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SEMILOCAL ^-CONVEXITY AND SEMILOCAL ^-CONVEX
PROGRAMMING

QlNG-JIE Hu , JlN-BAO JlAN, HAI-YAN ZHENG AND CHUN-MING TANG

In this paper, a new type of generalised convexity—semilocal ^-convexity is intro-
duced by combining the concepts of the semi-.E-convexity in X.S. Chen [J. Math.
Anal. Appl. 275(2002), 251-262] and semilocal convexity in G.M. Ewing [SIAM. Rev.
19(1977), 202-220], and some of its basic characters are discussed. By utilising the
new concepts, we derive some optimality conditions and establish some duality results
for the inequality constrained optimisation problem.

1. INTRODUCTION

Convexity and generalised convexity play a key role in many aspects of optimisa-
tion, such as optimality conditions, saddle-point theorems, duality theorems, theorems
of alternatives, and convergence of optimisation algorithms, so the research on convexity
and generalised convexity is one of the important aspects in mathematical programming.
During the past several decades, various significant generalisations of convexity have
been presented. Youness [13] brought forward the concepts of ^-convex sets, .E-convex
functions and ^-convex programming by using a point to point map E, discussed some
of their basic properties, and established some optimality results on ^-convex program-
ming. Chen [15] introduced a class of semi-£-convex function and also discussed its basic
properties. Jian [16] introduced (E, F)-convex sets, (E, F)-convex functions and (E, F)-
convex programming by extending the definitions of ^-convex sets, E'-convex functions
and E-convex programming, discussed some of their properties and also gave some ex-
amples to show that some results in [13] are incorrect also see [14, 15]. Recently, in [18],
Jian, Hu, Zheng and Tang introduced a new class of non-convex functions, which are
called semi-(£:,F)-convex (quasi-semi-(.E, F)-convex, pseudo-semi-^, F)-convex) func-
tions, and some of their basic characters were discussed, some sufficient conditions of
optimality and duality theorems for the associated generalised convex programming were
studied.
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Another generalisation of convexity, which was known as semilocal convexity, was
introduced by Ewing [1], where the concept is applied to provide sufficient optimalty
conditions in variational and control problems. Generalisations of semilocal convex func-
tions and their properties have been investigated by Kaur [6] and Kaul, Kaur [4, 5], In
[7], a theorem of the alternatives is derived for semilocal convex functions denned on the
local starshaped sets, and the result is applied to constrained minimisation problems to
obtain optimality conditions and duality theorems. By using these concepts in Suneja
and Gupta [8], some optimality conditions and duality results for a scalar valued nonlin-
ear programming are obtained. These results are further extended in [9] for a multiple
objective programming problems. In [10], optimality conditions and duality results were
obtained for nonlinear programming involving semilocal preinvex and related functions.
These results are extended in [11] for a multiple objective programming problems. In
[12, 17], Lyall, Suneja, Aggarwal and Preda discussed the optimality conditions and
duality results for fractional single (multiple) objective programming involving semilocal
preinvex and related functions, respectively.

In this paper, based on the semi-£-convexity and semilocal convexity, we bring
forward a new type of convexity - semilocal iJ-convexity, and discuss some of its basic
properties, and establish the optimality conditions and duality results for the generalised
convex programming.

The remainder of this paper is organised as follows. The preliminary results which
will be used in the paper are stated in Section 2. In Section 3, we shall introduce the
local starshaped E-convex sets and semilocal i£-convex functions and discuss some of
their properties. In Section 4, we study optimality conditions and duality results for
semilocal 2?-convex programming.

2. PRELIMINARIES

In this section, we review the related definitions and results which will be used in
the paper.

DEFINITION 2.1: ([13]) A set M C Rn is said to be an ^-convex set if there
is a point to point map E: M ->• Rn such that XE(x) + (1 - X)E(y) e M, V I , J
e M, V A G [0,1].

DEFINITION 2.2: ([13]) A function f: M —* R is said to be an ^-convex function
on a set M C Rn if there is a point to point map E: M -¥ Rn such that M is an .E-convex
set and

+ (l-\)E(y))<\f(E(x)) + (l-\)f(E(y)), V x,y € M, V A G [0,1].

DEFINITION 2.3: ([15]) A function f: M —• R is said to be a semi-S-convex func-
tion on a set M if there is a point to point map E : M -y R" such that M is an ^-convex
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set and

V z . j / e M , V A e [ 0 , l ] .

DEFINITION 2.4: ([1]) A set M C Rn is said to be a local starshaped set if corre-
sponding to each pair of points x,y G M, there is a maximal positive number a(x, y) ^ 1
such that Xx+{1- X)y e M, V A G (0, a[x, y)).

DEFINITION 2.5: ([1]) A function f: Rn ->• R is said to be a semilocal convex
function on a local starshaped set M C Rn if corresponding to each pair of points
x,y G M, there is a positive number d(x,y) sj a(x,y) such that /(Ax + (1 — A)y)
^ A/(i) + (1 - X)f(y), V Ae(0,d(i,i/)).

