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Abstract

Let K be a totally real field. By the asymptotic Fermat’s Last Theorem over K we mean
the statement that there is a constant BK such that for any prime exponent p > BK ,
the only solutions to the Fermat equation

ap + bp + cp = 0, a, b, c ∈ K

are the trivial ones satisfying abc = 0. With the help of modularity, level lowering
and image-of-inertia comparisons, we give an algorithmically testable criterion which, if
satisfied by K, implies the asymptotic Fermat’s Last Theorem over K. Using techniques
from analytic number theory, we show that our criterion is satisfied by K = Q(

√
d) for a

subset of d > 2 having density 5
6 among the squarefree positive integers. We can improve

this density to 1 if we assume a standard ‘Eichler–Shimura’ conjecture.

1. Introduction

1.1 Historical background
Interest in the Fermat equation over various number fields goes back to the 19th and early 20th
centuries. For example, Dickson’s History of the Theory of Numbers [Dic71, pp. 758 and 768]
mentions extensions by Maillet (1897) and Furtwängler (1910) of the classical ideas of Kummer to
the Fermat equation xp+yp = zp, with p > 3 prime, over the cyclotomic field Q(ζp). The ultimate
work in this direction [Kol01] is due to Kolyvagin, who showed, among many other results, that
if xp+yp = zp has a first case solution in Q(ζp), then p2 | (qp− q) for all prime q 6 89 (here ‘first
case’ means that (1 − ζp) - xyz). For d 6= 0, 1 and squarefree, Hao and Parry [HP84] used the
Kummer approach to prove several results on the Fermat equation with prime exponent p over
Q(
√
d), subject to the condition that p does not divide the class number of Q(

√
d, ζp) (see also

[HP84] for references to early work on the Fermat equation with various small exponents over
quadratic and cubic fields). Other authors (e.g. [DK94, Fad61, Tze03]) have treated the Fermat
equation with fixed exponent p as a curve, and determined the points of low degree subject to
restrictions on the Mordell–Weil group of its Jacobian. A beautiful example of this approach is
the work of Gross and Rohrlich [GR78, Theorem 5], who determined for p = 3, 5, 7 and 11 the
solutions to xp + yp = zp over all number fields K of degree no greater than (p− 1)/2.
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However, the elementary, cyclotomic and Mordell–Weil approaches to the Fermat equation

have had limited success. Indeed, even over Q, no combination of these approaches is known to

yield a proof of Fermat’s Last Theorem for infinitely many prime exponents p. We therefore look

to Wiles’s proof of Fermat’s Last Theorem [TW95, Wil95] for inspiration. Modularity of elliptic

curves plays a crucial rôle in the proof, yet our understanding of modularity for elliptic curves

over general number fields is still embryonic. In contrast, there is a powerful modularity theory

for elliptic curves over totally real fields, and it would be natural to apply this theory to the

study of the Fermat equation over totally real fields. The only work in this direction that we are

aware of is that of Jarvis and Meekin [JM04], who showed that the Fermat equation xn+yn = zn

has no solutions x, y, z ∈ Q(
√

2) with xyz 6= 0 and n > 4.

1.2 Our results

In this paper we combine modularity and level lowering with image-of-inertia comparisons and

techniques from analytic number theory to prove several results concerning the Fermat equation

over totally real fields. Let K be a totally real field, and let OK be its ring of integers. By the

Fermat equation with exponent p over K we mean the equation

ap + bp + cp = 0, a, b, c ∈ OK . (1)

A solution (a, b, c) is said to be trivial if abc = 0; otherwise it is non-trivial. The asymptotic

Fermat’s Last Theorem over K is the statement that there is some bound BK such that for

any prime p > BK , all solutions to the Fermat equation (1) are trivial. If BK is effectively

computable, we shall refer to this statement as the effective asymptotic Fermat’s Last Theorem

over K.

Theorem 1. Let d > 2 be squarefree, satisfying one of the following conditions:

(i) d ≡ 3 (mod 8);

(ii) d ≡ 6 or 10 (mod 16);

(iii) d ≡ 2 (mod 16) and d has some prime divisor q ≡ 5 or 7 (mod 8);

(iv) d ≡ 14 (mod 16) and d has some prime divisor q ≡ 3 or 5 (mod 8).

Then the effective asymptotic Fermat’s Last Theorem holds over K = Q(
√
d).

To state our other theorems, we need the following standard conjecture, which of course is a

generalization of the Eichler–Shimura theorem over Q.

Conjecture 1 (‘Eichler–Shimura’). Let K be a totally real field. Let f be a Hilbert newform

of level N and parallel weight 2 and with rational eigenvalues. Then there is an elliptic curve

Ef/K with conductor N having the same L-function as f.

Theorem 2. Let d > 5 be squarefree, satisfying d ≡ 5 (mod 8). Write K = Q(
√
d) and assume

Conjecture 1 for K. Then the effective asymptotic Fermat’s Last Theorem holds over K.

To state our general theorem, let K be a totally real field, and let

S = {P : P is a prime of K above 2},
T = {P ∈ S : f(P/2) = 1}, U = {P ∈ S : 3 - υP(2)}. (2)
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Here f(P/2) denotes the residual degree of P. We need the following assumption, which we shall
refer to as (ES) throughout the paper:

(ES)


either [K : Q] is odd,

or T 6= ∅,

or Conjecture 1 holds for K.

Theorem 3. Let K be a totally real field satisfying (ES). Let S, T and U be as in (2). Write
O∗S for the group of S-units of K. Suppose that for every solution (λ, µ) to the S-unit equation

λ+ µ = 1, λ, µ ∈ O∗S , (3)

either:

(A) there is some P ∈ T that satisfies max{|υP(λ)|, |υP(µ)|} 6 4 υP(2); or

(B) there is some P ∈ U that satisfies both max{|υP(λ)|, |υP(µ)|}6 4 υP(2) and υP(λµ)≡ υP(2)
(mod 3).

Then the asymptotic Fermat’s Last Theorem holds over K.

We make the following remarks.
• In contrast to Theorems 1 and 2, the constant BK implicit in the statement of Theorem 3 is

ineffective, though it is effectively computable if we assume a suitable modularity statement,
such as modularity of elliptic curves over K with full 2-torsion. Elliptic curves over real
quadratic fields are modular [FLHS], so the implicit constants BK in Theorems 1 and 2 are
effectively computable.

• By Siegel [Sie29], S-unit equations have a finite number of solutions. These are effectively
computable (see, e.g., [Sma98]). Thus, for any totally real field K, there is an algorithm for
deciding whether the hypotheses of Theorem 3 are satisfied.

• The S-unit equation (3) has precisely three solutions in Q ∩ O∗S , namely (λ, µ) = (2,−1),
(−1, 2) and (1

2 ,
1
2). We shall call these the irrelevant solutions to (3), with other solutions

being called relevant. The irrelevant solutions satisfy condition (A) if T 6= ∅ and condition
(B) if U 6= ∅.

It is natural to ask, for fixed n > 2, what ‘proportion’ of totally real fields of degree n are such
that the S-unit equation (3) has no relevant solutions. We answer this for n = 2. Specifically, let
Nsf = {d > 2 : d squarefree}. The elements of Nsf are in bijection with the real quadratic fields
via d↔ K = Q(

√
d). For a subset U ⊆ Nsf , we define the relative density of U in Nsf by

δrel(U) = lim
X→∞

#{d ∈ U : d 6 X}
#{d ∈ Nsf : d 6 X} , (4)

provided the limit exists. Let

C = {d ∈ Nsf : the S-unit equation (3) has no relevant solutions in Q(
√
d)},

D = {d ∈ C : d 6≡ 5 (mod 8)}.
(5)

Theorem 4. Let C and D be as above. Then

δrel(C) = 1, δrel(D) = 5/6. (6)

If d ∈ D, then the effective asymptotic Fermat’s Last Theorem holds for K = Q(
√
d). The same

conclusion holds for d ∈ C if we assume Conjecture 1.

