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Complexifying Lie Group Actions
on Homogeneous Manifolds of
Non-compact Dimension Two

S. Ruhallah Ahmadi and Bruce Gilligan

Abstract. If X is a connected complex manifold with dX = 2 that admits a (connected) Lie group G
acting transitively as a group of holomorphic transformations, then the action extends to an action of
the complexification Ĝ of G on X except when either the unit disk in the complex plane or a strictly
pseudoconcave homogeneous complex manifold is the base or fiber of some homogeneous fibration
of X.

1 Introduction

A useful invariant for non-compact manifolds in the setting of proper actions of
Lie groups is the notion of non-compact dimension that was introduced by Abels in
[Abe76]; see also [Abe82, §2]. We take the dual, but equivalent, approach and do
not assume that any Lie group action is necessarily proper. For X a connected (real)
smooth manifold, we define dX to be the codimension of the top non-vanishing ho-
mology group of X with coefficients in Z2. The invariant dX measures, in a certain
sense, how far the manifold X is from being compact, and this invariant is applied
here to study a particular case of the following problem.

Suppose a Lie group G is acting as a group of holomorphic automorphisms on a
complex space X. One can ask whether the complexification Ĝ of G (in the sense of
[Hoch65, Chapter XVII.5]) acts holomorphically on a complex space X̂ into which X
can be G-equivariantly embedded as an open subset. A special case of this problem
is to attempt to choose X̂ = X. Certainly, the automorphism group of a compact
complex manifold is a complex Lie group [BoMo47] and in the compact case the
action always extends to an action of the complexification of the group involved on
the compact complex space. But such an extension does not exist in all settings, e.g.,
if X is hyperbolic. However, it was proved in [GH98, Theorem 3.1] that if X is a
complex manifold with dX equal to one that is homogeneous under the action of a
Lie group G acting by holomorphic transformations, then there is a corresponding
transitive Ĝ-action on X.

In this paper we consider complex manifolds that have a transitive action of a
real Lie group acting as a group of holomorphic transformations and that satisfy the
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condition that d is equal to two. We wish to resolve the problem stated above in
this setting, i.e., determine when one can extend the given action of a G on such a
complex manifold X to the holomorphic action of its complexification Ĝ on X. Of
course, this is not always possible in the setting of d = 2, as obvious examples are the
unit disk in the complex plane, or more generally, the complement of a closed ball in
higher dimensional projective space that fibers real analytically as a disk bundle over
a compact manifold.

It turns out that there is only one other type of example where the extension prob-
lem has a negative answer arising in the following way. Let B = K/L be a compact
rank one symmetric space and consider its tangent bundle T(B) together with its nat-
ural Stein manifold structure and induced K-action; see [MN63, Proposition 2]. Let
Y be a K-equivariant compactification of T(B) to a flag manifold obtained by adding
an ample divisor. Now set X := Y \ B. Heuristically one can view this setting in
the following way. Since T(B) is Stein, it admits a strictly pseudoconvex exhaustion,
which when observed from the other side endows X with the structure of a strictly
pseudoconcave homogeneous manifold. Such manifolds were classified in [HS81].
Of course, the extension problem also fails for homogeneous manifolds where such
examples occur as fiber or base in any equivariant fibration of the manifolds.

The purpose of this note is to prove the following theorem.

Theorem 1.1 Suppose G is a connected Lie group acting transitively and almost ef-
fectively as a group of holomorphic transformations on a complex manifold X = G/H
with dX = 2. Then the complexification Ĝ of G acts holomorphically and transitively
on X unless the unit disk in the complex plane or a strictly pseudoconcave homogeneous
manifold is either the fiber or base of some homogeneous fibration of X.

The methods that we use are now classical; see e.g., [HO84,OR84,GH98,Gil95]. In
particular, we use some basic fibrations from loc. cit. along with a Fibration Lemma
from [AG94] for dealing with the invariant d in the setting of fibrations. The paper
is organized as follows. In Section 2 we discuss the exceptional flag domains that can
occur. In Section 3 we present a technical lemma needed later. Finally, the proof of
the theorem is given in Section 4.