DEFINITION 2.6: ([2]) A vector function f: Xo -> /2* is said to be a convexlike
function if for any x,y G Xo C R71 and 0 < A < 1, there is z G Xo such that f(z)
^ Xf(x) + (1 - X)f(y), where the inequalities are taken component-wise.

LEMMA 2 . 1 . ([3]) Let S be a nonempty set in R" and ip : S -> .R* be a convexiiJce
function. Then either 4>(x) < 0 has a solution i 6 5 o r ATi/>(i) ^ 0 for all x € S and
some X e Rk, A ^ 0 and A ^ 0, but both alternatives are never true.

3. LOCAL STARSHAPED E-CONVEX SETS AND SEMILOCAL .E-CONVEX FUNCTIONS

In this section, we present the definitions of local starshaped ^-convex sets and
semilocal .E-convex functions, respectively, and discuss their basic properties.

(1) LOCAL STARSHAPED JB-CONVEX SETS.

DEFINITION 3.1: A set M C Rn is said to be local starshaped E-convex, if there
is a map E : M —¥ /?"such that corresponding to each pair of points x, y € M, there is a
maximal positive number a(x, y) ^ 1 satisfies

(3.1) XE(x) + (1 - \)E(y) e M, V 0 < A < a ( i , y ) .

REMARK 3.1. From this definition, we know that there is a maximal positive number
a(x,y) ^ 1 for each pair of points x,y G M satisfying (3.1) if and only if there is a
positive number a(x,y) ^ 1 for each pair of points x,y G M satisfying (3.1).

REMARK 3.2. Every E-convex set is local starshaped E-convex, but the converse is not
necessary true, which is shown in Example 3.1 as follows.

REMARK 3.3. Every local starshaped set is local starshaped ^-convex, but the converse
is not necessary true, as shown in Example 3.1.

We give an example of a local starshaped i?-convex set, which is neither E'-convex
nor local starshaped.
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EXAMPLE 3.1. Let 5! = {(x,y) € R2 : (x,y) = A^O.O) + A2(2,3) + A3(0,2)},

S2 = {(*, y)eR2: (x, y) = A^O, 0) + A2(-2, -3) + A3(0, -4)}

3

and M = SiU S2, where Ax, A2, A3 ̂  0 and £ K = 1- Let E : R2 -> R2 be defined as
i= l

[(0,3) , if (z,y) = (2,3);
E(x,y)=l ( 0 , y - l ) , if (x,y) e S1\{(2,3), (0,0)};

[ (0,y), if ( I , J ) £ S 2 .

It is clear that M is a local starshaped E-convex set. However, by letting x = (2,3),
y = (0,0), A = 3/4, we have XE(x) + (1 - X)E(y) = (0,9/4) i M. That is, M is not a
.E-convex set. Similarly, we take x = (2,3), y = (0, -4), there is no a maximal positive
number a(x, y) ^ 1 such that A i + ( l - A ) y £ M , V A e (0, a(x, y)). So M is not a local
starshaped set.

PROPOSITION 3 . 1 . If Mi and M2 are two local starshaped E-convex sets, then
Mi n M2 is also a local starshaped E-convex set. Furthermore, the intersection of Unite
local starshaped E-convex sets is also a local starshaped E-convex set.

The proof is obvious and is omitted.

REMARK 3.4. Even if Mi and M2 are all local starshaped E-convex sets, Mi U M2 is not
necessarily local starshaped U-convex. See the following example.

EXAMPLE 3.2. Let E : R2 -s- R2 be defined as E{x,y) = (2y/3 - i /3,y/3 + 4z/3).
Consider the two sets Mi = {(x,y) e R2 : (x,y) = A^O.O) + A2(2,1) + A3(0,3)},

3

where Ai, A2, A3 ^ 0 and 53 Aj = 1. The two sets Mi and M2 are both local starshaped

E'-convex. However, by letting x = (2,1), y = (0, —3), there is no a maximal positive
number a(x,y) ^ 1 such that XE(x) + (1 - X)E{y) 6 M1 U M2, V A € (0,a(x,y)). So
Mi U M2 is not a local starshaped E-convex set.

PROPOS ITION 3 . 2 . Suppose that E : R" -»• R" be a linear map.

(i) If M C Rn is a local starshaped E-convex set and ct 6 R, then aM is a
local starshaped E-convex set.

(ii) If Mi,M2 Q Rn be local starshaped E-convex sets, then Mx + M2 is a local

starshaped E-convex set.

(iii) If Mi, Mi,..., MT are all local starshaped E-convex sets, then, for each
r

(ai, a2, . . . , ar) G Rr, X) a i M is aiso a local starshaped E-convex set.
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P R O O F : (i) Let xl,x2 € aM, then xl = a y 1 , ! 2 = ay2, where yl,y2 S M. Noting
that M is a local starshaped .E-convex set, there is a maximal positive number a{yx,y2)

^ 1 such that XE[yl) + (\-X)E{y2) £ M, V 0 < A < a{y\y2). Let a{x\x2) = afe/1,*/2),
then

XE{xl) + (1 - X)E(x2) = XE{ayl) + (1 - X)E{ay2)
= a(XE(yl) + (l - X)E(y2)) € aM, V 0 < A < afc1,*2).

