RELATIONS BETWEEN THE GENERA AND BETWEEN THE HASSE-WITT INVARIANTS OF GALOIS COVERINGS OF CURVES

BY

ERNST KANI
To the memory of R. A. Smith

Abstract

Let $G \subset$ Aut (C) be a (finite) group of automorphisms of a curve C defined over a field K and, for each subgroup $H \leq G$, let g_{H} denote the genus of the quotient curve $C_{\boldsymbol{H}}=C / H$ (briefly: quotient genus of H). In this paper we show that certain idempotent relations in the rational group ring $\mathbb{Q}[G]$ imply relations between the quotient genera $\left\{g_{H}\right\}_{H<G}$; this generalizes two theorems of Accola. Moreover, we show that in the case of char $(K)=p \neq 0$, a similar statement holds for the Hasse-Witt invariants σ_{H} of the curves C_{H}.

1. Introduction. Let C be a curve defined over an arbitrary field K, and let $G \subset$ Aut (C) be a finite group of automorphisms acting on C. For any subgroup $H \subseteq G$, let g_{H} denote the quotient genus of H, i.e, the genus of the quotient curve $C_{H}=C / H$. In his article, R. D. Accola [1] established (for $K=C$) two theorems which, under certain conditions on the group G, give relations between the quotient genera $\left\{g_{H}\right\}_{H \leqq G}$ of the various subgroups of G.

The purpose of this note is two-fold. First, we observe that both of Accola's theorems are, in fact, special cases of a much more general theorem which shows that (certain) idempotent relations in the rational group ring $Q[G]$ imply relations between the quotient genera. To be exact, if for a subgroup $H \leqq G$ we let

$$
\begin{equation*}
\epsilon_{H}=\frac{1}{|H|} \sum_{h \in H} h \in \boldsymbol{Q}[G] \tag{1}
\end{equation*}
$$

denote the "norm idempotent" associated to H, then we have:
Theorem 1. Any relation

$$
\begin{equation*}
\sum_{H} r_{H} \epsilon_{H}=0 \quad\left(r_{H} \in Q\right) \tag{2}
\end{equation*}
$$

between the norm idempotents yields a relation

Received by the editors April 3, 1984.
AMS Subject Classification (1980): 14H30.
(C) Canadian Mathematical Society 1985.

$$
\begin{equation*}
\sum_{H} r_{H} g_{H}=0 \tag{3}
\end{equation*}
$$

between the quotient genera.
From Theorem 1 it is quite easy to deduce the aforementioned theorems of Accola:
Corollary 1. (Accola). Suppose $H_{1}, \ldots, H_{t} \leqq G$ are subgroups of G such that $G=H_{1} \cup \cdots \cup H_{t}$. Then:

$$
\begin{equation*}
|G| g_{G}=\sum_{r=1}^{t}(-1)^{r+1} \sum_{1 \leqq i_{i}<\cdots<i_{r} \leq t}\left|H_{i_{1}} \cap \cdots \cap H_{i_{r}}\right| g_{H_{i} \cap \cdots \cap H_{i_{r}}} . \tag{4}
\end{equation*}
$$

Corollary 2. (Accola). Suppose $H_{1}, \ldots, H_{t} \leqq G$ are subgroups of G satisfying the following conditions:
(1) $H_{i} \cdot H_{j}=H_{j} \cdot H_{i}, \quad \forall i, j$
(2) For any (complex) irreducible character χ of G there exists a subgroup $H_{i} \subset$ Ker χ.
Then:

$$
\begin{equation*}
g_{1}=\sum_{r=1}^{t}(-1)_{1 \leqq i_{1}<\cdots<i_{r} \leqq r}^{r+1} g_{H_{i,} \cdots \cdots H_{i_{r}}} . \tag{5}
\end{equation*}
$$

Remark. Corollary 2 is slightly better than Accola's theorem since we need not assume that the H_{i} 's are normal subgroups of G.

As we shall see below, not only are these corollaries easily deduced from Theorem 1, but this theorem itself is easily established from known properties of the (global) Artin representation. As a result, this gives a simpler and more transparent proof of Accola's results, and also shows that these theorems are valid in arbitrary characteristic.