In other words, we are able to effectively bound the exponent in the Fermat equation
unconditionally for 5

6 of real quadratic fields; and, assuming Conjecture 1, we can do this for
almost all real quadratic fields.
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1.3 A quartic example

Let K = Q(
√

2 +
√

2), which is plainly a totally real quartic field. Let P =
√

2 +
√

2 · OK .
Then 2OK = P4. It follows that S = T = {P}. In particular, the field K satisfies hypothesis
(ES). Using [Sma97, Sma99] and a computation in the computer algebra system Magma [BCP97],
we determined the solutions to the S-unit equation (3); we omit the computational details.
There are 585 solutions (including the three irrelevant solutions), which we do not list here. We
computed the possible values of max{|υP(λ)|, |υP(µ)|} for these 585 solutions and found them
to be 1, 2, . . . , 11, so condition (A) of Theorem 3 is satisfied. Thus the asymptotic Fermat’s Last
Theorem holds for K.

1.4 Limitations of the original Fermat’s Last Theorem strategy and variants
We now answer the obvious question of how the proofs of the above differ from the proof of
Fermat’s Last Theorem over Q. A basic sketch of the proof over Q is as follows. Suppose that
a, b, c ∈ Q satisfy ap + bp + cp = 0 with abc 6= 0 and p > 5 prime. Scale a, b and c so that
they become coprime integers. After possibly permuting a, b and c and changing signs, we may
suppose that a ≡ −1 (mod 4) and 2 | b. Consider the Frey elliptic curve

Ea,b,c : Y 2 = X(X − ap)(X + bp), (7)

and let ρE,p be its mod p Galois representation, where E = Ea,b,c. Then ρE,p is irreducible by
[Maz78] and modular by [Wil95, TW95]. Application of Ribet’s level-lowering theorem [Rib90]
shows that ρE,p arises from a weight 2 newform of level 2; but there are no such newforms,
giving a contradiction. Enough of modularity, irreducibility and level lowering are now known
for totally real fields that we may attempt to carry out the same strategy over those fields. Let
K be a totally real field. If a, b, c ∈ K satisfy ap + bp + cp = 0 and abc 6= 0, we can certainly
scale a, b and c so that they belong to the ring of integers OK , and thus (a, b, c) is a non-trivial
solution to (1). If the class number of OK is greater than 1, we cannot assume coprimality of a,
b and c. We can, however, choose a finite set H of prime ideals that represent the class group,
and assume (after suitable scaling) that a, b and c belong to OK and are coprime away from H.
The Frey curve Ea,b,c (again defined by (7) but over K) is semistable outside S ∪H, where S is
given in (2). However, the non-triviality of the class group obstructs the construction of a Frey
curve that is semistable outside S. Applying level lowering to ρE,p yields a Hilbert newform f of
parallel weight 2 and level divisible only by the primes in S ∪H. In general, there are newforms
at these levels. This situation was analysed by Jarvis and Meekin [JM04], who found that

‘. . . the numerology required to generalise the work of Ribet and Wiles directly
continues to hold for Q(

√
2) . . . there are no other real quadratic fields for which

this is true . . . ’

It is helpful here to make a comparison with the equation xp + yp +Lαzp = 0 over Q, with L an
odd prime, considered by Serre and Mazur [Ser87, p. 204]. A non-trivial solution to this latter
equation gives rise, via modularity and level lowering, to a classical weight-2 newform f of level
2L; for L > 13, there are such newforms and we face the same difficulty. Mazur showed, however,
that if p is sufficiently large, then f corresponds to an elliptic curve E′ with full 2-torsion and
conductor 2L, and by classifying such elliptic curves he concluded that L is either a Fermat or a
Mersenne prime. (Mazur’s argument is unpublished but can be found in [Coh07, § 15.5].) Mazur’s
argument adapted to our setting tells us that a non-trivial solution to the Fermat equation over
K with p sufficiently large gives rise to E′ with full 2-torsion and good reduction outside S ∪H
(assumption (ES) is needed here). It seems hopeless to classify all such E′ over all totally real
fields with a set of bad primes that varies with the class group and may be arbitrarily large.
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1.5 Our approach over general totally real fields
To go further, we must somehow eliminate the bad primes coming from the class group. Inspired
by [BS04] and [Kra98], we study for q /∈ S the action of inertia groups Iq on E[p] for the Frey
curve E. The curves E and E′ are related via ρE,p ∼ ρE′,p, and so we obtain information about
the action of Iq on E′[p]. We use this to conclude that E′ has potentially good reduction away
from S. (We say that E′ has potentially good reduction at q if there is some finite extension K ′

of the completion Kq such that E′ has good reduction over K ′.)
To summarize, assuming (ES), a non-trivial solution to the Fermat equation over K with

sufficiently large exponent p yields an E′/K with full 2-torsion and potentially good reduction
away from the set S of primes above 2. (There are such elliptic curves over every K, for
example the curve Y 2 = X3 − X, so we do not yet have a contradiction.) However, such an
E′ can be represented by an OS-point on Y (1) = X(1)\{∞} that pulls back to a OS-point on
X(2)\{0, 1,∞} (here OS is the ring of S-integers in K). We can parametrize all such points (and
therefore all such E′) in terms of solutions (λ, µ) to the S-unit equation (3). This equation has
solutions (2,−1), (−1, 2) and (1

2 ,
1
2), which we have called irrelevant above (these correspond to

Y 2 = X3−X), and possibly others, so we cannot yet reach a contradiction. However, the action
of IP on E[p], for P ∈ S, gives information on the valuations υP(λ) and υP(µ), allowing us to
prove Theorem 3.

1.6 Our approach over real quadratic fields

Next, we specialize to real quadratic fields K = Q(
√
d), and we would like to understand solutions

(λ, µ) to the S-unit equation (3). By considering Norm(λ) and Norm(µ), which must both be of
the form ±2r, we show that relevant (λ, µ) give rise to solutions to the equation

(η1 · 2r1 − η2 · 2r2 + 1)2 − η1 · 2r1+2 = dv2 (8)

with η1 = ±1, η2 = ±1, r1 > r2 > 0 and v ∈ Z\{0}. This approach has the merit of eliminating
the field K, since all the unknowns are now rational integers. We solve this equation completely
for the d appearing in Theorems 1 and 2; there are a handful of solutions, and these satisfy
condition (A) or (B) of Theorem 3. This gives proofs for Theorems 1 and 2.

To prove Theorem 4, we need to show that the set of squarefree d > 2 for which (8) has a
solution is of density zero. For this we employ sieving modulo Mersenne numbers, Mm = 2m−1.
Modulo Mm, there are at most 4m2 possibilities for the left-hand side of (8). The number of
possibilities for squares modulo Mm is roughly at most Mm/2

ω(Mm), where ω(n) denotes the
number of prime divisors of n. If we can invert v2 modulo Mm, then we can conclude that d
belongs to roughly at most 4m2Mm/2

ω(Mm) congruence classes modulo Mm, and so the set of
possible d has density roughly at most 4m2/2ω(Mm). Using the prime number theorem and the
primitive divisor theorem, it is possible to choose values of m so that this ratio tends to zero.
However, there is no reason to suppose that v and Mm are coprime, and the argument needs
to be combined with other techniques from analytic number theory to prove that the density of
possible d is indeed zero.

