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Abstract

In this paper we give a new flavour to what Peter Jagers and his co-authors call ‘the path
to extinction’. In a neutral population of constant size N , assume that each individual
at time 0 carries a distinct type, or allele. Consider the joint dynamics of these N
alleles, for example the dynamics of their respective frequencies and more plainly the
nonincreasing process counting the number of alleles remaining by time t . Call this
process the extinction process. We show that in the Moran model, the extinction process
is distributed as the process counting (in backward time) the number of common ancestors
to the whole population, also known as the block counting process of the N -Kingman
coalescent. Stimulated by this result, we investigate whether it extends (i) to an identity
between the frequencies of blocks in the Kingman coalescent and the frequencies of
alleles in the extinction process, both evaluated at jump times, and (ii) to the general case
of �-Fleming–Viot processes.
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1. Introduction

In this paper we are interested in so-called neutral models of population genetics, that is,
where all individuals are exchangeable in the face of death and reproduction [5], [6]. In such
a population, genetic drift refers to the randomness of births and deaths and their effect on
the composition of the population. If individuals are given a type, also called allele, which
is transmitted faithfully to their offspring, one can follow the fluctuations of the numbers of
carriers of each allele through time under the sole action of genetic drift [5], [6]. In the absence
of mutation, the number of alleles present in the population can only decrease, and does so
exactly at times when the last carrier of a given allele dies. In a population where births
and deaths compensate so as to keep its total size constant equal to N , the number of alleles
decreases sequentially until one single allele remains present, an event called fixation. By
exchangeability, under the assumption that all individuals initially carry a distinct allele, each
allele has the same probability 1/N to be the one that fixes.

Here, we study this process of sequential loss of allelic diversity and its limit as N → ∞.
The genealogical model we consider is a classical model of population genetics called the
�-Fleming–Viot process [2], [4], whose law is characterized by a finite measure � on [0, 1].
When � = �({0})δ0, this process is also known as the Moran process [5], [6]. In this case,
all offspring sizes at birth times are a.s. equal to 2. In all other cases, roughly speaking, each
offspring size ξ is binomially distributed with parametersN andp, where, conditional on ξ ≥ 2,
p is drawn from the measure x−2�(dx).
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Let us introduce the coalescent (i.e. backwards in time) view of the�-Fleming–Viot process.
The�-Fleming–Viot process is stationary, so one can fix an arbitrary time called present time,
and count the number of ancestorsANt common to the whole population alive at present time, t
units of time before the present. We can define more generally the vector ρN(t) of frequencies
of the descendants at present time of these ANt ancestors (uniformly ordered at time 0, with
uniform reinsertion of the new frequency at each coalescence event). The counterANt decreases
as t increases and we can study the sequence of its jump times (T N,k)Nk=2, where T N,k is the time
at which ANt decreases by crossing or leaving k, as time runs backwards (i.e. as t increases).
We are also interested in the sequence (πNk )

N
k=2, called the ancestral block process, where

πNk = ρN(T N,k) is the embedded chain of ρN (with possible repeats).
As N → ∞, the processes (ANt ; t ≥ 0) converge in the sense of finite-dimensional

distributions (FDDs) to some process (A∞
t ; t ≥ 0). It is known that, under a condition on

the measure � usually known as CDI (‘coming down from infinity’) [14], A∞
t < ∞ for all

t > 0 a.s. We assume that this condition is met throughout the paper. Then the two sequences
(T N,k)Nk=2 and (πNk )

N
k=2 converge as N → ∞ in the sense of FDDs. In addition, the limiting

sequences (T k)k≥2 and (π∞
k )k≥2 are respectively the jump times and the embedded chain of

the �-coalescent [11], [13].
Now let us consider the �-Fleming–Viot process as time runs forward. Fix again an initial

time, give a distinct allele to each individual present in the population at this time and define
ÂNt to be the number of alleles present in the population t units of time later. The topic that
gave its title to this note is the study of the sequence of extinction times (T̂ N,k)Nk=2, where
T̂ N,k is the time at which ÂNt decreases by crossing or leaving k. Similarly as before, we can
also define ρ̂N (t) the vector of frequencies of these ÂNt alleles at time t (where the N initial
alleles are uniformly ordered at time 0) and the sequence (π̂Nk )

N
k=2, called the haplotype block

process, where π̂Nk = ρ̂N (T̂ N,k) is the embedded chain of ρ̂N (with possible repeats). Here
again, under the CDI condition, both sequences converge in the sense of FDDs as N → ∞
(see Proposition 1).

We show or recall in Theorem 4 two distributional identities: for each fixed t , ρN(t) and
ρ̂N (t) have the same law (and thus also ANt and ÂNt ) and, for each fixed k ∈ {2, . . . , N},
T N,k and T̂ N,k have the same law. We are interested in generalizing these identities from
one-dimensional marginals to processes. Note though that the processes ρN and ρ̂N cannot be
equally distributed because ρN remains constant between jump times while ρ̂N does not. We
thus focus our study on jump times and embedded chains.

Our first, striking result (Theorem 1) is that in the binary case for which� = �({0})δ0, the
process (ANt ; t ≥ 0) that counts the number of ancestors backwards in time and the process
(ÂNt ; t ≥ 0) that counts the number of remaining alleles forwards in time, have the same law
(where N ≤ ∞). In particular, the sequences (T N,k) and (T̂ N,k) have the same law.

This result triggers two questions.

(i) Does this result extend to an identity in law between π∞
k and π̂∞

k in the binary case?

(ii) Does this result extend to an identity in law between (A∞
t ; t ≥ 0) and (Â∞

t ; t ≥ 0) in
the general case?