The second aim of this paper concerns the case that the ground field has a non-zero characteristic $p \neq 0$. In that case each quotient curve C_{H} has besides its genus another invariant attached to it, namely its Hasse-Witt invariant σ_{H}, which may be defined by

$$
\begin{equation*}
\left(J_{H}\right)_{p}=p^{\sigma_{H}}, \tag{6}
\end{equation*}
$$

where J_{H} denotes the Jacobian variety of C_{H} and $\left(J_{H}\right)_{p}$ the group of p-torsion points on J_{H}. We then have the following result analogous to Theorem 1:

Theorem 2. Any relation (2) between the norm idempotents yields a relation

$$
\sum_{H} r_{H} \sigma_{H}=0
$$

between the Hasse-Witt invariants of the quotient curves.
One then has the following corollaries of "Accola type":
Corollary 1. In the situation of Corollary 1 to Theorem 1, we have

$$
|G| \sigma_{G}=\sum_{r=1}^{t}(-1)^{r+1} \sum_{1 \leqq i_{i}<\cdots<i_{1} \leqq t}\left|H_{i_{r}} \cap \cdots \cap H_{i_{r},}\right| \sigma_{H_{i_{1}} \cap \cdots \cap H_{i_{r}}} .
$$

Corollary 2. In the situation of Corollary 2 to Theorem 1, we have

$$
\begin{equation*}
\sigma_{1}=\sum_{r=1}^{t}(-1)^{r+1} \sum_{1 \leqq i_{1}<\cdots<i_{r} \leqq t} \sigma_{H_{i},} \cdots \cdot H_{i_{r}} \tag{5'}
\end{equation*}
$$

Not only are the statements of Theorems 1 and 2 analogous; it is, in fact, possible to give a unified proof or both theorems using l-adic representations (cf. section 4). This proof also has the advantage that it generalizes to yield a theorem (Theorem 3 below) which establishes (under a hypothesis analogous to (2)) a relation between the genera (and the Hasse-Witt invariants, if applicable) of arbitrary (i.e. not necessarily galois) subcovers of C.
2. Proof of Theorem 1 (via the Artin representation). As before, let C be a (smooth, irreducible, complete) curve defined over a field K of arbitrary characteristic p. (Since there is no loss of generality in assuming that K is algebraically closed, we shall do so henceforth). Recall (cf. Serre [3], p. 105) that to any finite subgroup $G \subset$ Aut (C) we can attach a complex character a_{G}, called the (global) Artin character such that the following property holds:
${ }^{(*)}$ If $H \leqq G$ is any subgroup, and $s_{G / H}=\operatorname{Ind}_{H}^{G} 1_{H}$ denotes the character of the representation of G on the coset space G / H, then

$$
\begin{equation*}
\left(s_{G / H}, a_{G}\right)_{G}=\operatorname{deg} \operatorname{disc}\left(C_{H} / C_{G}\right) . \tag{7}
\end{equation*}
$$

Here, as usual,

$$
\begin{equation*}
(\phi, \psi)_{G}=\frac{1}{|G|} \sum_{g \in G} \phi(g) \psi\left(g^{-1}\right) \tag{8}
\end{equation*}
$$

denotes the inner product of two class functions ϕ and ψ on G, and disc $\left(C_{H} / C_{G}\right) \in$ $\operatorname{Div}\left(C_{G}\right)$ denotes the discriminant divisor of the finite covering

$$
\pi: C_{H} \rightarrow C_{G}
$$

induced by the inclusion $H \leqq G$. Note that by using the Riemann-Hurwitz formula,

$$
\begin{equation*}
2 g_{H}-2=\frac{|G|}{|H|}\left(2 g_{G}-2\right)+\operatorname{deg} \operatorname{disc}\left(C_{H} / C_{G}\right) \tag{9}
\end{equation*}
$$

we can re-write (7) as

$$
\begin{equation*}
\left(s_{G / H}, a_{G}\right)=2\left(g_{H}-1\right)-2 \frac{|G|}{|H|}\left(g_{G}-1\right) \tag{7'}
\end{equation*}
$$