Thus aM is a local starshaped .E-convex set from Remark 3.1.
(ii) Let p + q,x + y E Mi+ M2, where p, x € M\ and q, y £ M2. In view of Mi, M2

being local starshaped E-convex sets, there are two maximal positive numbers a(p, x) ^ 1
and a(q, y) ^ 1 such that

XE(p) + (1 - A)£(z) € Mi, V 0 < A < a(p,i),

+ (1 - X)E(y) € M2, V 0 < A < 0(9, y).

Let a(p+g, i+y) = min{o(p,x), a(g,y)} > 0, then, for V 0 < A < a(p+q,x+y), we have
XE{p + q) + (l-X)E(x + y) = (XE{p) + {l-X)E(x)) + (XE(q) + (l-X)E(y)) € Mx+M2,
since £• is a linear map. Thus Mx + M2 is a local starshaped ^-convex set.

(iii) This conclusion is a direct consequence of the conclusions (i),(ii). D

PROPOSITION 3 . 3 . If E : Rn ->• Rn is a linear map, M C i f is a local
starshaped E-convex set, d € Rn and E(d) = d, then M + d is also a local starshaped
E-convex set.

PROOF: Let xl,x2 e M + d, then x1 = y1 + d and x2 = y2 + d, where y1,
y2 e M. Noting that M is a local starshaped .E-convex set, there exists a maximal posi-
tive number a(yl,y2) ^ 1 corresponding to yl,y2 such that A£'(y1) + (1 - X)E(y2) e M
for 0 < A < o(y1,y2). Let a(z\:r2) =a{y1,y2), then

x1) + (1 - X)E(x2) = XE(yl + d) + (1 - X)E{y2 + d)
+ {l-X)E(y2)+deM + d, V 0 < A < a{yl,y2).

Thus M + d is a local starshaped .E-convex set from Remark 3.1. D

(2) SEMILOCAL .E-CONVEX FUNCTIONS.

DEFINITION 3.2: A function / : Rn -+ R is said to be semilocal ^-convex on a
local starshaped E'-convex set M C Rn if for each pair of points x1, x2 € M (with a
maximal positive number a(i1,a;2) < 1 satisfying (3.1)), there exists a positive number
d(x\x*) < a{x\x2) satisfying f{XE{xl) + (1 - X)E{x2)) ^ Xf(xl) + (1 - A)/(z2),
V 0 < A < d(xl,x2). If f{XE{xl) + (1 - A)£(z2)) ^ A/^1) + (1 - A)/(x2), V 0 < A
< d(x', i2), then / is called as a semilocal .E-concave function on M. If the inequalities
above are strict for any £1,2:2 € M and xx 7̂  x2, then / is a strictly semilocal .E-convex
(i?-concave) function.
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A vector function / : Rn —> Rk is said to be semilocal E-convex on a local
starshaped E-convex set M C Rn if for each pair of points xx,x2 G M (with a max-
imal positive number a{xl,x2) < 1 satisfying (3.1)), there exists a positive number
d(xl,x2) < a(xl,x2) satisfying

f{XE{xl) + (1 - A)E(x2)) < A/(xx) + (1 - A)/(x2), V 0 < A < d(x\ x2),

where the inequalities are taken component-wise. The definition of semilocal E-concave
or strictly semilocal E-convex of a vector function / : Rn —• Rk is similar to the one for
a vector semilocal E-convex function.

REMARK 3.5: Every semilocal convex function on a local starshaped set M is a semilocal
E-convex function, where E is an identity map and ^(x'jX2) = a(xl,x2) for each pair of
points x \ x 2 G M. Every semi-.E-convex function on an E-convex set M is a semilocal
E-convex function, where d{xl,x2) = a(xl,x2) = 1 for each pair of points xl,x2 G M.
But their converses is not necessary true.

We give below an example of semilocal E-convex function, which is neither a semi-
E-convex function nor a semilocal convex function.
EXAMPLE 3.3. Let / : R -* R be defined as

-x + 2, if x < 0;
- x + 1, if 0 < x < 1;
0, if 1 < x < 2;
1, if x > 2 ,

and the map E : R —• R be defined as

{ 0, if x < 0;
x, if 0 ^ x ^ 1 or x > 2;
1, if 1 < x ^ 2.

It is not difficult to verify that / is a semilocal E-convex function on the local starshaped
E-convex set R. However, by letting x = 1.5, y = 8, A = 0.8, we have f(XE(x) + (1
- A)E(y)) = /(2.4) = 1 > 0.2 = A/(x) + (1 - A)/(y). That is, / is not a semi-E-convex
function on the E-convex set R. Similarly, we take x = 2, y > 2, there is no d(x,y)

€ (0,a(x,y) = l) such that/(Ax+ ( l - A ) y ) O / ( x ) + (l-A)/(t/), V AG (O,d(i,y)).
So / is not a semilocal convex function on R.

The following two results can be proved easily.

PROPOSITION 3 . 4 . If f and g axe both semilocal E-convex functions on the
local starshaped E-convex set M C Rn, then af + (5g{a ^ 0,/3 > 0) is also a semilocal
E-convex function.

