THE NORMALIZER OF CERTAIN MODULAR SUBGROUPS

MORRIS NEWMAN

Introduction. Let G denote the multiplicative group of matrices

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

where a, b, c, d are integers and $a d-b c=1 . G$ is one of the well-known modular groups. Let $G_{0}(n)$ denote the subgroup of G characterized by $c \equiv 0$ $(\bmod n)$, where n is a positive integer. In this note we determine the normalizer of $G_{0}(n)$ in G, denoted by $\bar{G}_{0}(n)$. We shall prove the following theorem:

Theorem 1. If $n=2^{\alpha} 3^{\beta} n_{0} \geqslant 1$, where $\left(n_{0}, 6\right)=1$, then

$$
\bar{G}_{0}(n)=G_{0}\left(n / 2^{u} 3^{v}\right),
$$

where $u=\min \left(3,\left[\frac{1}{2} \alpha\right]\right), v=\min \left(1,\left[\frac{1}{2} \beta\right]\right)$.
Thus in all cases $\bar{G}_{0}(n)=G_{0}(n / \Delta)$, where $\Delta \mid 24$. An interesting consequence of this theorem is that if H is a subgroup of G which has $G_{0}(n)$ for a normal subgroup, then $H=G_{0}(d)$, where $d \mid n$ and $(n / d) \mid 24$. This is so since H is included between the groups $G_{0}(n)$ and $\bar{G}_{0}(n)=G_{0}(n / \Delta)$, and so H must be of the form given above by virtue of the theorem quoted in Lemma 1 below.

In addition, Theorem 1 shows that for certain n there are inner automorphisms of $G_{0}(n)$ arising from elements of G which are not in $G_{0}(n)$.

We go on now to the proof of Theorem 1. Put

$$
S=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad W=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),
$$

and note that

$$
W^{k}=\left(\begin{array}{ll}
1 & 0 \\
k & 1
\end{array}\right) .
$$

Lemma 1. If $n=\sigma^{2} Q \geqslant 1$ where Q is square-free, then $\bar{G}_{0}(n)=G_{0}(n / \Delta)$, where $\Delta \mid \sigma$.

Proof. The author has shown in (1) that if H is a subgroup of G containing $G_{0}(n)$, then $H=G_{0}(m)$, where $m \mid n$. Since $\bar{G}_{0}(n) \supseteq G_{0}(n)$, we may put $\bar{G}_{0}(n)=$ $G_{0}(m), m \mid n$. The matrix W^{m} therefore belongs to $\bar{G}_{0}(n)$. Since $S \in G_{0}(n)$ for all $n, W^{-m} S W^{m} \in G_{0}(n)$. This implies that $m^{2} \equiv 0(\bmod n)$, or that $(m / \sigma)^{2} \equiv 0(\bmod Q)$, so that $(m / \sigma) \equiv 0(\bmod Q)$, since Q is square-free. Hence $\sigma Q \mid m$, and also $m \mid \sigma^{2} Q$. Thus $m=n / \Delta$, where $\Delta \mid \sigma$.

Received April 4, 1955.

Lemma 2. Suppose there is some divisor ϵ of σ such that for every element

$$
A=\left(\begin{array}{cc}
a & b \\
n c & d
\end{array}\right)
$$

of $G_{0}(n), \epsilon \mid(d-a)$. Then $\epsilon \mid \Delta$.
Proof. It is only necessary to show that $W^{n / \epsilon} \in \bar{G}_{0}(n)$, since then $(n / \Delta) \mid$ (n / ϵ), and so $\epsilon \mid \Delta$. We have

$$
W^{-n / \epsilon} A W^{n / \epsilon}=\left(\begin{array}{ll}
* & * \\
n c+n(d-a) \epsilon^{-1}-n b \cdot n \epsilon^{-2} & *
\end{array}\right) .
$$

But $\epsilon^{2} \mid n$ (since $\epsilon \mid \sigma$), and $\epsilon \mid(d-a)$ by hypothesis. Thus $W^{-n / \epsilon} A W^{n / \epsilon} \in G_{0}(n)$, and so $W^{n / \epsilon} \in \bar{G}_{0}(n)$.

