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1. Introduction
In previous papers (Bartlett 1951, Williams 1952a, b, c; 1953, 1955)

certain exact tests for discriminant functions have been discussed. These
papers have also indicated how the tests may usefully be applied to a wide
range of problems: the significance of discriminant function coefficients, the
interpretation of interactions in factorial experiments, the concurrence of
regression lines with the same independent variables and the proportionality
of regression lines with different independent variables, the comparison of
sets of ratios, and the testing of arbitrary scores applied to frequency data.

For all of these problems, the tests required are generally of two kinds.
First are required tests of the adequacy of a single discriminant function
(or some analogous linear combination of variables) to represent the
variation among the multivariate populations from which the data have
been drawn; these tests readily generalize to tests of the adequacy of a set
of such linear functions. Secondly are required tests of, and corresponding
fiducial limits for, the coefficients in the given discriminant functions.

The main object of this paper is to present the tests in a more explicit
and general form than has been done previously, and to give an alternative
derivation. Generalizations of the earlier work to the testing of a set of r
discriminant functions will be given.

If r discriminant functions are adequate to specify the variation in a
/>-variate population, this implies that the population means satisfy p — r
linear relations. The determination of such linear relations has important
applications in instrument calibration and in some econometric problems
(Williams 1959). In an earlier paper (Williams 1955) it was erroneously
stated that with p independent variables, the test of s linear relations was
equivalent to the test for p—s discriminant functions. The error was pointed
out by Bartlett (1957). The fact is that, if the variation among populations
with p variables is adequately described in terms of p—s linear functions of
them (the discriminant functions), this implies that, within the limits of
sampling error, there are s linear relations among the variables. Indeed, the
test for the adequacy of p — s discriminators is by implication a test for the
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existence of s such linear relations. However, the test for the coefficients of
the discriminators does not lead to a test for the coefficients of the linear
relations; this is a consequence of the fact that the variables orthogonal to
the hypothetical discriminators in the sample are not necessarily orthogonal
to them in the population. Indeed, it does not appear possible to make exact
tests or fiducial limits for the constants in a linear functional relation, since
the specification of the hypothetical null variate does not lead to an explana-
tory variate in terms of which the variation among the popluations can be
expressed.

The author (Williams 1959) has shown that important significance tests
jn this field may be put into the form of an analysis of covariance; the signif-
icance of the reduced variation after the elimination of an "explanatory
variate" defined by the null hypothesis provides a test for the adequacy of
that hypothetical explanatory variate. This has been the approach adopted
in the other references mentioned at the beginning of this paper, and it will
be developed explicitly in the following sections.

Incidentally it will be shown that the general test for "direction" of an
explanatory variate — the test for the coefficients in the variate — is
nothing more than a test of deviation of the dependent variables from regres-
sion on the explanatory variate.

2. Tests for a single explanatory variate

We suppose that we have a sample of w+1 observations from a p+q-
variate population consisting of two sets of variables:

y, <j= 1,2, • • • , ? ) .

The discrimination problem may then be stated formally as the require-
ment that the regression of the xf on the y} may be expressed in terms of a
smaller set of compound variates !,(*' = 1, 2, • • •, r), linear functions of the
a;,-; in other words, that the xt be regarded as distributed in r rather than p
dimensions, apart from sampling error. We first deal with a single explana-
tory variate (r = 1).

We use the following notation, following Williams (1955).
T matrix of sums of squares and products of the x(

P matrix of sums of products of the xt and the y,
U matrix of sums of squares and products of the y}

x an observation-vector of the a;-variables
y an observation-vector of the y-variables
y the vector of coefficients of the xf in the explanatory variable
B matrix of sums of squares and products of regression of the xt on the yt.
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Thus | = y'x.
Matrices of sums of squares and products will be termed dispersion

matrices.
Clearly B = PU*1 P' and has q degrees of freedom. We write W =

T — PU-1 P', the matrix of residual dispersion, with ri — q degrees of
freedom.

The test for the adequacy of, and the constants in, the explanatory variate
£ may be carried out as an analysis of covariance (see Williams 1955).
We eliminate f from the total and residual dispersion of the xt, and test the
ratio of the reduced determinants. Clearly if £ is an adequate explanatory
variate, this determinantal ratio will be distributed independently of the yt.
The form of this derivation shows that it really provides a test of deviation
from regression on the variate £. As with covariance analysis with a single
dependent variable, the ratio can be broken into two factors providing tests
of deviation from regression (i.e. direction) with p — 1 degrees of freedom,
and a factor for a test of collinearity. Here we propose to derive these two
tests in a different way.

The relevant sums of squares for f are

Residual y'Wy
Total y'Ty.