The answer to question (i) is ‘yes’: for each fixed k, π∞
k and π̂∞

k are equally distributed in the
binary case. Their common distribution is the uniform distribution on the simplex of dimension
k − 2. Therefore, the limiting processes ρ∞ and ρ̂∞ jump at the same rate and have the same
one-dimensional distribution at each jump time. We have seen that they cannot be equally
distributed and actually, neither can their embedded chains (π∞

k )k≥2 and (π̂∞
k )k≥2. This can
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be seen thanks to Theorem 6 where we prove that (π̂∞
k )k≥2 is a Markov chain (as k decreases,

that is, in the natural underlying direction of time) whose transitions are elegantly characterized
thanks to a random coupon collection procedure which is obviously distinct from the merging
procedure of the Kingman coalescent.

The answer to question (ii) is ‘no’ in general, simply because the jumps of (A∞
t ; t ≥ 0) can

take arbitrary values in Z
−, while those of (Â∞

t ; t ≥ 0) are in most known cases of measures�,
all equal to −1 a.s. Labbé [9] conjectured that this last property always holds. Our Proposition 3
gives a new criterion equivalent to this property based on urn models, and this might be helpful
in the future to prove the conjecture.

In the next two sections, we state our main results, first in the binary case and then in the
general case. The remainder of the paper is devoted to proving these results.

From now on, we denote the set {1, . . . , N} by [N ], and the set N ∪ {0} by N0.

2. The binary case

In this section, we confine attention to the binary case, i.e. the case that � = �({0})δ0,
corresponding to the Moran process in forward time, and to the Kingman coalescent in backward
time. We introduce our main tools and results in this section, and generalize them in the next.

2.1. The Moran model and the N -Kingman coalescent

Consider a population of constant size N and assume that at time t = 0, every individual is
assigned a distinct type, with values in [N ] say. Assume that the population evolves according
to classical Moran dynamics. Every ordered pair (a, b) of individuals is equipped with an
independent Poisson clock of rate 1. When a clock associated to a pair (a, b) rings, a gives
birth to a new individual inheriting her type and b dies simultaneously. Starting from the
present, one can trace backwards in time the genealogy of the population. It is well known [8]
that this genealogy is described in terms of the N -Kingman coalescent.

2.2. Block counting and extinction processes

In the framework introduced previously, we define the extinction process as

ÂNt = #{alleles present at time t}, t ≥ 0, (1)

and
T̂ N,k = sup{t > 0 : ÂNt ≥ k}, k ∈ {2, . . . , N}, (2)

so that T̂ N,2 is the fixation time of the population, i.e. the first time when one of the initial
alleles has invaded the whole population. In the Kingman coalescent, define the block counting
process as

ANt = #{ancestors at time t}, t ≥ 0, (3)

and
T N,k = sup{t > 0 : ANt ≥ k}, k ∈ {2, . . . , N}, (4)

so that T N,k is the first time that the number of blocks goes from k to k − 1. It is well known
that the block counting process ANt is a pure-death process starting from N with transition rate
k(k − 1)/2 from level k to k − 1 for k ∈ {2, . . . , N}.

The next result states that the sequential decrease of ancestral lineages in the Kingman
coalescent has the same law as the sequential loss of allelic diversity forwards in time. This
theorem is proved in Section 5.

Theorem 1. For every N ∈ N, the extinction process ÂN and the block counting process AN

are identical in law.
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2.3. The ancestral and haplotype block processes

For each l ∈ N, define the set of mass partitions of [0, 1] with cardinality l by

El =
{
u = (u1, . . . , ul) ∈ [0, 1]l :

l∑
i=1

ui = 1

}
,

and the set of finite mass partitions of [0, 1] as

E =
⋃
l∈N

El.

For each u ∈ E, we let λ(u) denote its cardinality.
Define πNk ∈ E to be the vector of uniformly ordered frequencies of the blocks in the N -

Kingman coalescent at time T N,k . Note that πNk has exactly k − 1 coordinates. Call the
process (πNk ; k ∈ {2, . . . , N}) the ancestral block process. In the next theorem, Dk refers to
the random mass partition induced by a Dirichlet random variable with parameter

(1, . . . , 1)︸ ︷︷ ︸
k times

,

that is, the uniform distribution on the simplex of dimension k − 1. We recall the next result.

Theorem 2. (The ancestral block process [8].) As N → ∞,

(πNk )
N
k=2 ⇒ (π∞

k )
∞
k=2 in the sense of FDD,

where the limiting vector is uniquely determined by the property that, for every K ∈ N, the
chain (π∞

K−k; k ∈ {0, . . . , K − 2}) is a Markov chain such that

(i) the initial distribution π∞
K is distributed as DK−1; and

(ii) the mass partition at time k is obtained from the mass partition at time k−1 by merging two
entries chosen uniformly at random among all possible pairs of entries and reinserting
the resulting mass uniformly in the vector deprived of these two entries.

Remark 1. Bertoin and Goldschmidt [1] considered the case k = 1 of this sequence. In
particular, the reversed chain (π∞

k ; k ∈ {2, . . . , K}) is also Markovian. The mass partition at
time k is obtained from the mass partition at time k − 1 by uniformly fragmenting one block
chosen as a size-biased pick from the mass partition at time k − 1.

We now draw a connection with the forward dynamics. In the Moran model, we can partition
the population into blocks of individuals carrying the same allele. Analogously to the ancestral
block process, define π̂Nk ∈ E to be the mass partition induced by the alleles at time T̂ N,k ,
where the N initial alleles are uniformly labelled from 1 to N at time 0. Note that π̂Nk has at
most k − 1 coordinates. Call the process (π̂Nk ; k ∈ {2, . . . , N}) the haplotype block process.