Lemma 3. Suppose $(k, n)=1$. Then $\Delta \mid\left(k^{2}-1\right)$.
Proof. Since $(k, n)=1$ we can find a, b such that $a k-b n=1$. The matrix

$$
A=\left(\begin{array}{ll}
a & b \\
n & k
\end{array}\right)
$$

therefore belongs to $G_{0}(n)$. Since $W^{n / \Delta} \in \bar{G}_{0}(n), W^{-n / \Delta} A W^{n / \Delta} \in G_{0}(n)$. Performing the multiplications, we see that

$$
\frac{n}{\Delta}(k-a)+n\left(1-\frac{n}{\Delta^{2}} b\right) \equiv 0(\bmod n)
$$

This implies Lemma 3 , since $\Delta^{2} \mid n$ by Lemma 1 and $a k \equiv 1(\bmod n)$.
Lemma 4. $\Delta \mid 2^{u} \cdot 3$.
Proof. If n is odd, we may choose $k=2$ in Lemma 3, which implies that $\Delta \mid 3$. If n is even, put $n=2^{\alpha} n_{1}$, where n_{1} is odd and $\alpha \geqslant 1$. Choose λ so that $\lambda n_{1} \equiv-1\left(\bmod 2^{\alpha}\right)$. Then λ is odd. We may choose $k=\lambda n_{1}-2$ in Lemma 3 since

$$
\begin{aligned}
(k, n) & =\left(\lambda n_{1}-2,2^{\alpha} n_{1}\right) \\
& =\left(\lambda n_{1}-2,2^{\alpha}\right)\left(\lambda n_{1}-2, n_{1}\right) \\
& =1 .
\end{aligned}
$$

We have

$$
\begin{aligned}
\left(k^{2}-1, n\right) & =\left(k^{2}-1,2^{\alpha} n_{1}\right) \\
& =\left(k^{2}-1,2^{\alpha}\right)\left(k^{2}-1, n_{1}\right) \\
& =\left(\left(\lambda n_{1}-1\right)\left(\lambda n_{1}-3\right), 2^{\alpha}\right)\left(\left(\lambda n_{1}-1\right)\left(\lambda n_{1}-3\right), n_{1}\right) \\
& =\left(8,2^{\alpha}\right)\left(3, n_{1}\right) .
\end{aligned}
$$

But $\Delta\left|\left(k^{2}-1\right), \Delta\right| n$ and so $\Delta \mid\left(k^{2}-1, n\right)$. Taking into account that also $\Delta \mid \sigma$, we see that $\Delta \mid 2^{u} \cdot 3$, and so Lemma 4 is proved.

To complete the proof of Theorem 1, we use Lemma 2 in the following way. Let

$$
\left(\begin{array}{cc}
a & b \\
n c & d
\end{array}\right)
$$

be any element of $G_{0}(n)$. If $n \equiv 0(\bmod 9)$ then $3 \mid \sigma$. Also $a d \equiv 1(\bmod 3)$, which implies that $3 \mid(d-a)$. Thus $3 \mid \Delta$. If $n \neq 0(\bmod 9)$ then $\sigma \not \equiv 0(\bmod 3)$ and so, by Lemma $1, \Delta \not \equiv 0(\bmod 3)$. Hence Δ contains the factor 3 if and only if n is divisible by 9 .

If $n \equiv 0(\bmod 64)$ then $8 \mid \sigma$. Also, $a d \equiv 1(\bmod 8)$. Thus a and d are odd, and since the square of any odd number is congruent to 1 modulo $8,8 \mid(d-a)$. Thus $8 \mid \Delta$. Coupled with Lemma 4 , we see that Δ contains the factor 8 precisely if and only if n is divisible by 64 .

The remaining cases (n divisible by 16 but not by $64, n$ divisible by 4 but not by $16, n$ not divisible by 4) are treated similarly.

The proof of Theorem 1 is thus completed.

Reference

1. M. Newman, Structure theorems for modular subgroups, Duke Math. J., 22 (1955), 25-32.

National Bureau of Standards, Washington