PROPOSITION 3 . 5 . Let f be a semilocal E-convex function from the local
starshaped E-convex set M C Rn to R, and let ip be a non-decreasing and convex
function from R to R. Then h(x) — <p(f(x)) is a semilocal E-convex function on M.

/(*) =
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DEFINITION 3.3: The set G = {(x, a) : x € M C Rn, a e T C R} is said to be a
local starshaped E-convex set corresponding to Rn if there are a map E : Rn -¥ R" and
a maximal positive number a ( (x 1 ,a i ) , (x2,a2)) < 1 for each ( x ^ a i ) , (x2,a2) € G such
that

(XE(xl) + (1 - A)£(x2), Ac*! + (1 - A)o2) € G, V 0 < A < a((xl, Q l ) , (x2, a 2 ) ) .

THEOREM 3 . 1 . Let Af C Rn be a iocai starshaped E-convex set. Then f is a
semilocal E-convex function on M if and only if its epigraph

Gf={(x,a):x€ M, f{x)^a, a G R}

is a iocai starshaped E-convex set corresponding to RJ1.

PROOF: Suppose that / is semilocal .E-convex and (x1,^), (x2,c*2) € G/, then
x1, x2 G M, /(x1) ^ ttj, /(x2) ^ a2. In view of M being a local starshaped E'-convex
set, there is a maximal positive number a(xl,x2) ^ 1 such that XE(xl) + (1 — A)£(x2)
€ M, V 0 < A < a(x], x2). In addition, taking into account / being a semilocal .E-convex
function, there is a positive number ^(x^x2) ^ a(x1,x2) such that

f(XE(xl) + (l-X)E(x2)) < A/Cx1) + (1 - A)/(x2)
^ Aa1 + (1-A)a2, V 0 < A < d ( i 1 , i 2 ) .

That is (XEix1) + (1 - A)£(x2), AQl + (1 - A)a2) e Gf, V 0 < A < d(x\x2). Thus
Gf = {(x,a) : x 6 M, /(x) ^ a, a £ i?} is a local starshaped .E-convex set corre-
sponding to Rn.

Conversely, if Gf is a local starshaped E-convex set corresponding to RJ1, then for
any points (x1,/(x1)), (x2,/(x2)) € Gf, there is a maximal positive number

such that

( A E ( x 1 ) + ( l - A ) ^ ( x 2 ) , A / ( x 1 ) + ( l - A ) / ( x 2 ) ) e G / , VO < A < a ( (x 1 ,

That is XEix1) + (1 - A)E(x2) 6 M,

2 ) , VA € ^

Thus M is local starshaped E'-convex and / is a semilocal E-convex function on M. D

THEOREM 3 . 2 . If f is a semilocal E-convex function on a local starshaped E-
convex set M C Rn, then the level set Sa = {x e M : f(x) < Q} is a local starshaped
E-convex set for each a e R.
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PROOF: Let x1, x2 e Sa. Then x1, x2 6 M and /(x1) ^ a, /(x2) ^ a. Taking into
account M being a local starshaped E-convex set, there is a maximal positive number
a(x\x2) < 1 such that XE(xl) + (1 - \)E(x2) € M, V 0 < A < a(x1,x2). In addition,
in view of the semilocal E'-convexity of / , there is a positive number d(xl, x2) ^ a(x1, x2)
such that

\f(xl) + (1 - A)/(x2)
0 < X < d(x\x2).

This is XE(xl) + (1 - X)E{x2) € Sa, V 0 < A < d ^ x 2 ) . Thus Sa is a local starshaped
E-convex set for each a e R. D

REMARK 3.6. The converse of Theorem 3.2 is not necessary true, see the following
example.

EXAMPLE 3.4. Let maps E, f : R-t R be defined as

1, if 1 ̂  x
l + (2/7r)arctan(l-x), if x < 1;
(4/TT) arctan(x - 4) - 1, if x > 4.

4;

2, if x < 1 or x > 4;
x - 3, if 1 < x < 2;
3 - x, if 2 ^ x ^ 3;
x - 3, if 3 < x ^ 4.

Obviously, the set R is a local starshaped ^-convex set. The level sets can be given as

Sa =

It is not difficult to verify that the set Sa is local starshaped .E-convex for each a E R.
But the function /(x) is not a semilocal ^-convex function on R since

f(XE{2) + (1 - X)E{5)) = /(A) = 2 > A/(2) + (1 - A)/(5) = 2 - A, O < A < 1 .

THEOREM 3 . 3 . Let f be a real-valued function defined on a local starshaped
E-convex set M C Rn. Then f is a semilocal E-convex function if and only if for each
pair of points x1, x2 € M(with a maximal positive number a(x1,x2) ^ 1 satisfying (3.1)),
there exists a positive number d(x1,x2) ^ a(x1,x2) such that /(AJ5(X1) + (1 — A)£'(x2))
< Xa + (1 - X)0, V 0 < A < d(x\x2). whenever /(x1) < a and f(x2) < 0.