In order to describe our next result, we need some further notation. First, say that a mass
partition is nondegenerate if all the coordinates are strictly positive. For a given mass partition
m ∈ E, we can think ofm as a discrete probability distribution on [λ(m)]. Then let (Yn; n ≥ 1)
be an infinite sequence of i.i.d. random variables with distribution m and define

T = inf{n ≥ 1 : for all i ∈ [λ(m)], there exists k ∈ [n] for which Yk = i};
such n is a.s. finite if m is nondegenerate and otherwise taken equal to +∞ by convention. In
the context of the coupon collector problem, T is the time needed to collect all the coupons
1, . . . , λ(m), where the probability to draw coupon i is equal tomi . In view of this observation,
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for any nondegenerate m, we define

B
(m)
i =

T−1∑
k=1

1Yk=i , i ∈ [λ(m)],

as well as J (m) = YT , so that J (m) is the unique i such that B(m)i = 0. Then call the random
vector

B(m) = (B
(m)
i ; i ∈ [λ(m)], i 	= J (m))

the random coupon collection associated with m.

Theorem 3. (The haplotype block process.) As N → ∞,

(π̂Nk )
n
k=2 ⇒ (π̂∞

k )
∞
k=2 in the sense of FDD,

where the limiting vector is uniquely determined by the property that, for every K ∈ N, the
chain (π̂∞

K−k; k ∈ {0, . . . , K − 2}) is a Markov chain such that

(i) the initial distribution π̂∞
K is distributed as DK−1; and

(ii) the mass partition at time i is obtained from the mass partition at time i−1 according to

(a) conditional on π̂∞
K−i , generate (Xi) distributed as the random coupon collection

associated to the mass partition π̂∞
K−i , and

(b) conditional on Xi , the block process at step i + 1 (i.e. π̂∞
K−(i+1)) is distributed as

a Dirichlet random variable with parameters (Xi).

This last result is a special case of Theorem 6, and it is proved in Section 7.

Remark 2. The vector π̂Nk gives the frequencies of all the alleles present at time T̂ N,k . For
each of these alleles, the subpopulation carrying this allele at time T̂ N,k has a certain number of
ancestors living at time T̂ N,k+1. This number is precisely the number of coupons corresponding
to this allele in the random coupon collection procedure mentioned in Theorem 3.

Remark 3. From Theorems 2 and 3, observe that the two mass partitions π∞ and π̂∞ have
the same one-dimensional marginal distributions, but certainly have different probability tran-
sitions. In relation to Remark 1 and Bertoin and Goldschmidt’s work [1], we know that (π∞

k ) is
Markovian both as k decreases and as k increases. The previous statement ensures that (π̂∞

k ) is
Markovian as k decreases. It remains an open question as to whether (π̂∞

k ) is also Markovian
as k increases.

3. The general case

3.1. The �-coalescent and �-Fleming–Viot process

We now turn to more general exchangeable population models. Let� be a finite measure on
[0, 1]. Consider a population of constant sizeN evolving according to the following dynamics.
As before, at time t = 0, we assign a distinct allele to each individual in the population. Each
k-tuple (2 ≤ k ≤ N ) of individuals is equipped with a Poisson clock with rate

λN(k) :=
∫ 1

0
xk−2(1 − x)N−k�(dx).

When the clock associated with a group of k individuals rings, one of them is picked uniformly
at random, gives birth to k − 1 new individuals inheriting her type, while the k − 1 others
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die simultaneously. We call such a process an (N,�)-Fleming–Viot (FV) process. The case
� = �({0})δ0 corresponds to the classical Moran model presented earlier.

It is well known that the genealogy of the population can be described in terms of the
(N,�)-coalescent, i.e. the projection of the �-coalescent on [N ] [2], [4].

3.2. The block counting and extinction processes (continued)

For the (N,�)-FV process and (N,�)-coalescent, define the extinction process ÂN and
the block counting process AN as in (1) and (3), respectively, along with their jump times
T̂ N,k and T N,k as in (2) and (4), respectively. The next result gives some identities between
one-dimensional marginals of the block counting and the extinction processes in the general
case.

Theorem 4. Let N ∈ N.

(i) For every fixed t > 0, ANt and ÂNt have the same law.

(ii) (Hénard [7]) For every fixed k ∈ {2, . . . , N}, T N,k and T̂ N,k have the same law.

Proof. We prove only (i). Consider the population at time t > 0. By stationarity of the FV
process, the number of ancestors aNt at time 0 of this population is equal in distribution to ANt .
Since each of these aNt ancestors carries a distinct allele, the number of alleles present in the
population at time t is aNt , that is, ÂNt = aNt . This shows that ÂNt has the same law asANt . The
same argument actually shows that the identity also holds for the frequencies of descendants
(see the introduction). �

In view of Theorem 4, it is natural to conjecture that the block counting process and the
extinction process are identical in law for any measure �. We show now that this is not the
case in general. To this end, we let the size of the population go to ∞.

In the following, we are interested in the particular case that, for every k ≥ 2, (T N,k, T̂ N,k;
N ≥ 0) is a tight sequence of random variables as N → ∞. This corresponds to the case that
the �-coalescent comes down from infinity (CDI), which is equivalent to the condition [14]∫ ∞

1

du

ψ(u)
< ∞, where ψ(u) = �({0})u2 +

∫
(0,1)

e−xu − 1 + xu

x2 �(dx). (5)

Proposition 1. Under condition (5), there exist two processesA∞ and Â∞ coming down from
infinity such that, as N → ∞, AN and ÂN converge in the sense of FDDs to A∞ and Â∞,
respectively. In addition, the sequences (T N,k)k and (T̂ N,k)k converge in the sense of FDDs
to the corresponding jump times of A∞ and Â∞, respectively.

This proposition is proved in Section 4 where the previous statement is reformulated in terms
of the look-down process.

Theorem 5. ([9, Theorem 1.6].) If � is such that ψ is regularly varying at ∞ with index in
(1, 2] then there are no simultaneous extinction events in the �-Fleming–Viot process, i.e.

P(there exists t > 0 : |Â∞
t − Â∞

t−| ≥ 2) = 0. (6)

Conjecture 1. ([9].) Equation (6) holds for any �-FV in the CDI class (i.e. satisfying (5)).