From (*) the proof of Theorem 1 follows almost immediately. To see this, we simply observe that for any class function χ on G, we have (by definition and Frobenius reciprocity):

$$
\chi\left(\epsilon_{H}\right)=\left(1_{H}, \chi_{\mid H}\right)_{H}=\left(s_{G / H}, \chi\right)_{G}
$$

and so

$$
\begin{equation*}
a_{G}\left(\epsilon_{H}\right)=2\left(g_{H}-1\right)-2 \frac{|G|}{|H|}\left(g_{G}-1\right) \tag{10}
\end{equation*}
$$

Thus, if a relation (2) holds, then on the one hand we obviously have

$$
\sum_{H} r_{H} a_{G}\left(\boldsymbol{\epsilon}_{H}\right)=0
$$

and on the other hand we have

$$
\begin{equation*}
\Sigma r_{H}=1_{G}\left(\sum r_{H} \epsilon_{H}\right)=0, \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\Sigma r_{H} /|H|=\operatorname{reg}_{G}\left(\Sigma r_{H} \epsilon_{H}\right)=0, \tag{13}
\end{equation*}
$$

so the genus relation (3) follows immediately from equations (10)-(13).
3. Proof of Corollaries 1 and 2. Suppose first that $G=H_{1} \cup \cdots \cup H_{t}$. Then by the usual counting procedure we have

$$
\sum_{g \in G} g=\sum_{i=1}^{t}(-1)^{r+1} \sum_{1 \leqq i_{1}<\cdots<i_{r} \leqq t} \sum_{g \in H_{i_{1}} \cap \cdots \cap H_{i_{r}}} g
$$

or

$$
|G| \epsilon_{G}=\sum_{i=1}^{t}(-1)^{r+1} \sum_{1 \leqq i_{1}<\cdots<i_{r} \leq t}\left|H_{i_{1}} \cap \cdots \cap H_{i_{r}}\right| \epsilon_{H_{i_{1}}} \cap \cdots \cap H_{i_{r}}
$$

which gives Corollary 1.
Remark. Corollary 1 is particularly useful when one deals with groups G which have a partition, i.e. for which there exist subgroups $H_{1}, \ldots, H_{t} \leqq G$ with $H_{i} \cap H_{j}=1$ for $i \neq j$ such that $H_{1} \cup \cdots \cup H_{t}=G$. In that case (4) simplifies to:

$$
|G| g_{G}=\sum_{i=1}^{t}\left|H_{i}\right| g_{H_{i}}-(t-1) g_{1}
$$

For example, elementary abelian p-groups, Frobenius groups etc. are groups with partition.

Suppose next that G satisfies conditions (1) and (2) of Corollary 2. We first observe that condition (2) implies

$$
\begin{equation*}
\epsilon \stackrel{\text { def }}{=}\left(1-\epsilon_{H_{1}}\right) \cdots\left(1-\epsilon_{H_{r}}\right)=0 \tag{14}
\end{equation*}
$$

To see this, note that if ρ is a representation with $\operatorname{Ker} \rho \supset H_{i}$ then $\rho\left(\epsilon_{H_{1}}\right)=\rho(1)$ and hence $\rho(\epsilon)=0$. Thus the hypothesis (2) implies $\rho(\epsilon)=0$ for all irreducible representations of G, and so we have $\epsilon=0$ as claimed.

Next, from condition (1) we infer that any two $\epsilon_{H_{i}}$ and $\epsilon_{H_{j}}$ commute and also that

$$
\epsilon_{H_{i_{1}} \cdots H_{i_{r}}}=\epsilon_{H_{i_{1}}} \cdots \epsilon_{H_{i_{r}}} .
$$