R,
[1,4],
[l,2)u[3-a,3 + o

[1,2),
[1,3 +a] ,
4>(empty set),

if
if

t], if
if
if
if

a ^
1 <
0 <
- 1
- 2

a <

2;
a <2;

a < i ;
^ a<
^ a <
- 2 .

https://doi.org/10.1017/S0004972700038983 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700038983


[9] Semilocal ^-convexity 67

PROOF: " =$> " Let x1, x2 € M and a, 0 € R such that fix1) < a and f(x2) < /?.
In view of the local starshaped ^-convexity of M, there is a maximal positive number
a{xl,x2) *S 1 such that A ^ x 1 ) + (1 - X)E{x2) e M, V 0 < A < a{x\x2). In addition,
taking into account the semilocal Z?-convexity of / , there is a positive number d(xl,x2)

^ a ( x \ x 2 ) such that

(l-X)E(x2)) < A/Cx1) + (1 - X)f(x2)
V0< A<d(x\x 2 ) .

" <j= " We shall apply Theorem 3.1 to prove /(x) is a semilocal ^-convex function on M.
Let {x\a) € G} and (x2,/3) e Gf. Then x \ x2 € M and /(x1) < a, f{x2) ^ /3, where
o,j3 e iJ. So /(x1) < a + e and /(x2) < /3 + e hold for any e > 0. According to the
hypothesis, we know that, for x1, x2 e M(with a maximal positive number a{xl, x2) ^ 1
satisfying (3.1)), there exists a positive number d(xl,x2) ^ a(xx,x2) such that

f(XE(xl) + (1 - A)(x2)) < AQ + (1 - \)0 + e, V 0 < A < d{x\x2).

Let e -> 0+, then

/(A£(x') + (1-A)£(x2)) ^ Xa + {1-X)p, V 0 < A < d ( i 1 , i 2 ) .

That is

1) + (1 - A)^(x2), Aa + (1 - A)/3) € Gh V 0 < A < d(x\ x2).

So Gf is a local starshaped ^-convex set, and it shows that / is a semilocal E'-convex
function on M from Theorem 3.1. D

4. SEMILOCAL J^-CONVEX PROGRAMMING

In this section, we shall study the necessary and sufficient optimality conditions and
dualities for semilocal E-convex programming.

(1) SEMILOCAL E-CONVEX PROGRAMMING. First, a new definition is given below.

DEFINITION 4.1: The programming (P) min {/(x) : x € M} is said to be a
semilocal ^-convex programming if there is a map E : M —> Rn such that the feasible
set M is a local starshaped £-convex set and the objective function / is a semilocal
ZJ-convex function on M.

THEOREM 4 . 1 . For a semilocal E-convex programming (P), the following state-
ments are true.

(i) The optimal solution set Q for (P) is a local starshaped E-convex set.
(ii) If x° is a local minimum for (P) and E(x°) = x°, then x° is a global

minimum for (P).
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(iii) If the real-valued function f is a strictly semilocal E-convex function on
M, then the global optimal solution for (P) is unique.

PROOF: (i) Suppose that x1, x2 G ft. Then x \x 2 G M and /(x1) - f{x2). Taking
into account M being a local starshaped .E-convex set, there is a maximal positive number
a(x\x2) ^ 1 such that XE{xl) + (1 - \)E{x2) G M, V 0 < A < a(x\x2). In addition,
in view of / being a semilocal E-convex function, there is a positive number d(x1,x2)
^ a(x\x2) such that f{XE{xx) + (1 - X)E{x2)) ^ A/(x1) + (1 - X)f{x2) = /(x1), V 0
< A < d{xl,x2). From the optimality of a:1, we have f(XE(xl) + (1 - A)E(x2)) ^ /(x1).
Thus /(AE(xx) + (1 - X)E(x2)) = /(x1), that is, XE(xl) + (1 - X)E{x2) € ft, for each
A G (0, a(x1,x2)). This shows ft is a local starshaped E-convex set.

(ii) Suppose that Ne(x°) is a neighbourhood of x° with radius e > 0, and / is
minimised at x° in Ne(x°) f~l M. For x,x° € M, there is a maximal positive number
a(x,x°) ^ 1 such that XE(x) + (1 - X)E(x°) € M, V 0 < A < a(x,x°). Further-
more, there is a positive number d(x, x°) ^ a(x,x°) such that j{XE{x) + (1 — X)E(x0))
sj A/(X) + (1 - X)f(x°), V 0 < A < d{x,x°). In view of E{x°) = x°, so for A > 0
and sufficient small, A£(x) + (1 - X)E(x°) e A £̂(x°) n M. So /(x°) ^ / ( ( I - A)E(x°)
+ AE(x)) ^ (1 - A)/(x°) + A/(x), that is, /(x°) ^ /(x), this shows that x° is a global
minimum for (P).