Now note that, when � 	= �({0})δ0, it is obvious that

P(there exists t > 0 : |A∞
t − A∞

t−| ≥ 2) = 1,
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because (A∞
t ; t > 0) is the number of blocks in the �-coalescent which by assumption

has multiple mergers. Thus, under the assumptions of the previous theorem and whenever
� 	= �({0})δ0, the block counting process and the extinction process cannot have the same
law. Thus, even if Theorem 4 suggests a strong relation between the block counting and
the extinction processes, those two processes are in general very different when considering
coalescent processes with multiple mergers.

3.3. �-urn. Haplotype block process (continued)

In this section, we present an extension of Theorem 3 for�-coalescent processes in the CDI
class. Define Yn to be the [n−1]-valued random variable (RV) with the following distribution:

P(Y n = k − 1) =
∫
[0,1]

(
n
k

)
xk−2(1 − x)n−k�(dx)∫

[0,1](1 − n(1 − x)n−1 − (1 − x)n)�(dx)
, k ∈ {2, . . . , n}. (7)

With this RV on hand, we now define an urn model as follows. At step n, the urn contains Un
colored balls; let B(n) denote the vector containing the numbers of balls of each color. Let
B(0) = (

B1(0), . . . , Bc(0)
) ∈ N

c be the initial configuration of the urn, where c is the initial
number of colors in the urn. Update the configuration of the urn as follows: conditional on
B(n), the configuration of the urn at time n + 1 is obtained by drawing a ball uniformly at
random from the urn and by replacing the ball together with yn balls of the same color, where
yn is an independent random variable distributed as YUn . We call this urn model a �-urn with
initial condition B(0).

Proposition 2. Let (B(n); n ≥ 0) be a �-urn with initial condition B, and let c = λ(B) be
the number of colors. Let mB

n ∈ Ec be the mass partition induced by the color frequencies(
Bi(n)∑c
j=1 Bj (n)

)
i∈[c]

.

Then there exists a random mass partition mB∞ ∈ Ec such that, as n → ∞,

mB
n → mB∞ a.s.

Proof. As in a standard Pólya urn, the proof follows by noting that each color frequency is
a nonnegative martingale. �
Remark 4. Note that the limitmB∞ is potentially degenerate, i.e. some of the coordinates might
be equal to 0.

In the following, we define D�
k to be the limit RVmB∞ when we start from the initial condition

B = (1, . . . , 1)︸ ︷︷ ︸
k times

.

In the case � = �({0})δ0, the �-urn coincides with the classical Pólya urn, so that D�
k is the

Dirichlet distribution Dk . Consequently, Theorem 3 is a special case of the next result.

Theorem 6. Assume that � belongs to the CDI class and that there are no simultaneous
extinction events in Â∞ a.s. Then

(i) D�
K is nondegenerate a.s.;

(ii) as N → ∞,
(π̂Nk )

n
k=2 ⇒ (π̂∞

k )
∞
k=2 in the sense of FDDs,

where the limiting vector is uniquely determined by the property that, for every K ∈ N,
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the discrete process (π̂∞
K−k; k ∈ {0, . . . , K − 2}) is a Markov process such that

(a) the initial distribution π̂∞
K is distributed as D�

K−1,and

(b) the configuration at time i is obtained from the configuration at time i − 1 as
follows:

• conditional on π̂∞
K−i , let Xi be the coupon collection associated to π̂∞

K−i , and

• conditional on Xi , the block process at step i + 1 (i.e. π̂∞
K−(i+1)) is distributed

as mXi∞ .

We prove this result in Section 7.

Remark 5. In the binary case, we have characterized the limits of the vectors of frequencies of
descendances at jump times of both the common ancestors (π∞, Theorem 2) and the surviving
alleles (π̂∞, Theorem 3). Note that in the general case, we do so only for the latter (Theorem 6).

Finally, we end with a result that may shed some light on Conjecture 1.

Proposition 3. The following two statements are equivalent:

(i) there are no simultaneous extinctions in Â∞;

(ii) for every k ∈ N, the limiting mass partition D�
k is nondegenerate.

This proposition is proved in Section 7 together with Theorem 6.
In the next section we recall the construction of the (N,�)-FV process from the look-down

(LD) process of Donnelly and Kurtz [4]. This construction is the cornerstone of our comparison
between extinction and coalescence. In Section 5 we specialize to the case that � = �({0})δ0
and give a proof of Theorem 1. In Section 6 we present a general urn model (encompassing
the�-urn models) and give a particle representation à la Donnelly and Kurtz [4]. We then use
this representation to prove Theorem 6 (and so Theorem 3 as a special case) in Section 7.

4. The look-down construction

Our results are based on the look-down (LD) process as defined by Donnelly and Kurtz [4].
In the sequel, we work directly with the LD process, without referring to �-FV processes
anymore. We abuse notation, and use the same symbols for the coalescence, extinction times,
etc. as those used in the introduction. This abuse of notation is based on the fact that all
those quantities in the LD process and their analog for the (N,�)-FV process are known to be
identical in distribution [4], [7]. At time t = 0, each level is assigned a distinct allele, where
here alleles are i.i.d. uniform in [0, 1]. Now let ν denote a Poisson point measure in R × P (N)
with intensity measure dt ⊗ dL, where L is defined by

L =
∫
(0,1]

x−2�(dx)Px +�({0})
∑
i<j

Qij , (8)

where Px is the law of the set of 1s in a sequence of i.i.d. Bernoulli RVs with parameter x and
Qij is the Dirac mass at {i, j}. Each atom (t, A) of ν is called an LD event. At each LD event
(t, A), all levels i ∈ A inherit the allele carried by level minA. In terms of the genealogy, the
lineage present at level min(A) splits at time t and gives birth simultaneously to new lineages
whose locations are the levels labelled by A. All other lineages are untouched, but are shifted
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upwards so that lineages do not cross (see Figure 1 in Section 5). More rigorously, if (t, A) is
an LD event, the lineage present at level i 	∈ A at t− jumps to level i +
 at time t , where


 = #((A \ minA) ∩ [i]).
Note that 
 ∈ {0, 1} a.s. when � charges only 0.