1.7 Relation to other equations of Fermat type and to modular curves
We place our work in the wider Diophantine context by mentioning related results on Fermat-
type equations. Many results of Fermat’s Last Theorem or asymptotic Fermat’s Last Theorem
type (but over Q) have been established by Kraus [Kra97], Bennett and Skinner [BS04] and
Bennett et al. [BVY04] for equations of the form Axp + Byp + Czp = 0, Axp + Byp = Cz2 or
Axp + Byp = Cz3. Perhaps the most satisfying work on Fermat-type equations over Q is the
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paper of Halberstadt and Kraus [HK02], in which they show that for any triple of odd pairwise
coprime integers A, B and C, there is a set of primes p of positive density such that all solutions
to Axp +Byp + Czp = 0 are trivial.

One can also consider the analogy between the Fermat curves and various modular curves
such as X0(p) and X1(p). In this framework, Mazur’s theorems [Maz78] are analogues of Fermat’s
Last Theorem over Q. Merel’s uniform boundedness theorem [Mer96] states that for a number
field K there is a bound Bn, depending only on the degree n = [K : Q], such that for p > Bn
the K-points on X1(p) are cusps. Interestingly, our bounds BK for the asymptotic Fermat’s
Last Theorem (when applicable and effective) depend on the totally real field and, indeed, the
Hilbert newforms at certain levels. The links between Fermat-type curves and modular curves
are far deeper than one might suspect. For example, to solve xp + yp = 2zp, xp + yp = z2 and
xp + yp = z3 (and thereby complete the resolution of xp + yp = 2αzp that was started by Ribet
[Rib97]), Darmon and Merel [DM97] not only needed the theorems of Mazur, Ribet and Wiles
but were also forced to study the rational points on the modular curves X+

ns(p)×X(1)X0(r) with
r = 2 or 3. In the reverse direction, methods of the present paper were used in [AS14] to prove
asymptotic results for semistable points on X+

ns(p) and X+
s (p) over totally real fields.

1.8 Notational conventions
Throughout this paper, p is an odd prime and K is a totally real number field with ring of
integers OK . For a non-zero ideal a of OK , we denote by [a] the class of a in the class group
Cl(K). For a non-trivial solution (a, b, c) to the Fermat equation (1), let

Ga,b,c := aOK + bOK + cOK , (9)

and let [a, b, c] denote the class of Ga,b,c in Cl(K). We exploit the well-known fact (see, e.g., [CF67,
Theorem VIII.4]) that every ideal class contains infinitely many prime ideals. Let c1, . . . , ch be the
ideal classes of K. For each class ci, we choose (and fix) a prime ideal mi - 2 of smallest possible
norm representing ci. The set H denotes our fixed choice of odd prime ideals representing the
class group: H = {m1, . . . ,mh}. The sets S, T and U are given in (2). Observe that S ∩H = ∅.

Let GK = Gal(K/K). For an elliptic curve E/K, we write

ρE,p : GK → Aut(E[p]) ∼= GL2(Fp) (10)

for the representation of GK on the p-torsion of E. For a Hilbert eigenform f over K, we let
Qf denote the field generated by its eigenvalues. In this situation $ will denote a prime of Qf

above p; of course, if Qf = Q, we write p instead of $. All other primes we consider are primes
of K. We reserve the symbol P for primes belonging to S, and m for primes belonging to H. An
arbitrary prime of K is denoted by q, and Gq and Iq are, respectively, the decomposition and
inertia subgroups of GK at q.

2. Theoretical background

In this section we summarize the theoretical results we need for modularity, irreducibility of
mod p Galois representations, level lowering, and Conjecture 1.

2.1 Modularity of the Frey curve
We shall need the following special case (see [FLHS]) of the modularity conjecture for elliptic
curves over totally real fields.
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Theorem 5. Let K be a totally real field. Up to isomorphism over K, there are at most finitely
many non-modular elliptic curves E over K. Moreover, if K is real quadratic, then all elliptic
curves over K are modular.

Corollary 2.1. Let K be a totally real field. There is some constant AK , depending only on K,
such that for any non-trivial solution (a, b, c) of the Fermat equation (1) with prime exponent
p > AK , the Frey curve Ea,b,c given by (7) is modular.

Proof. By Theorem 5, there are at most finitely many possible K-isomorphism classes of elliptic
curves over K that are non-modular. Let j1, . . . , jn ∈K be the j-invariants of these classes. Write
λ = −bp/ap. The j-invariant of Ea,b,c is

j(λ) = 28 · (λ2 − λ+ 1)3 · λ−2(λ− 1)−2.

Each equation j(λ) = ji has at most six solutions λ ∈ K. Thus there are values λ1, . . . , λm ∈ K
(with m 6 6n) such that if λ 6= λk for all k then Ea,b,c is modular. If λ = λk, then

(−b/a)p = λk, (−c/a)p = 1− λk.

This pair of equations results in a bound for p unless λk and 1 − λk are both roots of unity,
which is impossible because K is real; so the only roots of unity are ±1. 2

Remark. The constant AK is ineffective: in [FLHS] it is shown that an elliptic curve E over a
totally real field K is modular except possibly if it gives rise to a K-point on one of a handful
of modular curves of genus at least 2, and Faltings’ theorem [Fal83] (which is ineffective) gives
the finiteness. If K is quadratic, we can take AK = 0.

2.2 Irreducibility of mod p representations of elliptic curves
We need the following result, derived in [FS, Theorem 2] from the work of David [Dav11] and
Momose [Mom95], which in turn builds on Merel’s uniform boundedness theorem [Mer96].

Theorem 6. Let K be a Galois totally real field. There is an effective constant CK , depending
only on K, such that the following holds: if p > CK is prime and E is an elliptic curve over K
which is semistable at all q | p, then ρE,p is irreducible.

2.3 Level lowering
We need a level-lowering result that plays the rôle of the Ribet step [Rib90] in the proof of
Fermat’s Last Theorem. Fortunately, such a result follows by combining the work of Fujiwara
[Fuj06], Jarvis [Jar04] and Rajaei [Raj01].

Theorem 7 (Level lowering). LetK be a totally real field and E/K an elliptic curve of conductor
N . Let p be a rational prime. For a prime ideal q of K, denote by ∆q the discriminant of a local
minimal model for E at q. Let

Mp :=
∏
q‖N ,

p|υq(∆q)

q, Np :=
N
Mp

. (11)

Suppose that the following hold:

(i) p > 5, the ramification index e(q/p) < p− 1 for all q | p, and Q(ζp)
+ 6⊆ K;

(ii) E is modular;
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(iii) ρE,p is irreducible;

(iv) E is semistable at all q | p;
(v) p | υq(∆q) for all q | p.

Then there exist a Hilbert eigenform f of parallel weight 2 that is new at level Np and some
prime $ of Qf such that $ | p and ρE,p ∼ ρf,$.

Proof. As noted above, we make use of the theorems in [Fuj06, Jar04, Raj01]. Assumption (i)
takes care of some technical restrictions in those theorems.

By assumption (ii), there is a newform f0 of parallel weight 2, level N and field of coefficients
Qf0 = Q such that ρE,p ∼ ρf0,p. Thus ρE,p is modular, and by (iii) it is irreducible. Since K may be
of even degree, in order to apply the main result of [Raj01] we need to add an auxiliary (special
or supercuspidal) prime to the level. By [Raj01, Theorem 5], we can add an auxiliary (special)
prime q0 - N so that ρf0,p(σq0) is conjugate to ρf0,p(σ), where σq0 denotes a Frobenius element of
GK at q0 and σ is complex conjugation. We now apply the main theorem of [Raj01] to remove
from the level all primes q - p that divide Mp. Next, we remove from the level the primes above
p without changing the weight. By [Jar04, Theorem 6.2], we can do this provided that ρE,p|Gq

is finite at all q | p, where Gq is the decomposition subgroup of GK at q. But, from (iv), q is a
prime of good or multiplicative reduction for E. In the former case, ρE,p|Gq is finite; in the latter
case, it is finite by (v). Finally, from the condition imposed on q0, it follows that Norm(q0) 6≡ 1
(mod p), and we can apply Fujiwara’s version of Mazur’s principle [Fuj06] to remove q0 from the
level. We conclude that there is an eigenform f of parallel weight 2 which is new at level Np, as
well as a prime $ | p of Qf such that ρE,p ∼ ρf0,p ∼ ρf,$. 2

2.4 Eichler–Shimura
The following is a partial result towards Conjecture 1.

Theorem 8 (Blasius and Hida). Let K be a totally real field, and let f be a Hilbert newform
over K of level N and parallel weight 2, such that Qf = Q. Suppose that either:

(a) [K : Q] is odd; or

(b) there is a finite prime q such that υq(N ) = 1.