(iii) By contradiction, suppose that x1, x2 € M are two global optimal solutions for
(P) and x1 / x2. For x^x2 G M, there is a maximal positive number o(x2,x1) ^ 1 such
that XE(x2) + (1 - X)E(x1) € M, V 0 < A < a(x2, x1). Furthermore, there is a positive
number d(x2, x1) ^ a(x2, xl) such that f(XE{x2) + (1 - X)E(x1)) < A/(x2) + (1 - A)/(x1)
= /(x1), V 0 < A < d(x2, x1). This contradicts x1 is a global optimal solution for (P).
Hence the global optimal solution for (P) is unique. D

THEOREM 4 . 2 . Let u G M and E{u) = u. If f is differentiate on M, then u
is a minimum for the semilocal E-convex programming (P) if and only if u satisBes the
inequality Vf(u)T(E(v) - u) ^ 0 for all v£M.

PROOF: Suppose that u is a minimum for (P). Since M is a local starshaped E-
convex set, for each v G M, there is a maximal positive number a(v,u) < 1 such that
XE(v) + (1 - X)E(u) e M, V 0 < A < a{v, u). From the differentiability of / and
E(u) = u, we have

f(u) < f{XE(v) + (1 - X)E(u)) = f(E(u) + X(E(v) - E(u

= /(u) + XVf{u)T{E{v) -u) + o(A).

Dividing the inequality above by A and passing to the limit A —» 0+, we have Vf(u)T(E(v)

Conversely, if Vf(u)T(E(v) - u) ^ 0 , since / is a semilocal fi'-convex function
on M, there is a positive number d(v,u) < a(v,u) such that }{XE{v) + (1 — X)E(u))
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< A/(v) + (1 - A)/(u), V 0 < A < d(v, u), which together with E{u) = u implies

f(v) - j{u) ^ (f(u + X(E(v) - u)) - f(u))/\. Passing to the limit A -> 0+ in the
inequality above, one has f(v) - }{u) ^ Vf(u)T(E(v) — u) ^ 0, this shows that u is a

minimum for (P). D

In the sequel discussion, we consider the following inequality constrained optimisa-

tion problem:
min f(x)

(Pg) subject to gi(x) ^ 0, i € /

x e M.

Denote the feasible set of (Pg) by Mg = {x € M \ gi(x) ^ 0, i 6 / } , where

/ = {1 , . . . , m}, and M C Rn is a local starshaped E'-convex and open set.

If the constraint functions gt{i e /) are all semilocal ^-convex on M, then, from
Theorem 3.2 and Proposition 3.1, we can conclude that the feasible set Mg is a local
starshaped ^-convex set. Furthermore, from Theorem 4.1, we can obtain the following
theorem easily.

THEOREM 4 . 3 . Suppose that f, gt (i £ I) are all semilocal E-convex functions
on M. Then

(i) Mg is a local starshaped E-convex set;

(ii) The optimal solution set Qg for (Pg) is a local starshaped E-convex set;

(iii) If x° is a local minimum for (Pg) and E(x°) — x°, then x° is a global

minimum for (Pg);

(iv) If the real-valued function f is a strictly semilocal E-convex function on

M, then the global optimal solution for (Pg) is unique.

(2) NECESSARY OPTIMALITY CONDITIONS. For convenience of discussion, for a subset
J C / , the following notation is used:

g{x) = (gi(x), i £ I), gj(x) = (gj(x), j € J)

For x* € Mg, denote /(**) = {i e I: gi(x') = 0}, 7(x*) = / \ I(x').

To discuss the necessary optimality conditions for the corresponding programming,

we give a lemma as follows.

LEMMA 4 . 1 . Let x* be a local optimal solution for {Pg). Assume that gj is

continuous at x' for any j € I(x') and f,gi(X') possess the directional derivatives at x"

along the direction (E(x) - x') for each x € M. Then the system

;E(x)-x') < 0

(l.)(i'; E(x) - x') <0

has no solution in M, where f'(x*;d) denotes the directional derivative of f at x* along

the direction d and 5/(l.)(z*; d) = (g'i{x'\ d), i € 7(z*)).
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The proof of this lemma is similar to the one of [17, Lemma 13].

THEOREM 4 . 4 . Let x' be a local optimal solution for (Pg). Suppose that func-

tions <7j are continuous at x* for any j € I{x'), and f, g possess the directional derivatives

with respect to (E(x)-x') atx* for each i e M . Jf(/'(x*;£(a;)-x'),^(:i..)(x
<; E(x)-x*))

is a convexlike function and E(x') = x", then there are Aj$ € i?, A € Rm such that

(4.1) AJ /V; E(X) - x*) + TTg'(x*; E(x) - x*) > 0, V x € M,

(4.2) TTg(x')=0, g(x')^0, 0 * (AJ.A*) ^ 0.

Additionally, ifg is a semilocal E-convex function and there isx G M such thatg(x) < 0,
then there exists A* € Rm such that

(4.3) fix'; E{x) - x') + YTg'{x';E(x) - x') > 0, V x e M,

(4.4) A*r
5(x*) = 0, 3(a:*)^0, A ' ^ 0.