Remark 6. Given the LD construction for the infinite population model, the LD process for
the model with population size N is given by the restriction of the LD process to the first N
levels. This coupling between all LD processes with different population sizes and with infinite
population is used repeatedly in the remainder of the paper without further notice. To couple
also the vectors of allele frequencies (π̂N,k)k for N ≤ ∞, we assume that each allele at time
0 is labelled with an independent uniform variable. The order in (0, 1) of these uniform labels
induces a (uniform) order of the first N initial alleles which is consistent in N .

Fixation lines. Let k ∈ N and let Uk denote the type carried by level k at time 0. Define
(Lkt ; t ≥ 0), the kth fixation line [3], [10], as the right-continuous jump process equal at time
t to the minimum of all levels carrying type Uk at time t . In particular, Lk0 = k. The fixation
line can be constructed forwards in time as follows. Conditional on Lkt = j , set

v := inf{s > t : (s, A) is an LD event with #(A ∩ [j ]) ≥ 2}.
Then Lks = j on [t, v) and Lkv = j +
, where 
 = #((A \ minA) ∩ [j ]). Define

T̂ N,k = inf{t > 0 : Lkt ≥ N + 1}, T̂ k = sup{t > 0 : Lkt < ∞}. (9)

Since Lkt is the minimum of all levels carrying type Uk , T̂ N,k is exactly the time when Uk
disappears from the population occupying the firstN levels. Recall that ÂNt denotes the number
of alleles present in this population at time t . Observe that, by construction, Lk−1

t < Lkt for all
t a.s., so that

• for all t < T̂ N,k , ÂNt ≥ k, and

• for all t ≥ T̂ N,k , ÂNt < k,

so T̂ N,k = sup{t > 0 : ÂNt ≥ k} exactly as defined in (2). Also, π̂N,k is the vector of frequencies
of each of the N initial alleles at time T̂ N,k , where the N initial alleles are uniformly labelled
from 1 to N at time 0. Note that the length of π̂N,k is equal to or smaller than k − 1 and that
its components take values in {0, 1/N, 2/N, . . . , 1}.

Proof of Proposition 1. We prove the result only for the forward process ÂN ; the backward
process AN can be handled in a similar way.

Assume that (T̂ N,k; k ≥ 1)N and T̂ k are coupled by the LD process (recall Remark 6). It
is clear that, for every k, the sequence {T̂ N,k;N ≥ k} is nondecreasing and converges to T̂ k

a.s. Furthermore, since T̂ N,k = T N,k in law (by Theorem 4(ii)), and since T N,k converges in
distribution to the kth coalescence time T k of a�-coalescent coming down from infinity (under
Proposition 1), it follows that T̂ k is identical in law with T k and so is finite a.s. Let us now
consider the process

Â∞
t = sup{k ≥ 1 : T̂ k > t},

so that the jump times of ÂN converge a.s. to those of Â∞. For every deterministic t , it is not
hard to see that P(Â∞

t − Â∞
t− > 0) = 0 (i.e. Â∞ does not have any fixed point of discontinuity),

and, thus, for every t ≥ 0, the sequence {ÂNt ;N ≥ 1} converges to Â∞
t a.s. It follows that ÂN

converges to Â∞ in the sense of FDDs. �
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From now on, assume that the �-FV dynamics are in the CDI class, that is, condition (5) is
enforced. Assume also that there are no simultaneous extinctions, i.e.

T̂ k < ∞ and T̂ k+1 < T̂ k a.s. for every k ≥ 2.

According to Theorem 5, these two assumptions are met as soon as ψ is regularly varying at
∞ with index in (1, 2]. In particular, this encompasses the binary case � = �({0})δ0.

5. Proof of Theorem 1

In this section we consider the extinction process defined from the LD process when � =
�({0})δ0. Recall that in this case there are no simultaneous extinction events, so that all jumps
of ÂNt are equal to −1 a.s., just as for the block-counting processANt of the Kingman coalescent.
In order to prove Theorem 1, we therefore only need to prove the equality in law

(T N,k; 2 ≤ k ≤ N)
L= (T̂ N,k; 2 ≤ k ≤ N), (10)

where here T N,k is the time at which the block counting process goes from k to k − 1. First,
note that definition (9) immediately implies that

T̂ N,k = ek + · · · + eN ,

where ej is the time needed for the kth fixation line to make a transition from level j to j + 1.
By definition of the LD process, the RVs ej are independent and ej follows the exponential
distribution with parameter

(
j
2

)
. On the other hand, by considering the successive coalescence

times in the N -Kingman coalescent, T N,k can be decomposed analogously, i.e.

T N,k = e′N + · · · + e′k,

where e′j is the time needed for the coalescent to go from j blocks to j − 1 block(s), that is,
(e′j ; k ≤ j ≤ N) is identical in law to (ej ; k ≤ j ≤ N).

The previous argument shows that the one-dimensional marginals of the two vectors in (10)
coincide. In order to prove (10), it remains to show that (T̂ N,k−1 − T̂ N,k; 3 ≤ k ≤ N) is a
sequence of independent RVs. By a simple induction, this boils down to proving that

T̂ N,k−1 − T̂ N,k is independent of (T̂ N,i; k ≤ i ≤ N) for all k ≤ j ≤ N . (11)

Define
RN,k := Lk−1

T̂ N,k
,

i.e. RN,k is the position of the (k − 1)th fixation line at extinction time T̂ N,k (see Figure 1).
The crucial observation is that T̂ N,k−1 − T̂ N,k depends only on

(a) RN,k , and

(b) the LD events after time T̂ N,k .