Then the determinants of reduced dispersion of the xit after f has been
eliminated, are

Residual \W\jy'Wy
Total \T\\y'Ty.

(1)

The overall test criterion found by eliminating £ is thus seen to be

\W\ y'Ty
\T\ y'Wy

This is a determinantal ratio with n — 1 total degrees of freedom, and p — 1
and q degrees of freedom for the (reduced) x,- and the yt. It is denoted by
(n — 1: p — \,q) (Williams 1959).

Now consider the regression function of f on the y}. It is

X = y'PU-^y,

a linear function of the ys. Since this regression function has been chosen to
minimize the sum of squares of deviation from regression on £ as a whole,
we may analyse this sum of squares into portions for reduced regression on
the xt and residual from the xit regardless of the dependence of X on £.
These two portions contain p — 1 and n — p degrees of freedom respec-
tively; their ratio provides the test for the coefficients in g.
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We have

Total sum of squares of X = y'PU~lP'y = y'By
Sum of products of X, f = y' By
Sum of squares of f = y'Ty.

Hence sum of squares of departure of X from regression on f

= y'By-(y'By)*ly'Ty
= y'Byy'Wy/y'Ty.

Vector of sums of products of X with the x( = y' PU'1 P'

= y'B.

Hence, residual sum of squares of X

1 y'By y'B

]f\ By T
= y'By-y'

For the test of direction, the (n — 1: p — 1, 1) ratio is therefore

y'BT-^Wyy'Ty
K ' y'Byy'Wy

This ratio may be tested by means of the F test:

n — P 1 — D

p — 1 D

_n-p y'By -y'Wy- y'BT~lWy • y'Ty
= P — 1 y'BT^Wy -y'Ty

The collinearity criterion is the ratio of (1) to (2):

\W\ y'By
(3) C =

\T\ y'BT~lWy

which is a (n —, 2: p — 1, q — 1) ratio.
These results are equivalent to those given in Williams (1952a, 1955)

where, however, they are expressed in terms of sample canonical correlations.
In applying these tests, we need first to test collinearity; only if there is no

evidence of departure from collinearity can a valid test of direction (the
discriminant function coefficients) be made.
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3. Application where one set of variables represents group
differences

The analysis of the previous section is generally applicable, but it is in-
structive to consider separately the situation in which one of the variables
represents group differences, as for instance with a j-variate population
classified into p + 1 groups, so that there are fi independent comparisons
between the groups. When the hypothetical discriminator (or explanatory
variate) is a function of the metrical variable, the analysis is as above; but
when the discriminator is a function of the group differences, the analysis,
though essentially the same, has a different appearance. A good example is
given by Barnard (1935) and discussed from the present viewpoint by
Williams (1959). There the explanatory variate is time, which is assumed to
have a known value for each of the groups considered.

Suppose then that the xt represent differences among p -f- 1 groups, and
that the explanatory variate £ assigns a value to each of the groups, but
that the xt are otherwise undefined. We shall write

C dispersion matrix of the yt between groups
V dispersion matrix of the yt within groups
Pl (row) vector of sums of products of f with the yt

t^ sum of squares of f.
For X, the regression function of f on the yjt we have X = pgU~1y.

The analysis of variance of X is as follows:

D.F. Sum of squares
Deviation from regression p — 1 by subtraction
Residual (within groups) n — p psU~1VU~1p's

Total, reduced n — 1 PsU-lp't — {pgU'1^)2^

Thus we are led in this case also to the direction criterion

(4) In- 1 • * - ! ! ) =

which can be seen to be formally equivalent to (2).

p - \
The collinearity criterion is

() W\
( ' \U\

which corresponds to (3).
If the matrices T and P were defined, then would

V = U - P T 4 P ;
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however, it is not necessary for the determination of V that the variables x{

and the matrices T and P be defined.

4. Extension to r explanatory variates

When more than one explanatory variate is required for the interpretation
of the variation among the xt (as regards their association with the yt), the
interpretation is not so simple, nor is the case so important practically.
However, the analysis is straightforward and introduces no new principle.

We consider a vector 3 of r explanatory variates, defined in terms of the
xi by the pxr matrix F:

5 = F'x.

Then the r regression functions of 3 on the ys are given by the vector

X = F'PU-1y.

The analysis now follows exactly the same lines as before, except that sums
of squares, etc., are replaced by matrices.

The dispersion matrices of X are

Total r PU-1 PT = F'Br
Departure from 3 F' BFir'TI^^
Residual F'BT^WF.