PROOF: Define vector function ip(x) = (/'(x*; ^(x) - x*),g'I{x.)(x*;E(x) - x*)).
Then ^(x) is a convexlike function. By Lemma 4.1, the system ip[x) < 0 has no solution
in M. So, from Lemma 2.1, there is AJ € R, X(x-) € ^ | / ( l ' ) l such that

Aj/(x*; £?(x) - x') + X ; , ^ 7 ^ . ) ^ ; £?(x) - x') ^ 0, V x e M, 0 ? (X'o, T^. , ) > 0.

Thus, by letting A = (A/^.), 07^.)), one further has

A ; / V ; £(*) - x*) + TTg\x'- E(x) - x') > 0, V x € M,

XTg(x*) = 0, ^(x') ̂  0, 0 ? (AJ, A*) ̂  0.

The next objective is to show that AJ ^ 0, if this was not true, we have from above
TTg'{x*; E(x) - x*) ^ 0, V x £ M, A*Ts(x*) = 0, g{x') $ 0 , 0 76 A* ^ 0. Taking
into account 3 being semilocal iT-convex and E(x*) = x*, we have from Proposition
4.1(i)(which will be obtained in the next section), #(x) — g(x') ^ ^ '(x*;^^) - x*), so
A*Tg(x) ^ 0. But this contradicts the fact that #(x) < 0 and A* > 0. Thus AJ > 0.
Dividing (4.1) and the first equality of (4.2) by AJ and let A' = A*/AS- We know that
(4.3) and (4.4) hold. The whole proof is completed. D

(3) SUFFICIENT OPTIMALITY CONDITIONS. TO discuss the sufficient optimality condi-

tions for the problem (Pg), we further extend the concept of semilocal ^-convex function

as follows.

DEFINITION 4.2: A real-valued function / defined on a local starshaped E-convex
set M C Rn is said to be quasi-semilocal ^-convex if for all x1, x2 € M (with a maximal
positive number a{xl, x2) ^ 1 satisfying (3.1)) satisfying/(x1) ^ / ( x 2 ) , there is a positive
number d(x\x2) ^ a(x\x2) such that /(AE(x:) + (1 - A)£(x2)) < f(x2), V 0 < A
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The definition of quasi-semilocal ^-convex of a vector function / : it" —> Rk is
similar to the one for a vector semilocal i?-convex function.

DEFINITION 4.3: A real-valued function / defined on a local starshaped ^-convex
set M C Rn is said to be pseudo-semilocal ^-convex if for all x^x 2 e M (with a
maximal positive number a(xl,x2) ^ 1 satisfying (3.1)) satisfying /(x1) < / (x2) , there
are a positive number d(x1,x2) $J a(xx,x2) and a positive number 6(x1,x2) such that
f(\E{xl) + (1 - X)E(x2)) ^ f{x2) - Xb{x\x2), V 0 < A < d{xl,x2).

The definition of pseudo-semilocal E'-convex of a vector function / : i?" —> Rk is
similar to the one for a vector semilocal i?-convex function.

REMARK 4.1. Every semilocal E-convex function on a local starshaped E-convex set M

is both a quasi-semilocal iJ-convex function and a pseudo-semilocal .E'-convex function.

For convenience of discussion, we give the following proposition.

PROPOSITION 4 . 1 . Let f be a real-valued function on a local starshaped E-
convex set M C Rn, and f possesses directional derivative with respect to the direction
(E{xl) - x2) at x2 for x \x 2 € M. If E(x2) = x2, then the following statements hold
true.

(i) Iff is semilocal E-convex, then f'{x2; Eix1) - x2) ^ /(x1) - /(x2).

(ii) If f is quasi-semilocal E-convex, then /(x1) ^ /(x2) implies that

f'(x2;E(xl)-x2)^0.

(iii) If f is pseudo-semilocal E-convex, then /(x1) < f(x2) implies that

f(x2;E(xl)-x2)<0.
The proof is elementary by using the associated definitions and is omitted.

THEOREM 4 . 5 . Let x* € Mg and E(x*) = x*. Assume that f, g possess direc-

tional derivatives with respect to the direction (E(x) — x*) at x'for each x 6 M, and

suppose that there is A* e Rm such that (4.3) and (4.4) hold. If f is pseudo-semilocal E-

convex on M and gi{x-) is quasi-semilocal E-convex on M, then x* is an optimal solution

for(P9).

PROOF: In view oigj(x-)(x) ^ <?/(x-)(x*) = 0, V x € Mg, it follows from Proposition
4.1(ii) that 5/(x.)(x*; E(x) - x*) ^ 0, V x € Mg, which together with AJ^.^ ^ 0 implies
*'i{x')T9i{x-)(x*'> E{x)-x*) ^ 0 , V x € Mg. Furthermore, using A*Ts(x*) = 0, g(x") < 0
and A' ^ 0, we get X'Tg'(x'\ E(x) - x') ^ 0, V x e Mg. So we have from the given
conditions f'{x'; E(x) — x*) ^ 0, V x £ Mg. Therefore, from Proposition 4.1 (iii), this
implies f(x) > /(x*), Vx € Mg. Hence x' is an optimal solution for (Pg). D

THEOREM 4 . 6 . Let x* e Mg and E(x*) = x'. Assume that f, g possesses

directional derivative with respect to the direction {E(x) —x*) at x* for each x € M, and

there is A* € Rm such that (4.3) and (4.4) hold. If (f + X'nx.)
Tgi(x-)) is pseudo-semilocal

E-convex on M, then x' is an optimal solution for (P9).
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P R O O F : Taking into account X*Tg(x*) = 0, g(x*) ^ 0, A* ^ 0, we have from the
given conditions (/ + X'^g,^))'(x'; E{x) - x*) = f [x'\ E{x) - x') + X'Tg'(x'; E{x)

— x*) > 0, V i e Mg. So we obtain from Proposition 4.1(iii),

The inequality above together with AJ(l.)
T3/(I.)(:r.*) = 0, yields f(x) + A;(j.)