2 The Exceptional Flag Domains

Suppose Ĝ is a connected complex semisimple Lie group, P̂ is a parabolic subgroup
of Ĝ, and let Y := Ĝ/P̂ be the corresponding flag manifold. Any real form G of Ĝ has
a finite number of orbits in Y and so at least one orbit must be open. Such an open
orbit is called a flag domain. For detailed information about this setting we refer the
interested reader to [Wol69, FHW]. We only recall here that the group Aut(Y ) can
be faithfully represented into Aut(PN ) for some equivariant embedding of Y into a
projective space PN , and so we are dealing with linear groups and are in an algebraic
setting throughout.

Let K be a maximal compact subgroup of G and KC be its complexification in
Aut(Y ). Matsuki duality (see [Mat79, Mat82]; for a geometric approach see [FHW,
Theorem 8.3.1]) states that to every G-orbit in the flag manifold Y there is a unique
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KC-orbit that intersects the G-orbit in a K-orbit and vice versa. If the G-orbit is open
(resp. closed), then its dual KC-orbit is closed (resp. open). Since there is a unique
closed G-orbit A in Y that is also a K-orbit ([Wol69, Theorem 3.5 and Corollary 3.4]),
it follows from Matsuki duality that there is a unique open KC-orbit W in Y which
contains A. Since the KC-action is algebraic, the isotropy subgroup for this action is
algebraic and thus has a finite number of connected components. As a consequence
W has either one or two ends (see [Bor53] when the isotropy group is connected and
[Gil91, Proposition 1] when the isotropy group has a finite number of connected
components).

We are interested in the special case of a flag domain X with dX = 2. Our approach
is to study the K-orbits in the manifold X. Now the unique complex K-orbit E in the
flag domain X is the unique orbit of minimal dimension and is a strong deformation
retract of X; see e.g., [Wol69]. We now use this fact.

Proposition 2.1 Let X be a flag domain homogeneous under a real form G of a
complex semisimple Lie group Ĝ acting as a group of holomorphic transformations and
assume that dX = 2. Then X is a non-compact strictly pseudoconcave homogeneous
manifold. In particular, Ĝ does not act transitively on X.

Proof As we noted above, W has either one or two ends, and we first suppose that
W = KC/LC has two ends, where LC denotes the isotropy subgroup. Since we are in
an algebraic setting, there exists a parabolic subgroup P̂ of KC and a characterχ : P̂→
C∗ such that LC = kerχ; see [Akh77]. In particular, W fibers as a C∗-bundle over the
flag manifold Q := KC/P̂. Since any K-orbit in W is mapped surjectively onto the
base Q, all K-orbits in W have real codimension at most two. Now suppose there is a
K-orbit B in W that has real codimension two. We claim that this assumption yields
a contradiction. Since Q is simply connected, B is a topological section of the C∗-
principal bundle W , and thus W is topologically trivial. But H1(Q,O) = 0, because
Q is a flag manifold. So the line bundle associated to W by adding a 0-section is
analytically trivial. Thus W as a bundle is also analytically trivial. This means that
all K-orbits in W are complex hypersurfaces, contradicting the fact that in the flag
domain X there is a unique K-orbit that is complex; see [Wol69, Lemma 5.1]. As a
result all K-orbits in W have real codimension one, i.e., are real hypersurfaces.

We are now in the following setting. The group KC has one open orbit in Y and
two that are closed. By Matsuki duality the group G correspondingly has two open
orbits and one closed orbit with the latter being exactly a real hypersurface K-orbit in
W . This setting is described in [GH09, Theorem 5.2], where it is proved that Y ∼= Pn

and other than W , there are two closed KC-orbits that are a Pq−1 and a Pp−1 with
(q − 1) + (p − 1) = n − 1. Since X = W ∪ Pq−1 and dX = 2, it follows that Pq−1

is a complex hypersurface in X, i.e., q − 1 = n − 1. From the above equality we see
that p = 1 and so Pp−1 is a point. The groups that can occur in this setting are also
described in [GH09, Theorem 5.2].