Then there is an elliptic curve Ef/K of conductor N with the same L-function as f.

A proof of Theorem 8 is given by Blasius [Bla04], who derived it from the work of Hida
[Hid81]. Other proofs are provided by Darmon [Dar04] and Zhang [Zha01].

Corollary 2.2. Let E be an elliptic curve over a totally real field K and let p be an odd prime.
Suppose that ρE,p is irreducible and that ρE,p ∼ ρf,p for some Hilbert newform f over K of level
N and parallel weight 2 which satisfies Qf = Q. Let q - p be a prime of K such that:

(a) E has potentially multiplicative reduction at q;

(b) p | #ρE,p(Iq);
(c) p - (NormK/Q(q)± 1).

Then there is an elliptic curve Ef/K of conductor N with the same L-function as f.

Proof. Write c4 and c6 for the usual c-invariants of E, which are non-zero as E has potentially
multiplicative reduction at q. Let γ = −c4/c6. Write χ for the quadratic character associated to
K(
√
γ)/K and E ⊗ χ for the γ-quadratic twist of E. By [Sil94, Theorem V.5.3], E ⊗ χ has split

multiplicative reduction at q. Let g = f⊗ χ. As χ is quadratic and Qf = Q, we have Qg = Q.
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Suppose that g is new at level Ng. We will prove that υq(Ng) = 1. Then, by Theorem 8, there
is an elliptic curve Eg over K having the same L-function as g. Thus the L-functions of Eg ⊗ χ
and g⊗ χ = f are equal, and we take Ef = Eg ⊗ χ.

It remains to prove that υq(Ng) = 1. Since ρE⊗χ,p ∼ ρg,p, the two representations have the
same optimal Serre level N (say). Now E ⊗ χ has multiplicative reduction at q, so υq(N) = 0
or 1. Since E and E ⊗χ are isomorphic over K(

√
γ) and p | #ρE,p(Iq), we have p | #ρE⊗χ,p(Iq).

Hence υq(N) 6= 0, and so υq(N) = 1.
We now think of N as the optimal Serre level ρg,p and compare it with the level Ng of g.

To carry out this comparison, we shall make use of [Jar99, Theorem 1.5]; to apply [Jar99],
we need the irreducibility of ρg,p ∼ ρE⊗χ,p, which follows from the irreducibility of ρE,p. By
[Jar99, Theorem 1.5], υq(N) = υq(Ng), except possibly when υq(Ng) = 1 and υq(N) = 0 or when
NormK/Q(q) ≡ ±1 (mod p). The former is impossible as υq(N) = 1, and the latter is ruled out
by (c). Thus, υq(Ng) = 1. 2

3. Computations

3.1 Behaviour at odd primes
For u, v, w ∈ OK such that uvw 6= 0 and u+ v + w = 0, let

E : y2 = x(x− u)(x+ v). (12)

The invariants c4, c6, ∆ and j have their usual meanings and are given by

c4 = 16(u2 − vw) = 16(v2 − wu) = 16(w2 − uv),

c6 = −32(u− v)(v − w)(w − u), ∆ = 16u2v2w2, j = c3
4/∆.

(13)

The following elementary lemma is a straightforward consequence of the properties of elliptic
curves over local fields (see, e.g., [Sil86, §§VII.1 and VII.5]).

Lemma 3.1. With the above notation, let q - 2 be a prime and let

s = min{υq(u), υq(v), υq(w)}.
Write Emin for a local minimal model at q.

(i) Emin has good reduction at q if and only if s is even and

υq(u) = υq(v) = υq(w). (14)

(ii) Emin has multiplicative reduction at q if and only if s is even and (14) fails to hold. In
this case, the minimal discriminant ∆q at q satisfies

υq(∆q) = 2 υq(u) + 2 υq(v) + 2 υq(w)− 6s.

(iii) Emin has additive reduction if and only if s is odd.

3.2 Conductor of the Frey curve
Let (a, b, c) be a non-trivial solution to the Fermat equation (1) with prime exponent p. Let
Ga,b,c be as given in (9), which we think of as the greatest common divisor of a, b and c. If p
is sufficiently large, then an odd prime not dividing Ga,b,c is a prime of good or multiplicative
reduction for Ea,b,c and does not appear in the final level Np, as we shall see in due course,
whereas an odd prime dividing Ga,b,c exactly once is an additive prime and does appear in Np.
To control Np, we need to control Ga,b,c. The following lemma achieves this. We refer to § 1.8 for
the notation.
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Lemma 3.2. Let (a, b, c) be a non-trivial solution to (1). There is a non-trivial integral solution
(a′, b′, c′) to (1) such that the following hold.

(i) For some ξ ∈ K∗, we have a′ = ξa, b′ = ξb and c′ = ξc.

(ii) Ga′,b′,c′ = m for some m ∈ H.

(iii) [a′, b′, c′] = [a, b, c].

Proof. Let m ∈ H satisfy [Ga,b,c] = [m], so that m = (ξ) · Ga,b,c for some ξ ∈ K∗. Let a′, b′ and c′

be as in (i). Note that (a′) = (ξ) · (a) = m · G−1
a,b,c(a), which is an integral ideal, since Ga,b,c (by

definition) divides a. Thus a′ is in OK and, similarly, so are b′ and c′. For (ii) and (iii), note that

Ga′,b′,c′ = a′OK + b′OK + c′OK = (ξ) · (aOK + bOK + cOK) = (ξ) · Ga,b,c = m. 2

Lemma 3.3. Let (a, b, c) be a non-trivial solution to the Fermat equation (1) with prime exponent
p that satisfies Ga,b,c = m where m ∈ H. Write E for the Frey curve in (7), and let ∆ be its
discriminant. Then, at all q /∈ S ∪ {m}, the model E is minimal and semistable and satisfies
p | υq(∆). Let N be the conductor of E, and let Np be as defined in (11). Then

N = m2 ·
∏
P∈S

PrP ·
∏
q|abc

q/∈S∪{m}

q, Np = m2 ·
∏
P∈S

Pr′P , (15)

where 0 6 r′P 6 rP 6 2 + 6 υP(2).

Proof. Suppose first that q | abc and q /∈ S ∪ {m}. Since Ga,b,c = m, the prime q divides precisely
one of a, b and c. From (13), q - c4, so the model equation (7) is minimal and has multiplicative
reduction at q, and p | υq(∆). By (11), we see that q - Np.

For P ∈ S, we have that rP = υP(N ) 6 2 + 6 υP(2) by [Sil94, Theorem IV.10.4]. We observe
that, by (11), r′P = rP unless E has multiplicative reduction at P and p | υP(∆P), in which case
rP = 1 and r′P = 0. Finally, recall that by our choice of class group representatives H, we have
m - 2. As E has full 2-torsion over K, the wild part of the conductor of E/K at m vanishes (see
[Sil94, p. 380]). Thus υm(N ) 6 2. However, since Ga,b,c = m, it follows from Lemma 3.1 that E
has additive reduction at m, and so υm(N ) = υm(Np) = 2. 2

3.3 Images of inertia
We gather the information we need regarding images of inertia ρE,p(Iq). This is crucial for
applying Corollary 2.2 and for controlling the behaviour at the primes in S∪{m} of the newform
obtained by level lowering.

