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ABSTRACT

For the infinite time ruin probability in the classical risk process, efficient esti-
mators are proposed in cases in which the claim amount distribution is un-
known. Confidence intervals are computed which are based on normal approxi-
mations or on the bootstrap method. The procedures are checked in a Monte-
Carlo study.

KEYWORDS

Infinite time ruin probabilities; nonparametric estimators; confidence intervals;
bootstrap method.

1. INTRODUCTION AND SUMMARY

1.1. Ruin probabilities as a measure of risk

We consider the classical risk process

R(t) = x+ct-S(t), t>0

with nonnegative initial surplus x, positive premium rate c, and a claims process
S(t), t > 0, which is a compound Poisson process with positive intensity A and
claim amount distribution Q. When all parameters x, c, X, and Q of the risk
process are given, then we can determine the infinite time ruin probability

t//(x) = JP{R(t)<0 for some t>0\

In the author's opinion, the ruin probability y/(x) is a measure for the "risk"
contained in the process R(t), t>0. It should be used to evaluate decisions
concerning the risk business. To give an example we assume that we can buy an
XL-reinsurance cover with priority M > 0 and reinsurance premium rate
0 < cR < c. Let y/R (x) be the ruin probability of the risk process with reinsur-
ance. The parameters of the new risk process are x, c—cR,X, and QR given
by

QR(A) = Q(A H (0, M))+ \A(M) Q((M, c»)).

If vR(x) < t//(x) then the reinsurance cover reduces the "risk" contained in the
risk process. So it is reasonable to pay the premium rate cR for the reinsurance
cover described above. If, on the other hand, y/(x) < WRM, then we do better
without the above reinsurance cover.
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1.2. Estimation of ruin probabilities

In practical applications the parameters X and Q will not be given but have to be
estimated with available data. Consider, e.g., the situation that X is known but Q
is not. Suppose we are given observations X\,...,xn which are realizations of
random variables X{, ...,Xn, these being independent with distribution^. Our
nonparametric estimator will be based on the empirical distribution Q* of the
observations x = (xl,...,xn). The distribution Q* is discrete and has point
probabilities

(The symbol # A denotes the number of elements in the set A). Our nonpara-
metric estimator y/n(x) is the ruin probability of the risk process with parame-
ters x, c, X, and Q%. The estimator y/n (x) is asymptotically normal and efficient,
its asymptotic variance is given below. The finite sample behaviour of i//n (x) is
investigated in a Monte Carlo study for sample sizes n = 20 and n = 100. Simi-
lar nonparametric estimators are proposed for cases in which other or less para-
meters are known. In order to define these estimators we assume that only
positive claims are possible,

(1) 2(0, oo) = 1

that Q is non-degenerate, and the risk process R(t), t>0, has a positive safety
loading, i.e. Q has a finite mean fi = J yQ (dy), and the premium rate c is larger
than the average claim amount per unit time,

(2) oXfi.

If (2) does not hold, then y/{x) = 1 for all x. If (2) is true, then ^(0) = X/i/c< 1
and y/(x) can be computed according to

2
Here, *k is the A>fold convolution, and IH is the distribution of the first ascen-
ding ladder height with density

(3) 3'-»A*-'GO',oo)l(o>oo)0')

(see BOHLMANN (1970), 6.2.6, or TAYLOR (1985), p. 75, (3.1.1), or FELLER (1966),
p. 379, (2.6)). We shall consider the following four cases:

1) X known, Q unknown; this is the case described above, t//^ is the ruin
probability of the risk process with parameter x, c, X, and Q*.
2) Xfi known, Q unknown; y/^2) is given by

oo

(4) v i 2 ) M = 2 (l
k=\
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where Hn is the measure with density

(5) y -^ ! -&*(> ' , oo) l ^ O O
xn

1 "
and xn — — V Xj is the arithmetic mean of all observations.

n ,=i

3) k, n known, Q unknown; i//n
(3) is given by

oo

(6) y™(x) = 2 (1-^(0)) ^(0)* G*k{x, oo)

where (7n has density

(7) y~-PZ(y, oo), y>0

and Pn is the discrete probability measure with point probabilities

(8) P*\Xi) = - (1 ~{xt-xn) (xn-

n
where

is the sample variance. The factor \ln has to be replaced by # \j:xj = Xj}/n if
there are multiplicities in the x's. The numbers in (8) add to 1, and they are
nonnegative with high probability.
4) k unknown, Q unknown; for this case we assume that we have observations
from a risk process in a time interval (0, T). Let N(T) be the number of obser-
ved claims and Xx,...,XN(T) the corresponding claim amounts. The estimator
t//^ is the ruin probability of the risk process with parameters x, c, X = N(T)/T,
and Q = empirical distribution of Xx,..., XN(T).