Now suppose that W has one end. By the discussion given before the statement
of the proposition, the flag manifold Y consists of two KC-orbits, namely, W and E,
where W is the open orbit and E is a complex hypersurface orbit. Since we are in
the setting of algebraic group actions on a flag manifold, this setup was analyzed in
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[Akh79] using the classification results of Wang [Wan52]. The open KC-orbit is the
tangent bundle T(B) of a compact rank one symmetric space B.

Remark 2.2 We refer the reader to [HS81] for a very detailed description of these
non-compact, strictly pseudoconcave, homogeneous manifolds. It follows from the
classification given there that X is the complement of the closure of a ball in Pn that
is the flag manifold Y containing X or X = Y \ B with Y the compactification of
the tangent bundle T(B) of a compact rank one symmetric space B. The list of these
spaces is as follows: the n-sphere, Sn, n ≥ 2, real projective space, RPn, n ≥ 2,
complex projective space Pn, n ≥ 1, quaternionic projective space QPn, n ≥ 1, and
the Cayley projective plane F4/ Spin(9).

3 A Technical Lemma

We will need the following technical result in the proof of the theorem.

Lemma 3.1 Let Y = Ĝ/Ĥ be an orbit of a connected complex semisimple Lie group
Ĝ acting holomorphically on some projective space and assume that a real form G of Ĝ
has an open orbit X := G/H in Y with dX = 2. Then dY ≤ dX .

Proof If Y is compact, then we are done, because dY = 0. So we assume throughout
the rest of the proof that Y is not compact. Let K be a maximal compact subgroup
of G. As we are in the setting of algebraic groups, there is a Mostow fibration (see
[Mos55, Mos62]) of the homogeneous manifold X as a real vector bundle over a
minimal K-orbit M. By assumption, dX = 2, and thus M has real codimension
two. So the generic K-orbits in X have real codimension one or two.

Suppose these orbits all have codimension two. If these orbits are complex, then
they are also KC-orbits; i.e., Y is fibered by flag manifolds. One then has a fibration

Y = Ĝ/Ĥ −→ Ĝ/KC · Ĥ =: B,

where B is one dimensional and non-compact. If B is biholomorphic to C, then
dY = dC = 2. Also B = C∗ is not possible, since X = Y would then imply dX = 1,
contradicting the assumption dX = 2. And, if the K-orbits are not complex, then by
the classification result given in [GH09, Theorem 5.6] it follows that Y is compact
and we assumed above that this is not the case.

So we now assume that the generic K-orbits in X are real hypersurfaces. In this
setting the complexification KC of K has an open orbit Z which is Zariski open in its
Zariski closure Z. We set E := Z \ Z and note that Z ⊂ Y , since KC is a subgroup
of Ĝ and Y 6= Z, since Y is not compact. We can equivariantly modify Z so that the
exceptional set E has pure codimension one [Ka67] and is equivariantly desingular-
ized [Hir70]. By [HS82, Lemma 2.2] the compact group K acts transitively on the
components of E. In particular, the “infinity” component E∞ of E is a flag manifold
that is an orbit of both Ĝ and KC. Note that Ĝ 6= KC, since, otherwise, G = K would
be a compact real form and X would be compact, contrary to our assumption that
dX = 2.
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We first consider the case where Ĝ is simple and prove the general case later. There
are only certain possibilities that can arise when two different complex simple groups
act transitively on a flag manifold, and the classification was given by Onishchik
[Oni62]. As noted for example in the Main Theorem in [Ste82], the isotropy of
the Ĝ-action on E∞ is a maximal parabolic subgroup of Ĝ. As a consequence there is
no proper fibration of E∞. We now consider what this tells us about Y .