We now argue that both (a) and (b) are jointly independent of (T̂ N,i; k ≤ i ≤ N), thus
showing (11). We start by showing that RN,k is independent of (T̂ N,i; k ≤ i ≤ N). Since
Lk−1
t < Lkt , we note thatLk−1

t can jump only ifLkt jumps (again see Figure 1). More precisely,
if t is a jump time for the fixation line Lkt and if

Lkt− = k + j and Lk−1
t− = i for i < k + j,

then Lk−1
t = i + 1 if and only if the LD event at time t involves a pair (i1, i2) with i1, i2 ≤ i.

This happens with probability
(
i
2

)
/
(
k+j

2

)
.
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6

5

4

3

2

1

Figure 1: In this example N = 6 and k = 4, so that RN,k = 4. The value of the fixation Lk−1 (dotted
lines) at time T̂ N,k depends only on the type of arrow at the jumps of Lk (dot–dash lines). Lk−1 jumps

only at the first jump of Lk .

Now push the previous observation a bit further. For every j ∈ [N − k], consider

Z(j) = Lk−1
inf{t>0 : Lkt =k+j}.

In words, when Lkt reaches level k + j , record the position of the (k − 1)th fixation curve. In
particular, Z(0) = k − 1 and Z(N + 1 − k) = RN,k . Arguing as before, observe that Z is a
discrete-time Markov chain with initial condition Z(0) = k − 1 and, for every j ∈ [N − k],

P(Z(j + 1) = i + 1 | Z(j) = i) = 1 − P(Z(j + 1) = i | Z(j) = i) =
(
i

2

)/(
j + k

2

)
,

and by a standard property of a Poisson point process, all these events are independent of
the jump times of (Lkt , t ∈ [0, T̂ N,k)). Note that this type of argument is already present in
Pfaffelhuber and Wakolbinger [10]. Consequently,Z is independent of the σ -field Fk generated
by (Lkt , t ∈ [0, T̂ N,k)) and the LD events strictly above Lkt , that is, the LD events (t, (u, v))
such that Lkt < v. Since Z(N + 1 − k) = RN,k , RN,k is independent of Fk .

We now claim that (T̂ N,i; k ≤ i ≤ N) is Fk-measurable. Indeed, for i ∈ {k, . . . , N}, the
jumps of Lit are the jumps of Lkt in addition to jumps caused by LD events strictly above Lkt .
This shows that the path (Lit , t ∈ [0, T̂ N,i)) is Fk-measurable and so the extinction time T̂ N,i is
Fk-measurable. Since RN,k is independent of Fk , RN,k is independent of (T̂ N,i; k ≤ i ≤ N).

Now let Bk denote the σ -field generated by the LD events after time T̂ N,k . Note that both
(T̂ N,i; k ≤ i ≤ N) and RN,k depend only on the LD events before time T̂ N,k . By the strong
Markov property, this implies that Bk is independent of (RN,k, (T̂ N,i; k ≤ i ≤ N)). Using the
fact that ifA,B,C are three RVs withA ⊥⊥ C and B ⊥⊥ (A,C) then (A,B) ⊥⊥ C, we conclude
that RN,k and Bk are jointly independent of (T̂ N,i; k ≤ i ≤ N). This completes the proof.

6. A general urn model

6.1. Some definitions

In what follows, c ∈ N and corresponds to the number of colors in the urn. Furthermore,
(pl)l∈N is a family of probability distributions on N indexed by N. We consider a discrete
time increasing Markov process Un such that, conditional on Un = l, the jump probability
distribution at time n is given by pl . We think of Un as the size of the urn at time n.

For every V ∈ ⋃
l∈N

[c]l , λ(V ) denotes the length of the vector V . For every finite subset
S ⊂ N, and every u ∈ [c], define σuS (V ) to be the unique vector W such that

(i) for every j ∈ S, Wj = u, and

(ii) if we remove the lines of W with indices in S, the resulting vector is equal to V .
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Now, for every B ∈ N
c
0, letting l = ∑c

u=1 Bu, define PB to be the uniform probability measure
on {

V ∈ [c]l : for all u ∈ [c],
l∑
i=1

1Vi=u = Bu

}
.

6.2. A general urn model

We now define an urn model, whose state at step n is denoted by B(n) ∈ N
c
0, where in

particular Un = ∑c
u=1 Bu(n) is the number of balls in the urn. At step n + 1, conditional on

B(n), B(n+ 1) is generated by the following procedure.

(i) Sample an independent RV bn according to pUn .

(ii) Conditional on bn, sample a ball uniformly at random from the urn and return it with bn
additional balls of the same color, so that in particular Un+1 = Un + bn.

When pl = δ1 for every l ∈ N0, this model coincides with the classical Pólya urn.

6.3. A particle system

In the spirit of Donnelly and Kurtz [4], we represent our urn as a particle system. This
particle system is embodied by a

⋃
l∈N

[c]l-valued process (V (n); n ≥ 0), where the length
Un = λ(V (n)) of the vector V (n) is the number of particles at time n.

At step n+ 1, conditional on V (n), V (n+ 1) is generated by the following procedure.

(R1) Sample an independent RV bn according to pUn .

(R2) Conditional on bn, draw a random finite set S of cardinality bn+1 uniformly in [Un+bn].
(R3) Conditional on S, letting S′ = S \ {min S} and u = Vmin(S)(n), define

V (n+ 1) = σuS′(V (n)).

Our next result provides a particle representation of the urn model defined above.