O course case 4) is the standard situation in practical application. However,
knowledge of k and/or /u can reduce the statistical error substantially, and for
these parameters extra data are frequently available (from other companies with
similar portfolios or from one of the insurance organizations).

All estimators are asymptotically normal, and their asymptotic variances a(1),
(T(2), <7<3), CT(4) satisfy the relation

(9) cr^a^aO^4'.

This indicates that estimation of y{x) seems to be simpler in case 2) than in
case 1).
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1.3. Measuring risk with estimated ruin probabilities

The evaluation of possible decisions in a risk business can be based on estima-
ted ruin probabilities. However, if yn (x) is the estimator for the ruin probability
W(x) without reinsurance and if i//j,R)(x) is the estimator for the ruin probability
iyR(x) with reinsurance, then the relation

(10)

does not yield the conclusion y/R(x) <t//(x); both sides of relation (10) contain a
statistical error which, in the worst case, leads to (10) even if the relation
y/{x) > I//R(X) holds. A possible solution to this problem is the concept of confi-
dence intervals. For prescribed a near zero one can construct a confidence inter-
val Cn for i/j(x) — y/R(x) with

lim JP{y/(x)-y/R(x)£Cn} = 1-a.
n

If Cn lies in the positive half axis, then we conclude that y{x) > y/R(x). If Cn lies
in the negative half axis, then our conclusion will be y/(x) < t//R(x). If, finally,
0 e Cn, then no conclusion will be possible. With this procedure, for large n the
error probability will not exceed a, i.e.

lim sup IP {wrong conclusion} < a.
n

The existence of reasonable confidence intervals for i//(x) — i//R(x) (not contai-
ning zero) is not self evident. The quantities i//(x) and i//R(x) are very small and
might have the same order of magnitude as the statistical error. In order to
investigate this problem we shall restrict consideration to a confidence interval
for y/(x). A possible confidence interval for y/(x) is the one which is based on
the asymptotic normality of our estimators (see 2.2). In a Monte-Carlo study we
observe that for sample size n = 20 and n = 100 the normal approximation for
the distribution of our estimators is rather bad, especially when the claim
amount distribution Q has a large coefficient of variation

The variance of the approximating normal distribution is too large, and conse-
quently the confidence intervals based on the normal approximation are too
large. Furthermore, the distribution of y/n(x) is usually not symmetric about
y/(x) but skew to the left. Hence we cannot expect that confidence intervals
which are symmetric about y/n{x) will perform well.
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1.4. Bootstrap confidence intervals

In order to get smaller confidence intervals we used the bootstrap method. The
construction of these confidence intervals will be described in case 1) for the
sample size n = 20. Let Xx,..., X2o be the observations, and let (2£o be the
empirical distribution of these observations. Generate 100 samples
Xw,..._, Z(l00) of size 20, i.e. 2000 independent random numbers with distribu-
tion Qio, grouped in 100 samples of size 20 each. For / = 1,..., 100 compute
the estimator y/n(x) for the set of observations X^'\ We obtain 100 values
(//n;(x), and we write U(x) for the empirical distribution of these values. Our
confidence interval is the shortest interval / satisfying U(x) (I) > 1 — a.

The bootstrap confidence intervals are small, and they are not symmetric
around y/{x) in general. In a small Monte-Carlo study with sample size 20, 100
bootstrap resamplings per trial, and 100 Monte-Carlo trials, it turned out, howe-
ver, that the level of the bootstrap confidence intervals is considerably smaller
than 1 —a. The same bad behaviour occured with 200 instead of 100 bootstrap
resamplings per trial. On the other hand, the small number of 100 Monte-Carlo
trials does not given us precise information on the actual level of our confidence
sets. A larger scale Monte-Carlo study with 1000 or more trials is a computer
time consuming task: for 1000 trials we need 2x 106 random numbers and 105

computions of >j/n(x).
For sample size 100 the performance of the bootstrap confidence intervals was

much better: the level 90% confidence intervals had an actual covering proba-
bility between 87% and 94%. The average size of the intervals ranges from
0.0002 (in case with y(x) = 0.0025) to 0.03 (with y/(x) = 0.032). This indicates
that our bootstrap confidence intervals can be used for the evaluation of possi-
ble decisions, provided the sample size is not too small.