The overal criterion is

\W\ \F'TF\

\T\ \F'WF\

a (n — r: p — r, q) ratio.
The direction criterion (for testing simultaneously r sets of directions in

P — r dimensions) is

\F'TF\- \F'BT-*WF\
~ \F'BF\-\F'WF\ '

a (n — r: p — r,r) ratio.
Finally the test for coplanarity is given by the (n — 2r: p — r q — r) ratio

\W\ • \F'BF\
C =

\T\-\F'BT-lWF\

If r 2? q, then clearly a test of coplanarity is not relevant, and this ratio
becomes un'ty.

In the particular case where r = p — 1, these ratios can be tested by
means of an analysis of variance. Such a test, of the adequacy of p — 1

https://doi.org/10.1017/S1446788700026719 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026719


[7] Tests for discriminant functions 249

explanatory variates, was wrongly described by Williams (1955) as a test of
the null variate orthogonal to S in the sample.

For the detailed tests we have, when r — p — 1, the following analysis of
variance.

D.F. Sum of squares

Dn-ection p - l l-D = 1 \rTr\'\r'BT-iwr\

Coplanarity q — p + I D(l—C) =

Residual n—p—q-\-l DC =

\rrr\ • \r wr\ \w\ • \rrr\
\r'Br\ • \r wr\

\w\ • \rrr\
\T\ • \r'wr\

\T\ • \r wr\

Total n—p+1

The direction test given in this analysis differs from that for general r in
that the term for coplanarity has been eliminated from the residual. It is
thus a test for 'partial direction', whereas the tests given previously are for
'simple direction'. Since if there is departure from coplanarity the test for
the direction of a vector is not relevant, the simple direction test is usually
appropriate.

When p > q the term for coplanarity drops out of the analysis.
To show the equivalence of these results for r = p — 1 with those of

Williams (1955) we consider the column vector /? whose ith element is
(— 1)* (determinant of /"with ;th row omitted).
Then it may be shown that

rp = o.
Also, for any p X p matrix G,

r o\G\

Thus, for the direction criterion, we have

, / 1 1

and for the overall criterion,

Hence the analysis of variance given above may be written as
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D.F. Sum of squares.
Direction p - 1 (/ST-1/?)"1 - (/S'B-1/?)"1 - (p'W-1?)-1

Coplanarity q — p + 1 (/j'fi-1/?)-1

Residual n - p - q + 1 (jrTr-ifl-i

Total » - £ + l (P'T-^)-1

which corresponds to that given by Williams (1955).

5. Distribution of determinantal ratios
A (n : p, q) ratio is the ratio of two ^>-variate determinants of sums of

squares and products, with n — q and n degrees of freedom. Owing to the
duality between p and q, a (» : p, q) and a (n : q, p) ratio have the same null
distribution.

Rao (1951) has shown that, to a very close approximation, a (M : p, q)
ratio is distributed as the sth power of a

(s[« - \{fi + q + 1)] + \pq + 1 : pq, 1)
ratio, where

/>* + ?
2 - 5

This result is exact when either p or q is one or two. Thus any such ratio can
be tested by means of the F test. If the ratio is denoted by R, then (approx-
imately)

s[n - \{p + q + 1)] - \pq + 1 1 - R1"
F =

pq

6. Large-sample analysis
When n + 1, the sample size, is large (or the population covariance matrix

is known) the analysis takes a particularly simple form. We shall assume that
B = o(n), and write

T W
Lt — = Lt — = A

n-»oo ^ n~*oo W

for the covariance matrix of the xf. Then in the limiting case we have for
the determinantal ratios considered earlier

\rrr\
= \WT-^\ = \I — n^BA-1] -+ 1 — n-1 tr (BA'1)

-^1 + n-1 tr (r Br(r
\rwr\
lF *r>B7\n ->i-«-tr
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The traces are distributed as x%> with degrees of freedom pq, rq, and
p-\-q—r respectively.

Hence we have the analysis of %2

D.F. f

Explanatory variables rq tr (/"Br{T'AT)-1)

Direction r(p - r) tr {r'BA-1 Br{rBr)~l - r Br(r'Ar)-1)

Coplanarity (p-r)(q-r) tr (BA'1 - J1'BA'1

Total pq tr (BA'1)

This analysis reduces when r = 1 to the form

D.F. x*
y'By

Explanatory variable q

Direction p — 1

y'Ay

y'By

y'By y'Ay

Collinearity {p - l)(q - 1) tr (BA'1) —
y'By

Total pq tr

We see that in this limiting case the two tests required are included as
part of the same analysis. In other examples, the population covariance
matrix may be known apart from a constant factor. Then an independent
estimate of the variance is required; the analysis of x2 will be replaced by
an analysis of variance, and the significance will be tested by the .F-test.
Examples have been given by Williams (1952b: interpretation of interactions;
1959: concurrent and proportional regressions).
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