Proposition 4. Define the N
c
0-valued process (B̄(n); n ≥ 0) such that, for every color u ∈ [c],

B̄u(n) = ∑λ(V (n))
i=1 1Vi(n)=u, so that B̄ records the number of types in V . If the law of V (0) is

given by PB(0) then

(i) (B̄(n); n ≥ 0) and (B(n); n ≥ 0) are identical in law; and

(ii) for every n ∈ N0 and B ∈ N
c
0, conditional on the event that {B̄(n) = B}, the law of

V (n) is given by PB .

Proof. The first part of the result can be seen as a direct consequence of Theorem 1.1 of
Donnelly and Kurtz [4]. The second part is apparent in the proof of the same result. For the sake
of completeness, we provide an alternative proof of Proposition 4 based on the intertwining
relation of Pitman and Rogers [12].

For any space E, define F(E) to be the set of bounded functions from E to R. Define the
operator V from F(

⋃
l∈N0

[c]l ) to F(Nc0) through the relation

Vf (B) = EB(f (V )) for all B ∈ N
c
0,

where the right-hand side means that the average is taken with respect to the random variable
V distributed according to PB .
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According to Pitman and Rogers [12], Proposition 4 follows if we can show that, for every
B ∈ N

c
0, and every bounded function h ∈ F(⋃l∈N

[c]l ),
VĜh(B) = GVh(B),

where G is the generator associated to the Pólya urn and Ĝ is the generator of the particle
process defined above.

Let l ≡ ∑c
u=1 Bu. Note first that Ĝh(V ) equals[ c∑

u=1

l∑
b=1

pl(b)(
l+b
b+1

) ∑
S⊆[l+b] : |S|=b

|{1 ≤ x < min(S) : V (x) = u}|h(σuS (V ))
]

− h(V ).

Let I denote the term between brackets. In the following, for every B ∈ N
c
0 and every

(u, b) ∈ [c]×N0, θu,b(B) refers to the vector obtained fromB by incrementing the u coordinate
of B by b units. Then

EB(I) =
c∑
u=1

l∑
b=1

pl(b)(
l+b
b+1

) ∑
S⊆[l+b] : |S|=b

EB(|{1 ≤ x < min(S) : Vx = u}| h(σuS (V ))).

The innermost sum here equals∑
S⊆[l+b] : |S|=b

EB(|{1 ≤ x < min(S) : σuS (V )x = u}|h(σuS (V )))

=
∑

S⊆[l+b] : |S|=b
Eθu,b(B)(|{1 ≤ x < min(S) : Vx = u}|h(V ) | for all j ∈ S, Vj = u)

=
∑

S⊆[l+b] : |S|=b

Eθu,b(B)(|{1 ≤ x < min(S) : Vx = u}| 1for all j∈S,Vj=u h(V ))
Pθu,b(B)(for all j ∈ S, Vj = u)

,

where in the first expression above we used the fact that σuS (V )x = Vx for x < min(S), and
the next relation follows from the fact that, for every bounded function m,

EB(m(σ
u
S (V ))) = Eθu,|S|(B)(m(V ) | for all j ∈ S, Vj = u).

On the other hand, if B is such that Bu > b then∑
S⊆[l+b] : |S|=b

1for all j∈S,Vj=u|{1 ≤ x < min(S) : Vx = u}| =
(
Bu

b + 1

)
, PB -a.s.,

whereas

PB(for all j ∈ S, Vj = u) = Bu · · · (Bu − (|S| − 1))

l · · · (l − (|S| − 1))
, where l =

c∑
u=1

Bu,

and, thus, applying the two previous formulae after replacing B by θu,b(B),

EB(I) =
c∑
u=1

l∑
b=1

pl(b)(
l+b
b+1

) (l + b) · · · (l + 1)

(Bu + b) · · · (Bu + 1)

(
Bu + b

b + 1

)
Eθu,b(B)(h(V ))

=
c∑
u=1

Bu

l

l∑
b=1

pl(b)Eθu,b (h(V )).

https://doi.org/10.1017/apr.2018.67 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2018.67


26 G. ACHAZ ET AL.

Furthermore, since

EB(h(V )) =
c∑
u=1

Bu

l

l∑
b=1

pl(b)EB(h(V )),

we obtain

VĜh(B) =
c∑
u=1

Bu

l

l∑
b=1

pl(b)(Eθu,b(B)(h(V ))− EB(h(V ))) = GVh(B).

As already mentioned, this completes the proof of Proposition 4 by an application of the
intertwining theorem of Rogers and Pitman [12]. �

7. Proofs of Theorem 6 and Proposition 3

7.1. Definition of π̂k

We start by defining a quantity π̂ k in the LD process; this is the analog of the quantity π̂∞,k

introduced in Theorem 6. Consider the embedded Markov chain associated to the Markov
process

(ξ1(t), . . . , ξLkt (t)−1(t)),

where ξ(t) is the LD process at time t . More specifically, ξi(t) is the allele carried by level i
at time t , assuming that at time t = 0, types are i.i.d. uniform in [0, 1]. From the definition of
Lk , there are exactly k − 1 different values (alleles) along the coordinates of the chain at any
time n. Consequently, this chain can be mapped to a [k − 1]-valued chain (V k(n); n ≥ 0) by
replacing each type by its rank in the ordered statistics of alleles (i.e. the smallest ξi(t) present
in the sample is assigned type 1, etc.). It is not hard to check that (V k(n); n ≥ 0) is identical in
law to the particle process described in Section 6 with pUn , the jump law of the vector size at
levelUn, being given by the law of YUn as defined in (7). Indeed, conditional onUn = l, where
Un = λ(V k(n)) is the length of V k(n), the next LD-event with an effect on the LD process up
to level l is the first LD event (t, A) such that #A∩ [l] ≥ 2 and then the level that gives birth is
minA and the number of newborn levels is #A− 1. Consequently,

P(Un+1 − Un = b − 1) = L({A ⊂ [l] : #A = b})
L({A ⊂ [l] : #A ≥ 2}) for b ∈ {2, . . . , l},

and a quick calculation based on the definition of L given by (8) shows that this is exactly the
distribution of Y l given in (7). Therefore, we have proved that rule (R1) as specified in the
definition of the particle system in Section 6 is satisfied. Now, conditional onUn+1−Un = b−1,
the Poissonian construction of the LD event (t, A) implies thatA is uniformly chosen among the
subsets of [l] with cardinality b, so that rule (R2) is also satisfied. Finally, rule (R3) describing
the sharing of new particles amongst old particles was exactly designed to fit the reordering
prescribed by the LD process at a LD event.