If Y is Stein, then Ĥ is reductive; see [Mat60, Oni60]. Then G acts transitively
on Y [Oni69] and so X = Y . From now on assume that Y is not Stein and apply
the Weisfeiler construction [Weis66] to get a fibration Y = Ĝ/Ĥ → Ĝ/Î with Î a
parabolic group containing Ĥ and F := Î/Ĥ Stein. By virtue of the fact that there
is no proper fibration of E∞, it follows that the fiber F has complex dimension one.
Note that F is non-compact, since Y is. Suppose first that F = C and so Y is a C-
bundle over the flag manifold Q := Ĝ/Î. Then the real form G is represented as
SL(2,R) on F, and F ∩ X is biholomorphic to the unit disk. There is another open
orbit of the induced SL(2,R)-action on F that contains the point p := F ∩ E∞. This
means that the G-action moves the point p off E∞, contradicting the fact that E∞ is
G-invariant. So this case does not occur. Otherwise, F = C∗ and Y is a C∗-bundle
over Q. By the Fibration Lemma [AG94] we conclude that dY = 1 and thus X = Y
[GH98]. But then dX = 1 contradicting the assumption that dX = 2. So this case
does not occur either. This handles the case where Ĝ is simple.

We now assume that Ĝ is semisimple. In general, Ĝ need not be simple whenever
G is simple. However, we claim this is so in our setting. First note that G is simple
if and only if K is simple if and only if KC is simple. If Ĝ is not simple, then E∞ is a
product on which KC acts transitively (see e.g., [Wol69, p. 1147]), and it follows that
KC is not simple loc. cit. As a consequence, we see that if G is simple, then Ĝ is too.
Now let G = G1 × G2 be a decomposition of G with G1 simple and let K = K1 × K2

be the corresponding decomposition of the maximal compact subgroup K with Ki a
maximal compact subgroup of Gi for i = 1, 2. We fiber the open Ĝ-orbit Y by Ĝ2 to
get a fibration

p : Y = Ĝ/Ĥ
F
−→ Ĝ/Ĝ2 · Ĥ.

Since the generic K-orbits in X are real hypersurfaces, there are two possibilities.
The first case occurs when the generic K1-orbit is a real hypersurface in p(X) and F
is compact. Then the quotient p(X) also has a Ĝ1-invariant divisor at infinity, G1

has an open orbit, and the generic K1-orbits are hypersurfaces. We considered this
setting above and showed this is impossible with one exception. If p(Y ) is Stein,
then p(Y ) = p(X), and this implies Y = X. Otherwise, the generic K2-orbit in the
G2-orbit is a real hypersurface, and p(X) = p(Y ) is compact. Since the G2-orbit in
F is open and has a divisor at infinity that is Ĝ2-invariant, the result now follows by
induction on the number of simple factors constituting Ĝ.

Remark 3.2 Suppose X is an open G-orbit in Y := Ĝ/Ĥ, where Ĥ is a closed
complex subgroup of the complex semisimple Lie group Ĝ. The question whether
dY ≤ dX holds in this setting without any additional assumptions on dX and Ĥ is, as
far as we know, open and there are no known counterexamples. In passing we note
some cases where this question has an affirmative answer.
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If Ĥ is reductive algebraic, then G acts transitively on Y [Oni69]. The existence of
such an open G-orbit in Ĝ/Ĥ implies the existence of a proper complex subalgebra
m of the Lie algebra ĝ of Ĝ such that one has a decomposition ĝ = g + m, which
is called a local factorization of Ĝ. These local factorizations have been studied in
detail in certain cases; we refer the interested reader to [Oni69, Mal77, Akh13] and
the references cited there.