Lemma 3.4. Let E be an elliptic curve over K with j-invariant j. Let p > 5 and let q - p be a
prime of K. Then p | #ρE,p(Iq) if and only if E has potentially multiplicative reduction at q (i.e.
υq(j) < 0) and p - υq(j).

Proof. If E has potentially good reduction at q, then #ρE,p(Iq) divides 24 (e.g. [Kra90,
Introduction]). For E with potentially multiplicative reduction, the result is a well-known
consequence of the theory of the Tate curve (e.g. [Sil94, Proposition V.6.1]). 2

Lemma 3.5. Let q /∈ S. Let (a, b, c) be a solution to the Fermat equation (1) with prime exponent
p > 5 such that q - p. Let E = Ea,b,c be the Frey curve in (7). Then p - #ρE,p(Iq).

Proof. By (13), if a, b and c have unequal valuations at q, then υq(j) < 0 and p | υq(j); otherwise,
υq(j) > 0. In either case, the result follows from Lemma 3.4. 2
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Lemma 3.6. Let E be an elliptic curve over K, and let p > 3. Let P ∈ S and suppose that E
has potentially good reduction at P. Let ∆ be the discriminant of E (not necessarily minimal
at P). Then 3 | ρE,p(IP) if and only if 3 - υP(∆).

Proof. This is a special case of [Kra90, Théorème 3]. 2

Lemma 3.7. Let P ∈ S. Let (a, b, c) be a solution to the Fermat equation (1) with prime exponent
p > 4 υP(2). Let E = Ea,b,c be the Frey curve in (7), and write j for its j-invariant.

(i) If P ∈ T , then υP(j) < 0 and p divides the order of ρE,p(IP).

(ii) If P ∈ U , then either υP(j) < 0 and p divides the order of ρE,p(IP), or υP(j) > 0 and 3
divides the order of ρE,p(IP).

Proof. Let π be a uniformizer for KP. Let

t = min{υP(a), υP(b), υP(c)}, α = π−ta, β = π−tb, γ = π−tc.

Then α, β, γ ∈ Oπ. Suppose first that P ∈ T . By the definition of T , the prime P has residue
field F2. As αp + βp + γp = 0, precisely one of α, β and γ is divisible by π. Thus υP(a), υP(b)
and υP(c) are not all equal; two out of a, b and c have valuation t (say) and one has valuation
t+k with k > 1. From the formulae in (13), we have that υP(j) = 8 υP(2)−2kp. As p > 4 υP(2),
we see that υP(j) < 0 and p - υP(j). Thus (i) follows from Lemma 3.4.

Suppose now that P ∈ U . If υP(a), υP(b) and υP(c) are not all equal, then (ii) follows as
above. Suppose they are all equal. Then, by the formulae in (13), we have

υP(j) > 8 υP(2) > 0, υP(∆) = 4 υP(2) + 6tp.

By the definition of U , we have 3 - υP(2) and so 3 - υP(∆). Now (ii) follows from Lemma 3.6. 2

4. Level lowering and Eichler–Shimura

Theorem 9. Let K be a totally real field satisfying (ES). There is a constant BK depending
only on K such that the following hold. Let (a, b, c) be a non-trivial solution to the Fermat
equation (1) with prime exponent p > BK , and rescale (a, b, c) so that it remains integral and
satisfies Ga,b,c = m for some m ∈ H. Write E for the Frey curve (7). Then there is an elliptic
curve E′ over K such that:

(i) the elliptic curve E′ has good reduction away from S ∪ {m};
(ii) #E′(K)[2] = 4;

(iii) ρE,p ∼ ρE′,p.
Write j′ for the j-invariant of E′. Then:

(a) for P ∈ T , we have υP(j′) < 0;

(b) for P ∈ U , we have either υP(j′) < 0 or 3 - υP(j′);

(c) for q /∈ S, we have υq(j
′) > 0.

Proof. We first observe, by Lemma 3.3, that E is semistable outside S ∪ {m}. By taking BK
to be sufficiently large, we see from Corollary 2.1 that E is modular and from Theorem 6 that
ρE,p is irreducible; to apply Theorem 6, we need that E is semistable at the primes dividing p,
and this is true once we enlarge BK to ensure that m - p. Applying Theorem 7 and Lemma 3.3
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(where once again we may need to enlarge BK), we see that ρE,p ∼ ρf,$ for a Hilbert newform f

of level Np and some prime $ | p of Qf. Here Qf is the field generated by the Hecke eigenvalues

of f.

Next, we reduce to the case where Qf = Q, after possibly enlarging BK by an effective amount.

This step uses standard ideas, originally due to Mazur as indicated in the introduction, which

can be found in [BS04, § 4], [Coh07, Proposition 15.4.2] and [Kra97, § 3], so we omit the details.

We have assumed (ES): T 6= ∅, or [K : Q] is odd, or Conjecture 1 holds. We would like to show

that there is some elliptic curve E′/K having the same L-function as f. This is immediate if we

assume Conjecture 1, and follows from Theorem 8 if [K : Q] is odd. Suppose T 6= ∅ and let P ∈ T .

By Lemma 3.7, E has potentially multiplicative reduction at P and p | #ρE,p(IP). The existence

of E′ follows from Corollary 2.2 after possibly enlarging BK to ensure that p - (NormK/Q(P)±1).

We now know that ρE,p ∼ ρE′,p for some E′/K with conductor Np given by (15). After

enlarging BK by an effective amount and possibly replacing E′ by an isogenous curve, we may

assume that E′ has full 2-torsion; this step again uses standard ideas (e.g. [Coh07, Proposition

15.4.2], [Kra97, § 3]), so we omit the details.

It remains to prove (a)–(c). There are finitely many elliptic curves E′ with (full 2-torsion

and) good reduction outside S ∪ {m}. Therefore we may, after possibly enlarging BK , suppose

that for all primes q, if υq(j
′) < 0 then p - υq(j′). Now we know from Lemma 3.5 that for q /∈ S,

p - #ρE,p(Iq) and so p - #ρE′,p(Iq). By Lemma 3.4, we see that υq(j
′) > 0, which proves (c).

For (a), let P ∈ T . Applying Lemma 3.7 gives p | ρE,p(IP) and so p | ρE′,p(IP). Now, by

Lemma 3.4, we have υP(j′) < 0, which proves (a).

For (b), suppose P ∈ U . If p | ρE,p(IP), then again υP(j′) < 0 as required. Thus, suppose

p - ρE,p(IP). By Lemma 3.7 we have that 3 | ρE,p(IP). It follows that p - ρE′,p(IP) and 3 | ρE′,p(IP).

The first conclusion, together with Lemma 3.4, shows that υP(j′) > 0 (recall that we have

imposed above the condition that υq(j
′) < 0 implies p - υq(j′) for all q). By Lemma 3.6, as

3 | ρE′,p(IP), we have 3 - υP(∆′), where ∆′ is the discriminant of E′. But j′ = (c′4)3/∆′, so

3 - υP(j′) as required. 2

Remark. The constant BK is ineffective, as it depends on the ineffective constant AK in

Corollary 2.1. However, if we know that the Frey curve is modular (for instance when K is real

quadratic), the constant BK becomes effectively computable. Indeed, by the recipe in [Coh07,

§ 15.4], all that is needed are algorithms to compute the Hilbert newforms at the levels Np, the

fields generated by their eigenvalues, and a finite number of eigenvalues for each, and there are

effective algorithms for doing this [DV13].