1.5. A simple bootstrap selection rule

Combining the bootstrap with the above decision rule for "i//(x) <>j/R(x) or
not" we obtain the following simple method: Resample M times, say, and
compute the estimators y/n{x) and i//^,R)(x) for each bootstrap sample. If
i//n(x) < VnR)(x) f°r at least (1 -a)M bootstrap samples, then we conclude that
ij/(x) < VR(X). If y/n{x) > y/j,Ri{x) for at least (1 — a)M bootstrap samples, then
our conclusion is i//(x) > WR(X). If, finally, both conditions are not satisfied, then
no conclusion is possible. This method can easily be generalized to more than
two alternatives.

Section 2 contains the theoretical results. The findings of our Monte-Carlo
simulations are summarized in section 3.

1.6. Reference to earlier papers

In the framework of ruin theory, statistical estimators were first used by GRAN-

DELL (1979). He constructed estimators for the adjustment coefficient R of the
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risk process in the case k, Q unknown. The adjustment coefficient yields the
CRAMER upper bound for i//(x),

and the asymptotic behavior of i//(x) for x large,

ij/(x)~Cexp(-Rx), C>0.

Apparently, GRANDELL'S results can not be used for the construction of twosided
confidence intervals for IJ/(X).

Different nonparametric estimators for y/(x) have been proposed by
FREES (1986). His estimators are based on the sample reuse concept: From the
given data set a new risk process is constructed, and the ruin probability of the
new risk process is computed with Monte-Carlo methods. The performance of
these estimators is rather bad: the root mean squared error in a Monte-Carlo
study has the same order of magnitude as y/(x) for sample sizes n = 25, 50, 100,
150, 200 (see FREES (1986), p.S. 87, table 1). This is perhaps due to the fact that
FREES' estimators do not only contain a statistical error but also a simulation
error.

2. THE RESULTS

2.1. Consistency

We shall first state some large sample properties of the proposed estimators.

LEMMA : Fix x, c, X > 0 and a claim amount distribution Q for which (2) and (3)
hold. Then for / = 1, 2, 3

lim y/^(x) = y/(x) IP—almost everywhere
n

and

lim y/P = i//(x) IP—almost everywhere ,

respectively.

2.2. Asymptotic normality

If Q has a finite second moment, then the estimators y/^\ i - 1, 2,3 and v44> a r e

asymptotically normal. For the definition of their variances we need some nota-
tions. Write

k=0
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oo

M= ^ ( l ) 2 k k

Then for x> 0, y/(x) = R(x, oo), and M is the twofold convolution of R,

M=R*2

For v > 0 define

= f (V-(X-M) + )g(v)

and write id for the identity on IR: id(v) = v, v>0.

THEOREM : Let x, c, k > 0 be fixed, and Q a nondegenerate claim amount distri-
bution with finite second moment, such that (3) holds. Then for / = 1,2 there
exist positive numbers a(l) such that the distribution of •'

converges weakly to N(0, a(i)). We have

cr'1' = K2 Varg(g— i//(x)id)

am = K2VarQ(g-Q[g]M-1 id)

where

Q[g]=\ g(v)Q(dv)

In case 4), the distribution of

converges weakly to A^O, CT(4)) when T-* oo, with

o^ = K2Q{g-y/(x)id)2

In case 3) let

CT(3) = K2VarQ(g-axid)

where a = CovG(g, id)/VarQ(id). If CT(3)> 0 then the distribution of

converges weakly to A (̂0, cr<3)). The constant K equals

The proofs for (2.1) and (2.2) are indicated in [6]. The situation er(3) = 0 occurs,
e.g., ifQ(jc,oo) = 0.
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2.3. Comparison of variances