If Ĥ is parabolic, then X is a flag domain in the flag manifold Y . In this case one
has 0 = dY ≤ dX . Malyshev [Mal75] proved that if a real form G of inner type (he
calls this first category) has an open orbit in Ĝ/Ĥ, then Ĥ is parabolic. An example
where G has an open orbit in Ĝ/Ĥ with Ĥ not parabolic is given in [Akh13, Example

5.5] with ĥ an ideal in p̂, the Lie algebra of a parabolic subgroup P̂ that contains Ĥ.
The base cycle of X lies in a coset of a maximal compact subgroup of the group P̂/Ĥ,
and a comparison of their dimension yields dY ≤ dX .

Remark 3.3 (a) The assumption that the G-orbit is open is needed. If G is a real
form of a complex semisimple Lie group Ĝ, then dĜ > dG.

(b) The semisimple assumption is also needed. In the classification of homoge-
neous complex surfaces [OR84] the example

Y = Ĝ/Ĥ ∼= C2 ⊃ X = G/H = C2 \ R2

arises in two ways. One way is with solvable groups; see [OR84, Proposition 5.2].
The other way, which is relevant to our present considerations, is via the real form
G = SL2(R) n R2 of the mixed group Ĝ = SL2(C) n C2; see [OR84, Theorem 6.3].
Here dY = dimR Y = 4 > 3 = dX , since X is topologically S1 × R3.

4 Proof of the Theorem

With these preparations we can now give the proof of the theorem.

Proof Let G/H → G/ J be the g-anticanonical fibration, e.g., see [HO84] and
[OR84]. If J = G, then G has the structure of a complex Lie group and is acting holo-
morphically on X and thus X already has the desired form, e.g., see [HO84, Corollary
4, p. 64]. Note that H is discrete in this case.

So we assume that G 6= J. Then G/ J and J/H are complex manifolds and it
follows from the Fibration Lemma [AG94] that dG/ J ≤ 2. Further, the bundle
G/H◦ → G/ J is a locally trivial holomorphic principal fiber bundle with structure
group the complex Lie group J/H◦, where H◦ denotes the connected component of
the identity of the group H. Moreover, the base G/ J of the g-anticanonical fibration
is a G-orbit in some PN and is open in the corresponding Ĝ-orbit Y := Ĝ/ Ĵ, where
Ĝ denotes the smallest connected complex subgroup of the automorphism group
Aut(PN ) containing G.

If we show that the G-action on the base G/ J can be extended to a Ĝ-action on
G/ J, then we can extend the G-action on X̃ := G/H◦ to a Ĝ-action on X̃ ([GH98,
Proposition 2.6]) and this then defines a Ĝ-action on X. Note that if dG/ J = 0, then
G/ J = Ĝ/ Ĵ is compact and thus a flag manifold, and we have the desired extension.
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And if dG/ J = 1, then the result follows by [GH98, Theorem 3.1]. Hence we assume
that dG/ J = 2 throughout the rest of the proof.

Now, as a consequence of a Theorem of Chevalley [Che51], the commutator sub-
group (Ĝ)′ of Ĝ has closed orbits in Y and this yields the fibrations

G/ J �
� //

��

Ĝ/ Ĵ

��
G/I �

� // Ĝ/ Ĵ · (Ĝ)′ ,

where I := G ∩ / Ĵ · (Ĝ)′. The base Ĝ/ Ĵ · (Ĝ)′ is a Stein Abelian Lie group; see the
Lemma on [HO81, p. 173]. Since G/I is open in the connected Abelian Lie group
Ĝ/ Ĵ · (Ĝ)′, it follows that G/I = Ĝ/ Ĵ · (Ĝ)′. If dim G/I > 0, then dG/I > 0, since G/I
is Stein. Also 2 = dG/ J ≥ dI/ J + dG/I by the Fibration Lemma in [AG94]. If dG/I = 2,
then I/ J is compact and X = Y , so we are done. And if dG/I = 1, then dI/ J = 1.
Then the complexification of I acts transitively on I/ J by [GH98, Theorem 3.1] and
this implies that Ĝ acts transitively on X. Again, we are done.