5. Proof of Theorem 3

Theorem 9 relates non-trivial solutions of the Fermat equation (with p sufficiently large) to

elliptic curves E′ with full 2-torsion having potentially good reduction outside S and satisfying

certain additional properties. In this section we relate such elliptic curves E′ to solutions to

the S-unit equation (3), using basic facts about λ-invariants of elliptic curves (see, e.g., [Sil86,

pp. 53–55]), and use this relation to prove Theorem 3. As E′ has full 2-torsion over K, it has a

model

E′ : y2 = (x− e1)(x− e2)(x− e3). (16)

Here, of course, e1, e2 and e3 are distinct and so their cross ratio λ = (e3− e1)/(e2− e1) belongs

to P1(K) − {0, 1,∞}. Write S3 for the symmetric group on three letters. The action of S3
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on (e1, e2, e3) extends via the cross ratio to an action on P1(K) − {0, 1,∞} and allows us to
identify S3 with the following subgroup of PGL2(K):

S3 = {z, 1/z, 1− z, 1/(1− z), z/(z − 1), (z − 1)/z}.

The λ-invariants of E′ are the six elements (counted with multiplicity) of the S3-orbit of λ; they
are related to the j-invariant j′ by

j′ = 28 · (λ2 − λ+ 1)3 · λ−2(λ− 1)−2. (17)

Proof of Theorem 3. Let K be a totally real field satisfying assumption (ES). Let BK be as in
Theorem 9, and let (a, b, c) be a non-trivial solution to the Fermat equation (1) with exponent
p > BK . By Lemma 3.2, we may rescale (a, b, c) so that it remains integral but Ga,b,c = m for some
m ∈ H. We now apply Theorem 9, which yields an elliptic curve E′/K with full 2-torsion and
potentially good reduction outside S whose j-invariant j′ satisfies the following two conditions:

(a) for all P ∈ T , we have υP(j′) < 0;

(b) for all P ∈ U , we have υP(j′) < 0 or 3 - υP(j′).

Let λ be any of the λ-invariants of E′. Note that j′ ∈ OS , where OS is the ring of S-integers
in K. By (17), λ ∈ K satisfies a monic degree 6 equation with coefficients in OS , and therefore
λ ∈ OS . However, 1/λ, µ := 1−λ and 1/µ are also solutions to (17) and so belong to OS . Hence
(λ, µ) is a solution to the S-unit equation (3). By assumption, this solution must satisfy either
hypothesis (A) or hypothesis (B) in Theorem 3. We now rewrite (17) as

j′ = 28 · (1− λµ)3 · (λµ)−2 (18)

and let t := max{|υP(λ)|, |υP(µ)|}. Suppose that (λ, µ) satisfies (A): there is some P ∈ T so that
t 6 4 υP(2). If t = 0, then υP(j′) > 8 υP(2) > 0, which contradicts (a) above. We may therefore
suppose that t > 0. Now the relation λ+ µ = 1 forces either υP(λ) = υP(µ) = −t, or υP(λ) = 0
and υP(µ) = t, or υP(λ) = t and υP(µ) = 0. Thus υP(λµ) = −2t < 0 or υP(λµ) = t > 0. Either
way, υP(j′) = 8 υP(2)− 2t > 0, which again contradicts (a).

Thus (λ, µ) satisfies (B): there is some P ∈ U such that t 6 4 υP(2) and υP(λµ) ≡ υP(2)
(mod 3). The former implies υP(j′) > 0 as above, and the latter, together with (18), gives
3 | υP(j′). This contradicts (b), completing the proof. 2

6. Proofs of Theorems 1 and 2

We would like to understand the solutions to (3) for real quadratic K. Let

ΛS = {(λ, µ) : λ+ µ = 1, λ, µ ∈ O∗S}. (19)

The following two lemmas are easy consequences of the definitions.

Lemma 6.1. The action of S3 on P1(K) − {0, 1,∞} induces an action on ΛS given by
(λ, µ)σ := (λσ, 1− λσ) for (λ, µ) ∈ ΛS and σ ∈ S3.

Lemma 6.2. Let (λ1, µ1) and (λ2, µ2) be elements of ΛS belonging to the same S3-orbit. Then:

(i) max{|υP(λ1)|, |υP(µ1)|} 6 4 υP(2) if and only if max{|υP(λ2)|, |υP(µ2)|} 6 4 υP(2);

(ii) υP(λ1µ1) ≡ υP(2) (mod 3) if and only if υP(λ2µ2) ≡ υP(2) (mod 3).
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Proof. Suppose that (λ1, µ1) and (λ2, µ2) belong to the same orbit. Then the elliptic curves
Ei : y2 = x(x − 1)(x − λi) have the same j-invariant. The lemma follows by comparing the
P-valuation of this j-invariant expressed in terms of (λ1, µ1) and in terms of (λ2, µ2). 2

We denote the set of S3-orbits in ΛS by S3\ΛS . The three elements (2,−1), (−1, 2) and (1
2 ,

1
2)

of ΛS form a single orbit. As stated in the introduction, we call these the irrelevant solutions to
(3), and we call their orbit the irrelevant orbit ; other solutions are said to be relevant.

In this section, K = Q(
√
d) where d > 2 is a squarefree integer. Note that T 6= ∅ or U 6= ∅.

The irrelevant orbit satisfies condition (A) of Theorem 3 if T 6= ∅ and satisfies condition (B) if
U 6= ∅.

Lemma 6.3. Let (λ, µ) ∈ ΛS .

(i) λ, µ ∈ Q if and only if (λ, µ) belongs to the irrelevant orbit.

(ii) There is an element σ ∈ S3 such that (λ′, µ′) = (λ, µ)σ satisfies λ′, µ′ ∈ OK .

Proof. Note that λ and µ are in Q if and only if they both have the form ±2r. From the relation
λ+ µ = 1 we quickly deduce (i). For (ii), as K is quadratic, |S| = 1 or 2, and the lemma follows
from examining the possible signs for υP(λ) and υP(λσ) for P ∈ S and σ ∈ S3. 2

Lemma 6.4. Up to the action of S3, every relevant (λ, µ) ∈ ΛS has the form

λ =
η1 · 2r1 − η2 · 2r2 + 1 + v

√
d

2
, µ =

η2 · 2r2 − η1 · 2r1 + 1− v
√
d

2
, (20)

where
η1 = ±1, η2 = ±1, r1 > r2 > 0, v ∈ Z, v 6= 0 (21)

are related by

(η1 · 2r1 − η2 · 2r2 + 1)2 − η1 · 2r1+2 = dv2, (22)

(η2 · 2r2 − η1 · 2r1 + 1)2 − η2 · 2r2+2 = dv2. (23)

Moreover, if d 6≡ 1 (mod 8), then we can take r2 = 0.

Observe that (22) and (23) are equivalent in the sense that we can rearrange either of the
equations to obtain the other, but it is convenient to have both.

Proof. Suppose that η1, η2, r1, r2 and v satisfy (21)–(23), and let λ and µ be given by (20). It is
clear that λ and µ belong to OS but not Q∗, and that λ+ µ = 1. Moreover, from (22) and (23),
the norms of λ and µ are ηi2

ri , and thus λ, µ ∈ O∗S . Hence (λ, µ) is a relevant element of ΛS .
Conversely, suppose that (λ, µ) is a relevant element of ΛS . Then λ, µ /∈ Q, and by Lemma 6.3
we may suppose that λ, µ ∈ OK . Let x 7→ x denote conjugation in K. Then

λλ = η1 · 2r1 , µµ = η2 · 2r2 , η1 = ±1, η2 = ±1.

Swapping λ and µ if necessary (which does not change the orbit), we may suppose that
r1 > r2 > 0. Note that if d 6≡ 1 (mod 8), then S consists of one element, and the relation
λ+ µ = 1 forces r2 = 0. Now,

λ+ λ = λλ− (1− λ)(1− λ) + 1 = λλ− µµ+ 1 = η1 · 2r1 − η2 · 2r2 + 1.