(Observe that by condition (1), $H_{i_{1}} \cdots H_{i_{r}}$ is a group!) We can therefore re-write (14) in the form

$$
\begin{equation*}
1-\sum_{i=1}^{r}(-1)^{r+1} \sum_{1 \leqq i_{1}<\cdots<i_{r} \leqq t} \epsilon_{H_{i} \cdots H_{i r}}=0 \tag{14'}
\end{equation*}
$$

from which (5) is immediate by Theorem 1 .
4. Proof of Theorems $\mathbf{1}$ and 2 (via l-adic representations). Let $J=J_{C}$ denote the Jacobian variety of C; in the sequel we shall identify the K-rational points of J with the group $\operatorname{Pic}^{0}(C)=\operatorname{Div}^{0}(C) / \operatorname{Div}_{l}(C)$ of divisor classes of degree 0 :

$$
J_{C}(K)=\operatorname{Pic}^{0}(C)
$$

Any automorphism $\alpha \in \operatorname{Aut}(C)$ of C induces an automorphism α_{*} of $\operatorname{Div}(C)$ via

$$
\alpha_{*}\left(\sum n_{i} P_{i}\right)=\sum n_{i} \alpha\left(P_{i}\right)
$$

and hence an automorphism on J; we thus have a representation

$$
j_{*}: \operatorname{Aut}(C) \rightarrow \operatorname{End}\left(J_{C}\right)
$$

which extends to a representation

$$
j_{*}: \boldsymbol{Q}[\operatorname{Aut}(C)] \rightarrow \operatorname{End}^{0}\left(J_{C}\right) \stackrel{\text { def }}{=} \boldsymbol{Q} \otimes_{\mathbb{Z}} \operatorname{End}(J)
$$

For any prime number l, we have the l-adic Tate-module

$$
T_{l}(J)=\lim _{n} J_{l}
$$

which is known to be a free Z_{l}-module of rank $\operatorname{dim}_{F_{l}} J_{l}$ (cf. e.g. Mumford [2], p. 171); thus

$$
\operatorname{rank}_{z_{l}} T_{l}(J)=\left\{\begin{array}{cc}
2 g_{1} & \text { if } l \neq p \tag{15}\\
\sigma_{l} & \text { if } l=p
\end{array} .\right.
$$

Each endomorphism $\alpha \in \operatorname{End}(J)$ acts on $T_{l}(J)$ in a natural way, so we have a representation

$$
T_{l}: \operatorname{End}(J) \rightarrow \operatorname{End}_{z_{l}}\left(T_{l}(J)\right)
$$

which extends to a $\boldsymbol{Q}_{\boldsymbol{l}}$-representation

$$
T_{l}^{0}: \operatorname{End}^{0}(J) \rightarrow \operatorname{End}_{Q_{l}}\left(V_{l}(J)\right),
$$

where $V_{l}(J)=\boldsymbol{Q}_{l} \otimes_{z_{l}} T_{l}(J)$. Combining this with j_{*}, we obtain a \boldsymbol{Q}_{l}-rational representation

$$
\rho_{l}=T_{l}^{0} \circ j_{*}: \boldsymbol{Q}_{l}[G] \rightarrow \operatorname{End}_{\mathcal{Q}_{l}}\left(V_{l}(J)\right)
$$

whose character we denote by $v_{l}=$ trace $T_{l}^{0} \circ j_{*}$. Then Theorems 1 and 2 are both consequences of the following fact.

Proposition 1. For any subgroup $H \leqq G$ we have

$$
v_{l}\left(\epsilon_{H}\right)=\left\{\begin{array}{rl}
2 g_{H} & \text { if } l \neq p \\
\sigma_{H} & \text { if } l=p
\end{array} .\right.
$$

To prove this, we first observe that by (15) this is clear for $H=1$; and hence true in general by the following more general fact.

Proposition 2. For any finite covering $\pi: C \rightarrow C^{\prime}$ of curves, there exists a \boldsymbol{Q}-algebra homomorphism

$$
\pi^{*}: \operatorname{End}^{\circ}\left(J^{\prime}\right) \rightarrow \operatorname{End}^{\circ}(J)
$$

(where J and J^{\prime} denote the Jacobian varieties of C and C^{\prime}, respectively) such that (1) If π is a galois covering with group G, then

$$
j_{*}\left(\epsilon_{G}\right)=\pi^{*}\left(\mathrm{id}_{J^{\prime}}\right)
$$

(2) For any $\alpha^{\prime} \in \operatorname{End}\left(J^{\prime}\right)$ we have

$$
\operatorname{trace}\left(\pi^{*}\left(\alpha^{\prime}\right) \mid V_{l}(J)\right)=\operatorname{trace}\left(\alpha^{\prime} \mid V_{l}\left(J^{\prime}\right)\right)
$$