So we may assume that I = G and (Ĝ)′ is acting transitively and as an algebraic
group on Y . Then the orbits of its radical R(Ĝ)′ are closed and these orbits give rise to
the fibrations

G/ J

��

� � // Ĝ/ Ĵ

��
G/L �

� // Ĝ/ Ĵ · R(Ĝ)′ ,

where L := G∩ Ĵ · R(Ĝ)′ . If dim L/ J > 0, then we apply [Gil95, Lemma 5] where it is
shown that dL/ J = 2 and either a complex Lie group acts transitively on G/ J or else
G/ J fibers as a unit disk bundle over the compact base G/L thus proving the result
in this setting.

Otherwise, R(Ĝ)′ is acting ineffectively, and we may assume that G and Ĝ are both
semisimple. Now let M be the connected subgroup of G corresponding to the max-
imal complex ideal m := g ∩ ig in the Lie algebra g. The group M is algebraic and
has closed orbits in Y and the fibers of the fibrations of X and Y induced by these M
orbits are equal. Hence we may assume that m = (0) and thus the problem reduces
to the setting where G is a real form of a connected complex semisimple Lie group Ĝ.

Now Lemma 3.1 applies and dY ≤ dX = 2. So dY = 0, 1, or 2.
Suppose first that dY = 0 and so Y is compact. Then X = G/ J is a flag domain

in the flag manifold Y = Ĝ/ Ĵ, where G is a real form of a semisimple complex Lie
group Ĝ. Then Y splits into a product of flag manifolds of the simple factors of Ĝ
(modulo ineffectivity). The flag domain X splits into a corresponding product of flag
domains in each flag manifold; see [Wol69, p. 1147]. Now we can ignore factors Xi

that are compact (the complexification of the simple real form acts transitively on
such factors) and that satisfy dXi = 1 (again the complexification acts transitively by
[GH98, Theorem 3.1]). Thus we are reduced to consideration of one factor having
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d = 2 and all other factors compact. Such a flag domain of a real form of a complex
semisimple Lie group is handled by Proposition 2.1.

Next assume that dY = 1. By the result in [Akh77] we get the fibrations

X

F

��

� � // Y

C∗

��
Z �
� // Q ,

where Q is a flag manifold. Since F is an open orbit in C∗, we have F = C∗. Hence
dZ = 1, and Ĝ acts on Z ([GH98, Theorem 3.1]), and thus there is a transitive Ĝ
action on X. We are again done by our observations above.

Finally we consider the case dY = 2. We are in a setting where a linear algebraic
group is acting on Y , and Akhiezer [Akh83] proved that the complex manifold Y has
the following fibration, which induces a corresponding fibration of X:

X �
� //

F

��

Y

F̂
��

G/U �
� // Ĝ/P̂ ,

where P̂ is a parabolic subgroup of Ĝ, U := P̂ ∩ G and F̂ is C,C∗ × C∗, or P2 minus
a quadric curve. Note that since F is open in the Stein space F̂, one has dF 6= 0. If
dF = 1, then F = C∗ and this case does not occur. Hence the remaining case is when
dF = 2. If the manifold F̂ is biholomorphic to C∗ × C∗, or P2 \ Q with Q a quadric
curve, then the transitive action of P̂ on F̂ is given by group multiplication in the first
case and the action of PSL(2,C) by projective transformations in the second. In both
cases there is no Lie subgroup with an open orbit F having dF = 2. Otherwise, F̂ = C
with the complex two dimensional affine group acting transitively (see [Akh83]), and
F can then be the upper half plane as the orbit of the real affine group. Once again
the unit disk occurs as the fiber of a bundle over a flag manifold, and this completes
the proof of the theorem.
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Hermann & Cie., Paris, 1951.

[FHW] G. Fels, A. T. Huckleberry, and J. A. Wolf, Cycle spaces of flag domains. A complex geometric
viewpoint. Progress in Mathematics, 245, Birkhäuser Boston, Inc., Boston, MA, 2006.
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