
Book reviews 217

Lattner, C. (2010) The LLVM Compiler Infrastructure. http://llvm.org.

Leijen, D. & Meijer, E. (2001). Parsec: Direct style Monadic Parser Combinators for the

Real World. Technical Report UU-CS-2001-35. Department of Computer Science, Utrecht

University. http://www.cs.uu.nl/˜daan/parsec.html.

Nielson, F., Nielson, H. R. & Hankin, C. (2005) Principles of Program Analysis. 2nd printing

edn. Springer Verlag.

Parr, T. (2007) The Definitive Antlr Reference: Building Domain-Specific Languages.

The Pragmatic Bookshelf. http://www.pragprog.com/titles/tpantlr/the-definitive-antlr-

reference.

Parr, T. (2009) Language Implementation Patterns. The Pragmatic Bookshelf. http://

www.pragprog.com/titles/tpdsl/language-implementation-patterns.

Swierstra, S. D., Rodriguez, A., Middelkoop, A., Baars, A. I. & et al., A. Loeh. (2010) The

Haskell Utrecht Tools (hut). http://www.cs.uu.nl/wiki/HUT/WebHome.

JURRIAAN HAGE

s.j.thompson@ukc.ac.uk

Foundations of F# Robert Pickering, Apress, 2007 ISBN 10: 1-59059-757-5

doi:10.1017/S0956796810000110

The fact that Microsoft has created a functional programming language on top of the .NET

platform enables a very large community of programmers to experiment with functional

programming in an environment that they are familiar with. If they decide that functional

programming is of value for them, it will be a big advantage that it can be deployed on a

platform that is known and trusted. Especially in bigger commercial companies it is considered

quite an investment to start operating a new platform, and the fact that F# runs on the .NET

platform is really going to make a difference there. As an extra bonus there is the huge set of

supporting tools and libraries that programmers will have access to.

Since F# can be downloaded from Microsoft’s website for free, all that is needed for a

.NET programmer to give it a try is a good description of the language and the way it can

be put to use. For most people it will be difficult to get going without something like a book

they can hold in their hand, read on the train, put little slips into as bookmarks etc – just the

online manuals simply aren’t enough. “Foundations of F#” by Robert Pickering seems to be

aimed at this category of users.

After a short introduction, the book dedicates three chapters on what could indeed be

called the “foundations” of F#. The chapters describe the Functional, Imperative and Object

Oriented aspects of the language in a fairly formal way. It even starts with a list of the

keywords, which maybe a bit too fundamental for practical purposes. Fortunately the rest

of these chapters find a good balance between concise description of the language, some

examples, and some general comments on functional programming.

In general the book doesn’t waste much time explaining concepts like variable scope, or why

you might want to use a relational database. The information in its 385 pages is relevant for a

professional programmer who understands the principal concepts of computer programming.

At the same time it doesn’t assume that the reader understands typical functional programming

constructs like currying. As a consequence, the level is suited for experienced programmers

who would like to start with a functional programming language.

The examples provide good bits of functional programming “jargon”, but they can

sometimes be a bit difficult to follow. The use of variable names that are sometimes rather

short and cryptic doesn’t help here. In a similar vein, I am not sure that it is such a good idea

https://doi.org/10.1017/S0956796810000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000110


218 Book reviews

to use the ‘light’ notation throughout the book. This notation uses indentation to capture the

structure of the program. This may be very convenient for a programmer who understands

the language, but a novice might benefit from a bit more explicit structure.

Since F# runs on the Microsoft .NET platform, an important aspect of the language is

the interfacing with this platform. The book describes, for example, how to create a dynamic

web page with ASP.NET web forms, or how to access a database using ADO.NET. The

array of topics that are covered in this way is rather large, which result in sections that can

only provide an idea of what can be accomplished. It won’t really tell you what ADO.NET

or ASP.NET is (or maybe just enough to understand what it is about), so in general you

shouldn’t expect to be able to use this in practice without some prior experience with the

.NET platform.

The book includes a section on “Language Oriented Programming”, an excellent idea (and

one of the few sections after the first three that isn’t very .NET specific). The examples might

have been more interesting, but never the less this section may provide valuable ideas for

programmers new to functional programming.

A final word of caution: the book dates from 2007, and by now it is a bit behind current

developments. This means that some of the examples need a bit of tweaking to work on the

current version of the platform, and a few of the new features of F# (such as support for

parallel programming) are not covered.

WILLEM DE JONG

w.a.de.jong@gmail.com

https://doi.org/10.1017/S0956796810000110 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000110