Furthermore, the initial distribution of the initial configuration V k(0) is given by

P(1, . . . , 1)︸ ︷︷ ︸
k−1

.

Define

Bku(n) =
λ(V k(n))∑
i=1

1V ki (n)=u, u ∈ [k − 1].
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Then, according to Proposition 4, (Bk(n); n ≥ 0) defines a �-urn with initial condition

(1, . . . , 1)︸ ︷︷ ︸
k−1

.

By Proposition 2, there exists a mass partition which is obtained as the limit of the sequence of
mass partitions (Bku(n)/

∑k−1
u=1 B

k
u(n); u ∈ {1, . . . , k − 1}). Denote this mass partition by π̂ k .

Note that, by definition, π̂ k is distributed as D�
k−1. (When � = �({0})δ0, this is the standard

Dirichlet mass partition.) We now show that π̂ k corresponds to the quantity π̂∞,k introduced
in Theorem 6.

Lemma 1. (Large population limit.) For every k ≥ 2, π̂N,k → π̂ k a.s. as N → ∞.

Proof. Recall that the π̂N,k encapsulate the frequencies of the k − 1 alleles strictly below
the fixation line starting at time 0 at level k (uniformly ordered once for all at time 0, regardless
of the value ofN ≥ k) at T̂ N,k , i.e. when the fixation line goes strictly above levelN . This can
be reformulated by saying that π̂N,k is the vector of allele frequencies in the�-urn (as defined
in the previous paragraph) when the number of balls exceedsN for the first time. Analogously,
π̂ k was defined as the vector of asymptotic frequencies in the urn. The result then follows by
a direct application of Proposition 2. �
Remark 7. Note that π̂ k is potentially degenerate.

7.2. LD Configuration at time ̂T k: proof of Theorem 6(i)

As a simple extension of Proposition 4(ii) (by going to the limit), it is not hard to see that,
conditional on π̂ k , the LD process at time T̂ k is obtained by assigning alleles independently
for every level according to the distribution π̂ k . Next, we note that the definition of the fixation
line Lk−1 readily implies that

Lk−1
t = inf{l ∈ N : #{types carried by levels in [l] at time t} = k − 1} for all t ≥ 0.

Assume now that π̂ k is degenerate. The previous two observations imply that Lk−1
T̂ k

= +∞.
Since, by assumption, there are no simultaneous extinctions, this yields a contradiction. This
completes the proof of the first part of Theorem 6.

Before proceeding with the second part of the proof, we mention the following lemma which
is a direct consequence of the previous observations.

Lemma 2. Under the assumptions of Theorem 6, π̂ k is nondegenerate, and, conditional on π̂ k ,
the mass partition

B =
(Lk−1

T̂ k
−1∑

i=1

1Vi=u; u ∈ [k − 2]
)

is identical in law to the random coupon collection associated to π̂ k .
Also, conditional on B, the particle configuration (ξ1, . . . , ξLk−1

T̂ k
−1) is distributed as PB .

7.3. Markov property and transition probabilities

Corollary 1. For every K ∈ N, (π̂K−k; k ∈ {0, . . . , K − 2}) is a Markov process.

Proof. The result is obviously true for a finite population, at least if we look at the original
(N,�)-FV process (not the one defined from the LD process). The proof is completed by going
to the limit. �
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In order to describe the transition probabilities of the Markov process given in Corollary 1,
we fix k ≥ 3 and describe the distribution of π̂ k−1 given π̂ k . Define N k to be the number of
jumps of the fixation line Lk−1 right before the explosion time T̂ k (see Figure 1), and set

Ṽ k−1(n) = V k−1(n+ N k), n ∈ N0.

Intuitively, Ṽ k−1 corresponds to the description of the urn with index k − 1 just after the
explosion of the urn with index k. By definition, π̂ k−1 is obtained by computing the asymptotic
frequencies of the k− 2 types present in the shifted process Ṽ k−1. Analogously to the proof of
Theorem 1 (again see Figure 1), we first note that Ṽ k−1 is a function of

(a) the types carried by the levels strictly below level Lk−1
T̂ k

at time T̂ k (in the original LD
process), and

(b) the LD events after time T̂ k .

From Lemma 2, it follows that, conditional on π̂ k , the process B̃k−1(0) := Bk−1(N k) is identi-
cal in law to the random coupon collection associated to the nondegenerate π̂ k , and, furthermore,
conditional on B̃k−1(0), the particle configuration Ṽ k−1(0) is distributed as P

B̃k−1(0).
Using again Proposition 4 and the fact that (b) above is independent of π̂ k , it follows that,

conditional on π̂ k , π̂ k−1 is identical in law to a�-urn whose initial condition can be described
in terms of a coupon collection generated from π̂ k . This is exactly the transition mechanism
described in Theorem 6.

Proof of Theorem 6. The result follows on combining Lemma 1, Corollary 1, and the cor-
relation between π̂ k and π̂ k−1 exposed above. �

Proof of Proposition 3. (ii) ⇒ (i). If D�
k has exactly k coordinates a.s., Theorem 6 then

implies that at extinction time T̂ k+1, exactly k types remain (and, furthermore, those types have
a strictly positive frequency). Thus we must have T̂ k > T̂ k+1.

(i) ⇒ (ii). This is shown in Section 7.2. �
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