Moreover, we can write λ− λ = v
√
d where v ∈ Z, and as λ /∈ Q we have v 6= 0. The expressions

for λ + λ and λ − λ give the expression for λ in (20), and we deduce the expression for µ from
µ = 1 − λ. Finally, the identity (λ + λ)2 − (λ − λ)2 = 4λλ gives (22), and the corresponding
identity for µ gives (23). 2
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Table 1. The relevant elements of ΛS for d > 2 squarefree, d 6≡ 1 (mod 8).

Relevant elements of ΛS up to the
d action of S3 and Galois conjugation Extra conditions

d = 2
(
√

2, 1−
√

2), (−16 + 12
√

2, 17− 12
√

2),
(4 + 2

√
2,−3 + 2

√
2), (−2 + 2

√
2, 3− 2

√
2)

d = 3 (2 +
√

3,−1−
√

3), (8 + 4
√

3,−7− 4
√

3)

d = 5
((1 +

√
5)/2, (1−

√
5)/2), (−8 + 4

√
5, 9− 4

√
5),

(−1 +
√

5, 2−
√

5)

d = 6 (−4 + 2
√

6, 5− 2
√

6)

d ≡ 3 (mod 8)
None

d 6= 3

d ≡ 5 (mod 8)
None

d 6= 5

d ≡ 7 (mod 8) (22s+1 + 2s+1w
√
d, 1− 22s+1 − 2s+1w

√
d)

4s − 1 = dw2

s > 2, w 6= 0

d ≡ 2 (mod 16)
(−22s + 2sw

√
d, 1 + 22s − 2sw

√
d)

4s + 2 = dw2

d 6= 2 s > 2, w 6= 0

d ≡ 6 (mod 16)
None

d 6= 6

d ≡ 10 (mod 16) None

d ≡ 14 (mod 16) (22s + 2sw
√
d, 1− 22s − 2sw

√
d)

4s − 2 = dw2

s > 2, w 6= 0

Lemma 6.5. Let d 6≡ 1 (mod 8) be squarefree and at least 2. The relevant elements of ΛS , up to
the action of S3 and Galois conjugation, are as given in Table 1.

Proof. We apply Lemma 6.4. As d 6≡ 1 (mod 8), we have r2 = 0. Values 0 6 r1 6 5 (together
with η1 = ±1 and η2 = ±1) in (22) yield the solutions given in Table 1 for d = 2, 3, 5 and 6, as
well as the solution (16− 4

√
14, −15 + 4

√
14) which is included under the table entry for d ≡ 14

(mod 16). We may therefore suppose that r1 > 6. If η2 = −1, then (23) gives 22r1 + 4 = dv2. As
d is squarefree and r1 > 6, this gives d ≡ 1 (mod 8), which is a contradiction. Thus η2 = 1. Now
(22) gives

2r1+2(2r1−2 − η1) = dv2.

As d is squarefree, we see that r1 is even precisely when d is odd. Suppose first that d is odd,
so r1 = 2s + 2 and v = 2s+2w for some non-zero integer w. As r1 > 6, we have s > 2. Then
4s − η1 = dw2. As η1 = ±1, this equation is impossible if d ≡ 3 or 5 (mod 8). This completes
the proofs of the entries in the table for d ≡ 3, 5 (mod 8) (including d = 3 and d = 5). If d ≡ 7
(mod 8), then reducing mod 8 shows that η1 = 1. This gives the solution in Table 1 for d ≡ 7
(mod 8).

Suppose now that d is even, so that r1 = 2s + 1 and v = 2s+1w for some non-zero integer
w and s > 2. Then 22s−1 − η1 = (d/2)w2. This gives a contradiction modulo 8, if d/2 ≡ 3 or 5
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(mod 8), and proves the correctness of the entries in the table for d ≡ 6, 10 (mod 16) (including
d = 6). Moreover, if d ≡ 2 or 14 (mod 16), then η = −1 or 1, respectively, completing the proof
except for the d = 2 case.

For d = 2, we have 22s−1 + 1 = w2. The factorization (w − 1)(w + 1) = 22s−1 quickly leads
to a contradiction, so there are no further solutions. 2

6.1 Proof of Theorem 1

For now, let d > 2 be squarefree and satisfy d 6≡ 1 (mod 4). Write K = Q(
√
d). Then S =

T = {P}, say; in particular, assumption (ES) is satisfied. We apply Theorem 3 and focus on
verifying condition (A). In view of Lemma 6.2, we only have to verify (A) for one representative
of each S3-orbit. It is easy to check that the irrelevant orbit, as well as the solutions listed in
Table 1 for d = 2, 3 and 6, all satisfy (A). For d ≡ 3 (mod 8) or d ≡ 6, 10 (mod 16), there are no
further solutions and so the proof is complete for parts (i) and (ii) of Theorem 1. Suppose d ≡ 2
(mod 16) and d 6= 2. We know from Table 1 that the S-unit equation has no relevant solutions,
unless there are s > 2 and w 6= 0 such that 4s + 2 = dw2. Now, if q | d is an odd prime, then −2
is a quadratic residue modulo q, and so q ≡ 1, 3 (mod 8). This proves (iii) of Theorem 1, and
(iv) is obtained similarly.

6.2 Proof of Theorem 2
Here d ≡ 5 (mod 8). Again we apply Theorem 3, but now we check condition (B) of the theorem.
Note that U = S = {P} where P = 2 · OK . Moreover, the irrelevant solutions to the S-unit
equation (3) satisfy condition (B). From Table 1, there are no further solutions to the
S-unit equation for d 6= 5. This completes the proof. For d = 5, Table 1 lists three solutions
to the S-unit equation that satisfy υP(λµ) = 0, 2 and 1; we cannot complete the proof in this
case, which is why it is excluded from the statement of the theorem.

7. Proof of Theorem 4

For a set U of positive integers and a positive real number X, we let U(X) = {d ∈ U : d 6 X}.
We define the absolute density of U to be

δ(U) = lim
X→∞

#U(X)/X,

provided the limit exists. In this section, as in the introduction, we let Nsf be the set of squarefree
integers d > 2. For U ⊆ Nsf , recall the definition of the relative density of U in Nsf given in (4),
which we can now write as

δrel(U) = lim
X→∞

#U(X)/#Nsf(X),

provided the limit exists. We need the following two classical analytic theorems.

Theorem 10 (e.g. [Lan09, p. 636]). For integers r and N with N positive, let

Nsf
r,N = {d ∈ Nsf : d ≡ r (mod N)}.

Let s = gcd(r,N) and suppose that s is squarefree. Then

#Nsf
r,N (X) ∼ ϕ(N)

sϕ(N/s)N
∏
q|N (1− q−2)

· 6

π2
X,

where ϕ denotes Euler’s totient function.
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Theorem 11 (e.g. [Lan09, pp. 641–643]). Let N be a positive integer. Let r1, . . . , rm be distinct
modulo N , satisfying gcd(ri, N) = 1. Let E be the set of positive integers d such that every
prime factor q of d satisfies q ≡ ri (mod N) for some i = 1, . . . , k. Then there is some positive
constant γ = γ(N, r1, . . . , rm) such that

#E(X) ∼ γ ·X/log(X)1−m/ϕ(N).

Let C and D be as given in (5).

Lemma 7.1. Let C′ = Nsf\C. Then δ(C′) = 0.

The proof of Lemma 7.1 is somewhat lengthy. Before embarking on the proof, we show that
the lemma is enough to imply Theorem 4.

