A Note about Functions in Lip a

By N. DU PLESSIS

(Received 29th July 1949. Read 4th November 1949.)

This note gives a proof of the result:

A necessary and sufficient condition that a trigonometrical series T(x) be the Fourier series of a function $f(x) \in \text{Lip } a \ (0 < a < 1)$ is that

 $\sigma_n - \sigma_m = O(n^{-a})$ uniformly in $[0, 2\pi]$ for all m > n, where σ_n is the nth (C, 1) mean of T(x).

Sufficiency. We have $\sigma_n - \sigma_m \to 0$ uniformly as $m, n \to \infty$ and thus there is an f such that $\sigma_n \to f$ uniformly as $n \to \infty$. Furthermore, since $\sigma_n - \sigma_m = O(n^{-a})$ uniformly (m > n), we have, on letting $m \to \infty$, $\sigma_n - f = O(n^{-a})$ uniformly and so $f \in \text{Lip } \alpha$. This last follows from a theorem by de la Vallée Poussin which states that if there is a sequence of trigonometric polynomials $\{T_n(x)\}$ such that $f(x) - T_n(x) = O(n^{-a})$ uniformly in $[0, 2\pi]$ then $f \in \text{Lip } \alpha$. Since $\sigma_n \to f$ uniformly,

$$\int_0^{2\pi} f \frac{\cos kx \, dx = \lim_{n \to \infty} \int_0^{2\pi} \sigma_n \frac{\cos kx \, dx,}{\sin n}$$

and it follows that the Fourier coefficients of f are the coefficients n T(x).

Necessity. We have $f \in \text{Lip } a$ and must show that $\sigma_n - \sigma_m = O(n^{-a})$ for all $m \ge n$ where $\{\sigma_n\}$ are the (C, 1) means of the Fourier series of f. Now $\sigma_n - f = O(n^{-a})$, by a theorem due to S. Bernstein and so

$$|\sigma_n-\sigma_m| \leq |\sigma_n-f| + |\sigma_m-f| = O(n^{-\alpha}) + O(m^{-\alpha}) = O(n^{-\alpha}).$$

University of Natal,

DURBAN,

SOUTH AFRICA.

¹ C. de la Vallée Poussin, Leçons sur l'approximation des fonctions (Paris, 1919), § 41.

² Zygmund, Trigonometrical Series (1935), p. 62, No. 7.