235

31
52
90
151
222
372
476
799

121
203
402
674
1142
1915

523
877
1946
3263

2469
4140
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Using 8 terms of the original series

I = .5000000+ .0833333 + .0115377+ .0013372 +

the truncation error at this stage being .0001392. The new series ceases to be
monotonic or becomes unstable after using 14 terms of the original series.

In Table 2 we list n, un, Rn and Thn (= SOn/l) in the first four columns and
calculate PmnIQmn using the recurrence relations. The fractions are all
estimates of / which improve towards the top right corner of Table 2. To
compare them with the results using Aitken's formula, we write the sequence
Toi, T03, T05 and Tm as a series

/ = .5000000 + .1000000 - .0039409 + .0003177

the truncation error at this stage being - .0000294. This series is more rapidly
convergent than Aitken's and does not become unstable until 18 terms of the
original series are used. Even if we had used weights from the other end of the
series, namely R * = Rn-U giving the author's weighted Euler sum, we still get
a convergent process. Using the same terms we obtain

/ = .50000 + .08824 + .00684 + .00100 +

(ii) A nearly geometric series

The following is a demonstration that Tmn is useful for divergent,
alternating, almost geometric series in which Rn increases with n.

Almost geometric, divergent series may be divided into two groups, one
in which the ratio of successive terms rises to a constant limit greater than 1
and the other where the ratio of successive terms decreases to a constant limit
greater than 1.

If the series is a binomial with exponent - 1 or a G.P. such as
S = l - 2 + 4 - 8 + - - , then all the formulae give the sum in one operation as
1/3 without remainder.

As an example of a series in which Rn increases we take the logarithmic
series.

The function In (I + z) has a logarithmic singularity in the complex plane
at z = - 1 so we cannot expect to represent it as a rational function for all z.
Even so we still obtain considerable convergence before the Tmn become
unstable. As an example, we use

1.7918 • • • = ln{\ + 5) = 5 - 52/2 + 53/3 - 54/4 + 55/5

In Table 3, the values of n, «„, Rn and Sln or Tnn are listed in the first four
columns and the recurrence relation is used to generate the higher order Tmn

values.
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TABLE 3

Tmn for a nearly geometric series

211

c

- 2 5
2

125
3

- 6 2 5
4

3125
5

- 15625

5
2
10
3
15
4
20
5
25
6

5
1

- 7 . 5
1

34.167
1

- 122.08
1

502.92
1

-2101.25

5
3.5

9.1667
4.3333
6.0417

4.75
14.583

5
-5.7639
5.1667

21.667
13.083
36.597
19.194
37.240
22.812
52.569
25.167

90.764
51.903
159.23
86.79
192.22
110.71

386.14
216.55
722.99
400.03

1688.3
941.4

The successive sums for 2, 4 and 6 terms using Aitken's formula are 1.4286,
1.7368 and 1.7862, while for comparison T01, r03 and T05 are 1.4286, 1.7487
and 1.7934. If further terms are calculated, Aitken's formula continues to
provide a convergent sequence but the new formula provides a sequence that
overshoots and then oscillates.

TABLE 4

Calculation of an inverse square root

0

1

2

3

4

5

1

- 4

24

- 1 6 0

1120

-8064

4

6

20/3

7

36/5

1
1

- 3
1

21
1

- 139
1

981
1

-7083

1
5
3
7
1

23/3
8
8

-99 /5
41/5

7
27
19

149/3
44/3
532/9
181/5
321/5

47
157.7
128.7
357.1
134.0
458.3

316.7
988

906.0
2601

2173
6552
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The corresponding Pade approximants using the same terms are [1,2],
[2,3] and [3,4]. These give 1.4286, 1.7213 and 1.7787, which are comparable
but not quite as good as the repeated Aitken and the Tmn approximations.-

As a second example of a series with increasing Rn we take the binomial
series for the inverse square root of 9:

(l + 8)-'/2= 1-4 + 24-160 + 1120-8064+ ••• = 1/3 = .333 • • •

The details for Tmn are given in Table 4 and the sums for 2, 4 and 6 terms to
three decimal places are:

Repeated

Pade [n,n

To,2n -1

Aitken

+ 1]

.200

.200

.200

.299

.294

.298

.328

.323

.332.

As an example of a series with decreasing Rn we take a binomial with power
-3 /2 :

(1 + 8)~3/2 = 1 - 12 + 120 - 1120 + 10080 - 88704 + • • • = .037.

The new formula is inferior to the older formulae on this example. The sums
using different formulae on 6 terms are:

Repeated Aitken

Pade [3,4]

.0385

.0383

.0551.

(iii) A velocity formula for an inextensible sheet oscillating sinusoidally in
a viscous liquid

If a is the angular frequency, k is the wave number and b is the
amplitude, then the velocity, v, of the sheet relative to the fluid is given by

Two transformations of this series are

2,_2 , 288875 L 4 | 4 10143611
_ <T 299136 90937344

13 2/c 644099 2 • 1681 4

299136 1444 ° K

and
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[14] Summing divergent series 213

2 2 644099 106369861 6 6
_, _ a b k + 299136° k + 90937344 * *
I 03 — 7TT2k 999323 2 356313 6859 6 -

1 299136° K 92416 b k 4096b k

The original series appears to have a radius of convergence given by bk = .93
and if we want a result, say, to 3% accuracy the truncated power series may be
used for bk up to 0.6. When the series is transformed, T03 and 7\3 agree to
better than 3% for amplitudes up to 1.1, which is beyond the original radius of
convergence.

5. Conclusion

The choice of weight R* = Rm in Section 3 (v) was made to reduce the
error for a divergent series. When a new sequence or series is constructed
using the transformation of Section 2 and the original series is locally nearly
geometric, the new terms are smaller than the original terms. If the later
terms of the original series are more nearly geometric than the earlier terms,
then the fractional reduction is greater further along the series, so the ratio of
successive terms is also reduced.

If the weights, Rm, that we use in the transformation decrease along the
original series, then in the second transformation we will use weights which
are larger than ideal and so cause a slow convergence. On the other hand, if
the ratios, Rm, increase along the series and each transformation reduces the
length of the series by one term, then we consistently use the smaller weights
available. Hence for a while at least the new formula remains efficient.

An examination of the numerical examples shows that for the asymptotic
series the transformation may be repeated 9 times and gives a sum accurate to
9 decimal places before it starts to show an instability or loss of efficiency. In
the two examples of geometric series with increasing ratio, the instability
starts earlier but the transformation is efficient until it becomes unstable and
the instability can easily be observed by tabulating a few adjacent terms in the
table of Tmn. It then appears that the formula of Section 2 is useful for
divergent series in which the ratio of the terms increases along the series.

The final example is a series which is truncated because of the difficulty of
calculating later terms. A transformation of this series increases both its
accuracy and range.
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