Proof of Theorem 4. Observe that Theorem 4 follows immediately from Theorem 3 if we can
prove the density claims in (6). Theorem 10 applied to Nsf = Nsf

0,1 gives #Nsf(X) ∼ 6X/π2. It

follows that for U ⊆ Nsf , δ(U) exists if and only if δrel(U) exists, and in this case the two are
related by δrel(U) = π2δ(U)/6. By Lemma 7.1, we have δrel(C′) = δ(C′) = 0. As C′ and C are
complements in Nsf , we have δrel(C) = 1. It remains to show that δrel(D) = 5/6. By definition,
D = C ∩ (Nsf−Nsf

5,8), so it suffices to prove that δrel(Nsf
5,8) = 1/6; this follows from Theorem 10. 2

7.1 Proof of Lemma 7.1
To complete the proof of Theorem 4, we need to prove Lemma 7.1. By definition, C′ is the set
of squarefree d > 2 such that the S-unit equation (3) has a relevant solution in Q(

√
d). By

Lemma 6.4, this is precisely the set of squarefree d > 2 satisfying (22) and (23), where η1 = ±1,
η2 = ±1, r1 > r2 > 0 and v 6= 0. For η1, η2 = ±1 and κ1, κ2 = 0, 1, write C′(η1, η2, κ1, κ2) for
the set of d > 2 satisfying (22) and (23) with ri ≡ κi (mod 2). Then C′ is the union of all 16
C′(η1, η2, κ1, κ2). Let q be an odd prime divisor of d. If d ∈ C′(η1, η2, κ1, κ2), then reducing (22)
and (23) modulo q shows that η12κ1 and η22κ2 are both quadratic residues modulo q. If (η1, η2,
κ1, κ2) 6= (1, 1, 0, 0), then the possible odd prime divisors q of d belong to a proper subset of the
congruence classes {1, 3, 5, 7} modulo 8. It follows from Theorem 11 that δ(C′(η1, η2, κ1, κ2)) = 0
for (η1, η2, κ1, κ2) 6= (1, 1, 0, 0).

To show δ(C′) = 0, it is now enough to show that δ(C′(1, 1, 0, 0)) = 0. Suppose d ∈ C′(1, 1, 0, 0).
Thus there is a solution to (22) and (23) with η1 = η2 = 1, r1 = 2s, r2 = 2t and s > t > 0.
Equations (22) and (23) are now equivalent to

(2s + 2t + 1)(2s + 2t − 1)(2s − 2t + 1)(2s − 2t − 1) = dv2. (24)

Since d > 0, we in fact have s > t. We write C′(1, 1, 0, 0) = L ∪M, where L is the subset of d
for which there is a solution to (24) with t > 0, and M is the subset of d for which there is a
solution t = 0. We separately show that δ(L) = 0 and δ(M) = 0. Suppose now that d ∈ L. Write
s = (s, t) and let

α1,s = 2s + 2t + 1, α2,s = 2s + 2t − 1, α3,s = 2s − 2t + 1, α4,s = 2s − 2t − 1. (25)

These are odd and pairwise coprime. Then αi,s = di,sv
2
i,s, where the di,s are squarefree, and

d =
∏
di,s. Thus

L = {d1,sd2,sd3,sd4,s : s = (s, t), s > t > 0}.
Recall that we want to show δ(L) = 0. In fact, we shall prove the equivalent statement that
δsup(L) = 0, where δsup(L) = lim supX→∞ #L(X)/X.

For a positive integer m, we write Mm = 2m − 1; this is the mth Mersenne number. We will
make frequent use of the fact that Mn |Mm whenever n | m.
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Lemma 7.2. Let m be a positive integer. Let Mm = 2m − 1. Suppose s1 ≡ s2 (mod m). Then
αi,s1 ≡ αi,s2 (mod Mm) for i = 1, . . . , 4.

Proof. Write s1 = (s1, t1) and s2 = (s2, t2). If s1 ≡ s2 (mod m), then f = |s1−s2| and g = |t1−t2|
are divisible by m. But αi,s1 − αi,s2 can be written as a linear combination of 2f − 1 and 2g − 1,
and is therefore divisible by Mm. 2

Lemma 7.3. Let m be a positive integer. Let s0 > t0 > 0 and write s0 = (s0, t0). Let

Am,s0 = {d1,s : s = (s, t), s > t > 0, s ≡ s0 (mod m)}.

Let p1, . . . , pk be the distinct primes dividingMm that do not divide α1,s0 , and writeN = p1 · · · pk.
Then

#Am,s0(X) 6 2−k ·X +N.

Proof. Clearly N | Mm, and α1,s0 is coprime to N . Suppose s ≡ s0 (mod m). By Lemma 7.2,
α1,s ≡ α1,s0 (mod N), and so α1,s is also coprime to N . As αi,s = di,sv

2
i,s, we have d1,s ≡ α1,s0v

−2
1,s

(mod N). Thus d1,s modulo N belongs to the set {α1,s0 ·w2 : w ∈ (Z/NZ)∗}. As N is squarefree
with k distinct odd prime factors, this set has cardinality ϕ(N)/2k. The lemma follows. 2

We denote the number of distinct prime divisors of a positive integer n by ω(n).

Lemma 7.4. For m > 1, let hm = ω(Mm). Then δsup(L) 6 2−hm/2 ·m2.

Proof. For now, fix some s0 and let k and N be as in Lemma 7.3. Let

Lm,s0 = {d1,sd2,sd3,sd4,s : s = (s, t), s > t > 0, s ≡ s0 (mod m)}.

Then

#Lm,s0(X) 6 #Am,s0(X) 6 2−kX +N 6 2−kX +Mm,

where the first inequality is clear from the definitions of Lm,s0 and Am,s0 , and the second and
third inequalities follow from Lemma 7.3. Now let q1, . . . , qk′ be the distinct prime divisors of
Mm that do not divide α2,s0 . Then (similarly to the above) we have

#Lm,s0(X) 6 2−k
′
X +Mm.

As α1,s0 and α2,s0 are coprime, either k > hm/2 or k′ > hm/2. Hence

#Lm,s0(X) 6 2−hm/2X +Mm.

Now let s1, . . . , sm2 be a complete system of representatives for s modulo m. Then L is the
disjoint union of Lm,s1 , . . . ,Lm,sm2 . Thus

#L(X) 6 2−hm/2 ·m2 ·X +m2Mm. 2

A prime ` is a primitive divisor of Mm if ` | Mm but ` - Mm′ for all m′ < m. The following
is a special case of the celebrated primitive divisor theorem of Bilu et al. [BHV01].

Theorem 12. If n 6= 1, 6, then Mn has a primitive divisor.

Corollary 7.5. With notation as above, hm > 2ω(m) − 2.
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Proof. The number of divisors n | m is at least 2ω(m). For n 6= 1, 6 dividing m, let `n be a
primitive divisor of Mn. Then `n divides Mm, and by definition `n 6= `n′ whenever n 6= n′. This
gives at least 2ω(m) − 2 distinct primes dividing Mm. 2

Lemma 7.6. With notation as above, δ(L) = 0.

Proof. Combining Lemma 7.4 and Corollary 7.5, we have

0 6 δsup(L) 6
m2

2(hm/2)
6

m2

2(2ω(m)−1−1)
(26)

for any m > 1. Now let y be large, and let m =
∏
p6y p. Then ω(m) = π(y) and m = exp(ϑ(y)),

where π and ϑ are, respectively, the prime counting function and the first Chebyshev function.
By the prime number theorem (see, e.g., [Apo76, ch. 4])

π(y) ∼ y/log y, ϑ(y) ∼ y.

Letting y →∞ in (26) clearly gives δsup(L) = 0, as required. 2

Recall that we had written C′(1, 1, 0, 0) = L∪M and wanted to show that δ(L) = δ(M) = 0.
The following completes the proof of Lemma 7.1 and hence Theorem 4.

Lemma 7.7. With notation as above, δ(M) = 0.

Proof. The setM is the set of squarefree d > 2 such that (24) holds with s > 0 and t = 0. Then
(2s−1 − 1)(2s−1 + 1) = dw2 where w = v/2s+1 ∈ Z\{0}. Now we can apply a straightforward
simplification of the above argument to show that δ(M) = 0. 2
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