We shall give the proof for
a) <7(2)>0 and
b) <7<2><<7(1)

which are not contained in [6].
a) With h{y) = g(y)—yQ[gVn we have

= M(x-y, oo)-M*//(x, oo)

which is increasing. This yields convexity of h. Since h' changes sign and
h(y) ^>oo, y^oo, and h(0) = 0, h must have exactly two distinct zeroes.
Hence

a<2»= \ h2(y)Q(dy)

cannot be zero. We see that h changes sign exactly once,
b) Using the relation

Var (X)- Var (Y) = Var (X- Y) + 2 Cov (X- Y, Y)

we see that it suffices to show that

CovQ(k-h,h)>0

with k(y) = g(y) — i//(x), y>0. This relation is equivalent to

From

= M*H(x, oo)-R(x, oo)

= R*R*H(x,oo)-R(x,oo)>0

we see that our assertion will hold provided

CovQ (id, h)>0

If t0 > 0 is the point at which h changes sign, then

CovQ(id,h) = \ yh(y)Q(dy) = f (y-to)h(y) Q(dy)>0.

This proves b).
The relation CT<3)< CT<2) follows from efficiency of ^n

(3)(x) (see [6]).
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3. MONTE-CARLO SIMULATIONS

The small sample behaviour of our estimators t//^{x) and Wn2)(x) a nd the level
of the bootstrap confidence intervals were investigated using the Monte-Carlo
method. We dealt with claim amount distributions which were Lognormal,
Pareto, and Gamma distributions. We shall present the results for three special
examples which are representative for all cases that had been investigated.

Example I: The claim amount distribution Q is an exponential distribution
with parameter 1.25, the intensity k of the claims process equals 0.125, the pre-
mium rate c equals 1, and the initial surplus x equals 1. The mean of Q is 0.8,
the coefficient of variation x is 1, the exact ruin probability without initial sur-
plus i//(0) equals 0.1, and the exact ruin probability y/(x) equals 0.0325.

Example II: Q is a lognormal distribution with mean and variance of the cor-
responding normal distribution equal to —0.569 and 0.694, respectively;
X = 0.0125; c = 1, and x = 1. The mean of Q is 0.80092, T = 1, ^(0) = 0.01,
and y(x) = 0.00254.

Example III: Q is a Pareto distribution with shape parameter 2.054 and loca-
tion parameter 0.924, it has density

x^ 2.054(0.924)2054x-3054, x> 0.924

The intensity is k = 0.055; c = 1 and x = 1. The mean of Q is 1.8, x = 3,
y/(0) = 0.1, and i//(x) = 0.0489.

In these examples the loading is much larger than in practical situations.
However, for smaller loadings the computation time for a Monte-Carlo study
will increase drastrically.

The distribution functions y/^Xx) and ^i2)(x) are simulated for sample size
n = 20 and with a number of 1000 simulations per case. The broken line is the
distribution function of the approximating normal distribution.
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FIGURE 1. Distribution function and normal approximation (broken line) for y/
the case of example I (Exponential distribution).

when n = 20 in
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FIGURE 2. Distribution function and normal approximation (broken line) for y/^
the ease of example II (Lognormal distribution).

when n — 20 in
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FIGURE 3. Distribution function and normal approximation (broken line) for <//j,l)(x) when n = 20 in
the case of example III (Pareto distribution).
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In all three cases, the distribution of y/n (x) is quite well concentrated around
the true value y/(x), but the normal approximation is not at all satisfactory. The
above graphs of the distribution function and the normal approximation have
been reproduced from [2].

The small sample behaviour of our bootstrap confidence intervals was the
following: For sample sizes n = 20 and n = 100 we simulated 100 data sets,
computed the corresponding confidence interval Cn of level 90% (i.e.a = 0.1)
and counted the number of cases in which t//(x), the true value, was covered by
C.. Here are our results.

Example I

Example I

V?(x)
Example II

Wt?\x)

Example II

Example III
¥{nl>(x)

Example III

Sample size

20
100

20
100

20
100

20
100

20
100

20
100

Covers in %

85
94

76
88

77
93

71
89

78
89

71
89

Changing from sample size n = 20 to n = 100 did drastically increase cove-
ring probability in all cases concerned in our investigation, especially in cases
where the covering probability for sample size 20 was small.
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