Proof. Consider the homomorphisms

$$
\begin{aligned}
& \pi_{*}: J \rightarrow J^{\prime} \\
& \pi^{*}: J^{\prime} \rightarrow J
\end{aligned}
$$

which are induced by π, and put, for $\alpha^{\prime} \in \operatorname{End}^{\circ}\left(J^{\prime}\right)$,

$$
\begin{equation*}
\pi^{*} \alpha^{\prime}=\frac{1}{n}\left(\pi^{*} \circ \alpha \circ \pi_{*}\right) \tag{16}
\end{equation*}
$$

where $n=\operatorname{deg} \pi$. If A denotes the connected component of Ker π_{*}, then we have an exact sequence of \boldsymbol{Q}_{1}-vector spaces

$$
0 \rightarrow V_{l}(A) \rightarrow V_{l}(J) \xrightarrow{T_{l}^{0}\left(\pi_{*}\right)} V_{l}\left(J^{\prime}\right) \rightarrow 0
$$

which is split by $1 / n T_{l}^{0}\left(\pi^{*}\right)$ and hence yields the decomposition

$$
V_{l}(J)=V_{l}(A) \oplus \pi^{*} V_{l}\left(J^{\prime}\right)
$$

where we have written $\pi^{*} V_{l}\left(J^{\prime}\right)$ in place of $T_{l}^{0}\left(\pi^{*}\right)\left(V_{l}\left(J^{\prime}\right)\right)=1 / n T_{l}^{0}\left(\pi^{*}\right)\left(V_{l}\left(J^{\prime}\right)\right)$. Then by construction we have

$$
\begin{gathered}
\left.\pi^{*} \alpha^{\prime}\right|_{V_{l}(A)}=0 \\
\left.\pi^{*} \alpha^{\prime}\right|_{\left.\pi^{*} V_{l} J^{\prime}\right)}=\alpha^{\prime}
\end{gathered}
$$

(upon identifying $V_{l}\left(J^{\prime}\right) \xrightarrow{\sim} \pi^{*} V_{l}\left(J^{\prime}\right)$), so trace $\pi^{*} \alpha^{\prime}=$ trace α, as claimed.
5. Generalization to the non-galois case. Let C be a curve as before, and let

$$
\pi_{1}: C \rightarrow C_{i}, \quad 1 \leqq i \leqq N
$$

be a finite system of subcovers of C. To any such subcover π_{i} we can associate an idempotent $\epsilon_{i} \in \operatorname{End}^{\circ}\left(J_{C}\right)$ by

$$
\boldsymbol{\epsilon}_{i}=\pi_{i}^{*}\left(\mathrm{id}_{J_{c_{i}}}\right)
$$

where $\pi_{i}^{*}: \operatorname{End}^{\circ}\left(J_{C_{i}}\right) \rightarrow \operatorname{End}^{\circ}\left(J_{C}\right)$ is the homomorphism constructed in Proposition 2. The proof of Theorems 1 and 2 given in the previous section immediately also proves:

Theorem 3. Any relation

$$
\begin{equation*}
\sum_{i=1}^{N} r_{i} \epsilon_{i}=0 \tag{17}
\end{equation*}
$$

between the idempotents ϵ_{i} yields a relation

$$
\sum_{i=1}^{N} r_{i} g_{i}=0
$$

between the genera g_{i} of the subcovers $C_{i}(1 \leqq i \leqq N)$ and also, if char $K \neq 0$, a relation

$$
\begin{equation*}
\sum_{i=1}^{N} r_{i} \sigma_{i}=0 \tag{19}
\end{equation*}
$$

between the Hasse-Witt invariants σ_{i} of $C_{i}, 1 \leqq i \leqq N$.

References

1. R. D. Accola, Two theorems on Riemann surfaces with noncyclic automorphism groups, Proc. AMS. 25 (1970), pp. 598-602.
2. D. Mumford, Abelian Varieties, Oxford U Press, London, 1970.
3. J.-P. Serre, Local Fields, Springer Verlag, New York, 1979.

Mathematisches Institut
Universität Heidelberg
Im Neuenheimer Feld 288
6900 Heidelberg
Federal Republic Germany