T5/(l.)(x)
^ / (**) , V xeMg. In view of A}(l.} ^ 0 and gI{x-)(x) < 0, we get f{x) > f{x'), Vrr
€ Mg. Hence x' is an optimal solution for (Pg). D

The next conclusion is a direct corollary of Theorem 4.5 or Theorem 4.6.

COROLLARY 4 . 1 . Let x" e Mg and E(x') - x'. Assume that f, g possess
directional derivatives with respect to the direction {E(x) — x*) at x* for each x 6 M,
and suppose that there is A* e Rm such that (4.3) and (4.4) ioJd. If f and gi(X') are
semilocal E-convex functions on M, then x* is an optimal solution for (Pg).

(4) M O N D - W E I R - L I K E T Y P E DUALITY. Similar to Mond-Weir dual, we discuss a dual
problem of Pg as follows:

max f(u)

(Dg) subject to f'{u;E(x)-u) + XTg'{u;E(x)-u)^0, V x G M.
XTg{u) ^ 0,
A G i ? m , A ^ 0,
« e M.

THEOREM 4 . 7 . (Weak Duality) Let x and (u, A) be arbitrary feasible solutions
of {Pg) and (Dg), respectively. If f and g are all semilocal E-convex functions, and
they possess directional derivatives with respect to the direction (E(x) — u) at u, where
E(u) = u, xe M, then f(x) > f(u).

P R O O F : Taking into account / and g being a semilocal .E-convex function and
E(u) = u, we have from Proposition 4.1(i)

f(x) > f(u) + f'(u; E(x) - u), g(x) > g(u) + g'{u; E(x) - u).

Combining the first constraint of Dg and the relationships above, one gets

f{x) > f(u) - \Tg (u; E(x) -u)> f(u) + XT{g(u) - g(x)).

So, in view of
A > 0, g{x) ^ 0, XTg(u) > 0,

we have f(x) ^ f(u). D

THEOREM 4 . 8 . (Strong duality) Suppose that x* be an optimal solution for (Pg),

E(x') = x', and E(u) = u for any feasible point (u, X) of(Dg). Assume that f and g are
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semilocal E-convex on M and gj is continuous at x* for any j € /(x*), and they possess

directional derivatives with respect to the direction (E(x) - x*) at x* and the direction

(x* - u) at u, respectively, where x € M. Further assume that there is x € M such that

g{x) < 0. If (/'(x*; E{x) - x'), gj ( l < ) (x*; E(x) - x*)) is a convexJiice function, then there

is A* € Rm such that (x*. A*) is an optimal solution for {Dg).

PROOF: From the assumptions and Theorem 4.4, we can conclude that there is
A* ^ 0 such that (x*, A*) is a feasible point for (Dg).

Suppose that (u, A) is a feasible solution of Dg. In view of / and g being a semilocal
jE-convex function on M and E{u) = u, we have from Proposition 4.1(i) /(x*) — f(u)

^ f'(u;x' — u), g(x*) — g(u) ^ g'(u;x' — u). Taking into account the first constraint
condition of (Dg) and the two inequalities above, one gets /(x*) - f(u) ^ -AT5'(u;x*
- u) ^ AT(s(u) - g{x*)). Noting that A ^ 0, ^(x*) ^ 0, and XTg{u) ^ 0, one knows
/(x ' ) ^ f{u). Hence (x*, A*) is an optimal solution for (Dg). D

THEOREM 4 . 9 . (Converse duality) Assume that x* € Mg and (u, A) is a feasible
point for (Dg). Further assume that f and g are semilocal E-convex functions on M,
and f, g possess directional derivatives with respect to the direction (E(x) —u) atu for
each x £ M. If f(x') = f(u) and E(u) = u, then x* is an optimal solution for (Pg).

PROOF: Taking into account / and g are semilocal .E-convex and E(u) = u, one
gets from Proposition 4.1(i)

f(x) - /(«) ^ / '(«; E(x) - u), g(x) - g(u) > g'(u; E(x) - u), V x € M
g.

In view of (u, A) being a feasible point for (Dg), we have from the first constraint condition
of (Dg) and the two inequalities above

f{x) - / ( « ) ^ - ^ ' ( u ; E(x) -u)> \T{g{u) - g(x)).

This together with A ^ 0, g(x) ^ 0, /(x*) = /(u) and A g(u) ^ 0 shows that
f(x) ^ /(x*). Hence x* is an optimal solution for (Pg). D
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